跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉柏輝
研究生(外文):Bo-Huei Ye
論文名稱:含細料砂土的最大剪力模數之探討
論文名稱(外文):A Study on Maximum Shear Modulus of Sands Containing Fines
指導教授:郭安妮郭安妮引用關係
指導教授(外文):Annie On-Lei Kwok
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:140
中文關鍵詞:最大剪力模數細料含量剪力元件混合土壤土壤動態參數
外文關鍵詞:maximum shear modulusfines contentbender elementsoil mixturesdynamic soil properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在地動分析中,對於土層的影響一般會關注的是地震中地層對於地震波的放大效應,而其中有兩項用來描述土壤的動態參數,剪力模數和阻尼比,常用來代表土壤的動態特性。土層的動態參數會影響土壤的受震行為,而剪力模數會隨著剪應變不同而改變,當剪應變值很小的時候,剪力模數即為最大剪力模數。由最大剪力模數即可概算隨應變增大剪力模數之數值。
在過去五十年間,許多學者曾利用動態實驗方法,探討各土壤基本參數與最大剪力模數之間的關聯,並建立相關的關係式。最常見的關係式形式是考慮孔隙比及平均有效應力,由Hardin和Richart(1963)建立的關係式。然而,過去的經驗公式常常是以單一種類的土壤,純砂或是黏土的實驗結果來建立,而在現地中通常不會是單一種類的土壤,因此對於混合土壤,需要判斷使用過去經驗公式是否合適。
本研究利用一系列剪力元件(bender element)實驗,探討含細料砂土之最大剪力模數與細料對於最大剪力模數的影響。經由對不同細料含量和不同種類細料之砂土試體的實驗結果,找出孔隙比、平均有效應力、塑性指數、細料含量對最大剪力模數的影響趨勢。接著,經由收集過去研究中針對純砂和含細料砂土的動態實驗結果,檢算前人提出關係式所預測之最大剪力模數,了解各模型之預測精確度。最後,藉由非線性回歸方法,找出資料中最適合之關係式形式,並加入考慮細料之參數,得到含細料砂土之最大剪力模數經驗公式。
Dynamic properties, such as strain-dependent shear modulus, damping ratio, are used to represent the behavior of a soil deposit subjected to dynamic loading. Furthermore, maximum shear modulus (G_(max⁡)) controls the behavior of soil under very small shear strain level. All of these properties control the propagation characteristics of earthquake waves.
In the past fifty years, researchers investigated the relationship between maximum shear modulus and different basic soil properties through laboratory tests of pure soils, and developed empirical models for estimating maximum shear modulus. As we mostly encounter soil mixtures in the field, it is required to evaluate the applicability of these empirical models for estimating maximum shear modulus of soil mixtures.
The objective of this study is to determine the maximum shear modulus of sands containing fines by bender element tests. Sands with different percentages of fines and fines types are used in preparing the reconstituted specimens. Effects of void ratio, mean effective stress, plasticity index, and over-consolidation ratio on maximum shear modulus would be examined. Furthermore, data from nine previous researches are collected, and the predictive power of previous empirical models on estimating maximum shear modulus is investigated. Lastly, with nonlinear regression method, the correlation relationship for sands containing fines is developed.
論文口試委員審定書 I
致謝 II
摘要 III
Abstract IV
Table of Contents V
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research Objective and Method 1
1.3 Thesis Organization 2
Chapter 2 Literature Review 3
2.1 Dynamic Properties of Soil 3
2.1.1 Shear modulus and damping ratio 3
2.1.2 Shear strain level 4
2.1.3 Maximum shear modulus 4
2.2 Measurements of Maximum Shear Modulus 6
2.2.1 Laboratory tests 7
2.2.2 In-situ tests 9
2.3 Parameters Related to Maximum Shear Modulus 11
2.3.1 Influence of mean effective stress 12
2.3.2 Influence of void ratio 13
2.3.3 Influence of over-consolidation ratio 14
2.3.4 Influence of plasticity 15
2.3.5 Influence of other parameters 16
2.4 Correlation Relationships for Maximum Shear Modulus 23
2.4.1 Correlations of maximum shear modulus 23
2.4.2 Coefficients in the correlations 24
Chapter 3 Experimental Program 28
3.1 Materials 28
3.2 Physical Property Tests 29
3.3 Bender Element Apparatus 29
3.3.1 Pressure controlling system 29
3.3.2 Triaxial cell 30
3.3.3 Bender element system 31
3.4 Bender Element Test Procedure 34
3.4.1 Apparatus Calibration 34
3.4.2 Specimen control and preparation 34
3.4.3 Specimen remolding 36
3.4.4 Saturation stage 38
3.4.5 Consolidation stage 39
3.4.6 Bender element test 40
3.5 Data Processing 49
3.5.1 Determination of travel time 50
3.5.2 Determination of shear wave velocity 51
Chapter 4 Laboratory Test Results and Analyses 53
4.1 Physical Properties 53
4.1.1 Grain size distribution 54
4.1.2 Specific gravity, relative density, and Atterberg limits 55
4.1.3 Direct shear tests 56
4.2 Bender Element Tests 66
4.2.1 Experimental program 66
4.2.2 Near field effect of bender elements 67
4.2.3 Results of bender element tests 68
4.3 Factors Affecting Maximum Shear Modulus 76
4.3.1 Influence of confining stress 76
4.3.2 Influence of void ratio 76
4.3.3 Influence of fines content 77
4.3.4 Influence of fines type 78
4.3.5 Influence of over-consolidation ratio 78
4.3.6 Influence of saturation on cohesionless soil 79
4.4 Statistical Analyses on Maximum Shear Moduli 86
4.4.1 Determination of coefficients through regression analyses 86
4.4.2 Influence of fines content and plasticity index on coefficients in the correlation models 89
4.5 Determination of Final Empirical Model for Sands Containing Fines 96
4.5.1 Database of maximum shear modulus 96
4.5.2 Previously developed empirical models 100
4.5.3 Identification of void ratio function 108
4.5.4 Influence of fines 113
4.5.5 Brief summary 119
Chapter 5 Conclusion and Recommendation 121
5.1 Conclusion 121
5.2 Recommendation for future research 123
References 125
Appendix (Bender Element Test Results) 131
1.ASTM D3999. (2010). Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus.
