Aoki media sensing lab. (2017). Moving Object Proposal by Grouping with Motion Feature, available online. http://www.aoki-medialab.jp/1_motion_feature.html(last date accessed: 21 July 2017).
Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features . 2006 9th European Conference on Computer Vision, Graz, Austria.
Benezeth, Y., Jodoin, P.-M., Emile, B., Laurent, H., & Rosenberger, C. (2008). Review and evaluation of commonly-implemented background subtraction algorithms. 2008 19th International Conference on Pattern Recognition , Florida, USA.
Bowden, R., Mitchell, T., & Sarhadi, M. (1998). Reconstructing 3D pose and motion from a single camera view, 1998 British Machine Vision Conference, Southampton, UK.
Brutzer, S., Höferlin, B., & Heidemann, G. (2011). Evaluation of background subtraction techniques for video surveillance. 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA.
Campbell, J., Sukthankar, R., Nourbakhsh, I., & Pahwa, A. (2005). A robust visual odometry and precipice detection system using consumer-grade monocular vision, 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain.
Chiang, K. W., Tsai, M. L., & Chu, C. H. (2012). The development of an UAV borne direct georeferenced photogrammetric platform for ground control point free applications. Sensors, 12(7), 9161-9180.
Digital Art, Design, and Communication Education. (2017). HUE, VALUE, SATURATION, available online. http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/(last date accessed: 10 July 2017).
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395.
FIVEKO.com. (2017). Median Filter, available online. http://fiveko.com/tutorials/dip/median(last date accessed: 15 July 2017).
Fraundorfer, F., & Scaramuzza, D. (2011). Visual odometry: Part i: The first 30 years and fundamentals. IEEE Robotics and Automation Magazine, 18(4), 80-92.
GUANGCHUN. (2013). OPENCV:Feature detectors and descriptors, available online. https://guangchun.wordpress.com/2013/02/16/opencv-feature-detectors-and-descriptode/
Han, C., Yoo, S., & Choi, J. (2011). Evaluation of co-occurring terms in clinical documents using latent semantic indexing. Healthcare informatics research, 17(1), 24-28.
Jung, B., & Sukhatme, G. S. (2004). Detecting moving objects using a single camera on a mobile robot in an outdoor environment, International Conference on Intelligent Autonomous Systems, North Holland, Netherlands.
Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE transactions on pattern analysis and machine intelligence, 24(7), 881-892.
Karami, E., Prasad, S., & Shehata, M. (2015). Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images, IEEE Newfoundland Electrical and Computer Engineering Conference,
Newfoundland, Canada.
Kent, Allen, Madeline M. Berry, Fred U. Luehrs, Jr., and J. W. Perry. (1955). Machine literature searching VIII. Operational criteria for designing information retrieval systems. American