2.ASTM, D422. (2010). Standard Test Method for Particle-Size Analysis of Soils.
3.ASTM, D4318. (2010). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
4.ASTM, D854. (2010). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.
5.Atkinson, J.H., Sallfors, G. (1991). “Experimental determination of soil properties,” Proc. of the 10th ECSMFE, vol.3, Florence, pp.915-956.
6.Benz, T. (2007). “Small-strain stiffness of soils and its numerical consequences,” Univ. Stuttgart, Inst. f. Geotechnik.
7.Bui, Man T.; Clayton, C. R. I.; and Priest, Jeffrey A., (2010). “The Universal Void Ratio Function for Small Strain Shear Modulus,” International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 29.
8.Camacho-Tauta J. F., Jimenez Alvarez J. D., and Reyes-Ortiz O. J. (2012). “A Procedure to Calibrate and Perform the Bender Element Test,” Dyna, year 79, No. 176, pp. 10-18.
9.Carlton, B. D., & Pestana, J. M. (2012). “Small strain shear modulus of high and low plasticity clays and silts,” Proc. 15th World Conference on Earthquake Engineering.
10.Chan, C. M. (2010). “Bender Element Test in Soil Specimens: Identifying the Shear Wave Arrival Time,” Electronic Journal of Geotechnical Engineering Vol. 15, Bund. M, pp.1263-1276.
11.Chien, L. K., and Oh Y. N. (2002). “Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil,” Can. Geotech. J., Vol. 39, 242-253.
12.Dyvik, R. and Madshus, C. (1985). “Lab measurements of Gmax using bender elements,” Proc. Conference on the Advances in the Art of Testing Soil under Cyclic Conditions. ASCE Geotechnical Engineering Division, New York, pp.186-196.
13.Hardin, B. O., and Black, W. L. (1968). “Vibration modulus of normally consolidated clay.” J. Soil Mech. And Found. Div., 94(2), pp. 353-369
14.Hardin, B. O., and Drnevich, V. P. (1972). “Shear modulus and damping in soils: Measurement and parameter effects,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98 (6):603-624.
15.Hardin, B. O., and Drnevich, V. P. (1972). “Shear modulus and damping in soils: Design equations and curves,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98 (7):667-692.
16.Hardin, B. O., and Richart, F. E. J. (1963). “Elastic wave velocities in granular soils,” J. Soil Mech. and Found. Div., 89(1), 33–65.
17.Iwasaki, T., and Tatsuoka, F. (1977). “Effects of grain size and grading on dynamic shear moduli of sands,” Soils Found., 17(3), 19–35.
18.JIS A 1224 (2009). Test method for minimum and maximum densities of sands. (Japanese.)
19.Jamiolkowski, M., Leroueil, S., and Lo Presti, D. C. F. (1991) “Theme lecture: Design parameters from theory to practice.” Proc. Geo-Coast ’91, Port and Harbour Research Institute, Japanese Ministry of Transport, pp.877– 917.
20.Jovicic, V., Coop, M. R. (1997). “Stiffness of coarse-grained soils at small strains.” Géotechnique, 47(3), pp.545-61.
21.Jovicic, V., Coop, M. R., Simic M. (1996). “Objective criteria for determining Gmax from bender element tests,” Géotechnique, 46(2), pp.357-62.
22.Kao, Y. H. (2015). Study of dynamic properties of soil mixtures. Master thesis. National Taiwan University, Taiwan.
23.Kokusho, T., Yoshida, Y. and Esashi, Y. (1982). “Dynamic properties of soft clay for wide strain range,” Soils and Foundations, Vol. 22 (4): 1-18.
24.Lai, T. C. (2014) Medium to Large-strain Dynamic Property of Mixed Soils. Master thesis. National Taiwan University, Taiwan.
25.Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E. (2013). “Small Strain Stiffness and Stiffness Degradation Curve of Bangkok Clays,” Soils and Foundations, 53(4), pp.498–509.
26.Liu, N. and Mitchell, J. K. (2006). “Influence of nonplastic fines on shear wave velocity-based assessment of liquefaction,” Journal of geotechnical and geoenvironmental engineering, 132(8), pp.1091-1097.
27.Lo Presti, D. C. F., Jamiolkowski, M., Pallara, O., Cavallaro, A. and Pedroni, S. (1997). “Shear modulus and damping of soils,” Géotechnique, 47(3), pp.603-617.
28.Lo Presti, D.C.F., Pallara, O., Cavallaro, A., Lancellotta, R., Armani, M. and Maniscalco, R. (1993). Monotonic and Cyclic Loading Behaviour of Two Sands at Small Strains. Geotechnical Testing Journal, vol. 16, no. 43, pp. 409–424.
29.Goudarzy M., Viefhaus H., König D. and Schanz T. (2014). “Micro and macro mechanical response of granular packing containing fine materials,” Geomechanics from Micro to Macro. Aug 2014, pp.1323 -1328.
30.Marcuson, W. E., and Wahls, H. E. (1972). “Time effects on dynamic shear modulus of clays.” J. Soil Mech. and Found. Div., 98(12), pp.1359-1373.
31.Menq F. Y. and Stokoe K. H. (2003). “Linear dynamic properties of sandy and gravelly soils from large-scale resonant tests,” Deformation Characteristics of Geomaterials, Swets & Zeitlinger, Lisse, pp.63-71.
32.Robertson, P.K., Sasitharan, S., Cunning, J.C. & Sego, D.C. (1995). “Shear-Wave Velocity to Evaluate In-Situ State of Ottawa Sand,” Journal of Geotechnical Engineering, ASCE, vol. 121, no. 3, pp.262–273.
33.Salgado, R., Bandini, P., and Karim, A. (2000), “Shear strength and stiffness of silty sand,” J. Geotech. Geoenviron. Eng, ASCE, 126(5), pp.451- 462.
34.Seed, H. Bolton; Idriss, I. M. (1970). “Soil moduli and damping factors for dynamic response analyses,” Report No. EERC, 70-10, Earthquake Engineering Resource Center, University of California, Berkley, California.
35.Shibuya, S., Hwang, S.C., and Mitachi, T. (1997). “Elastic shear modulus of soft clays from shear wave velocity measurement,” Géotechnique, 47(3), pp.593-601.
36.Viggiani, G. and Atkinson, J. H. (1995). “Interpretation of Bender Element Tests,” Géotechnique, 45(1), pp.149-154.
37.Viggiani, G. & Atkinson, J. H. (1995), “Stiffness of fine-grained soil at very small strains,” Géotechnique, 45(2), pp.249-265.
38.Vucetic, M. and Dobry, R. (1991), “Effect of Soil Plasticity on Cyclic Response,” ASCE Journal of Geotechnical Engineering, 117(1), pp.89-107.
39.Wang, G. X. and Kuwano, J. (1999), “Modeling of strain dependency of shear modulus and damping of clayey sand,” Soil Dyn. Earthq. Eng., 18(6), pp.463–71
40.Yamada, S., Hyodo, M., Orense, R. and Dinesh, S. V. (2008), “Initial shear modulus of remolded sand-clay mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, 134(7), pp.960–971.
41.Yamada, S., Hyodo, M., Orense, R., Dinesh, S. V. and Hyodo, T. (2008), “Strain-Dependent Dynamic Properties of Remolded Sand-Clay Mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, 134(7), pp.972-987.
42.Zhou, Y. G., Chen, Y. M. and Huang, B. (2004). “Experimental study of seismic cyclic loading effects on small strain shear modulus of saturated sands,” J. Zhejiang. Univ. SCI, 6A (3), pp.229-236.
43.Zuccarino, L., Morandi, D. A. and Sottile, M. (2015). “Shear wave velocity and shear modulus in offshore clays,” Frontiers in Offshore Geotechnics III. pp.1151–1156
44.簡才貴 (2006)。「土石壩材料之動態性質」,國立中央大學土木工程學系,碩士論文。
45.羅乾豪 (2011)。「細粒料含量對剪力波速影響之實驗研究」,國立成功大學土木工程學系,碩士論文。
46.王金山 (2004)。「共振柱試驗之土壤動態性質」,國立中央大學土木工程學系,碩士論文。
47.吳偉特 (1985) ,「土壤動態特性於大地工程」,地工技術雜誌第九期,民國74年1月,pp.5-19
48.善功企,山﨑浩之,梅原靖文 (1987)。「地震応答解析のための土の動的特性に関する実験的研究」,港湾空港技術研究所報告,Vol.26,No.1,pp.41-113。(Japanese)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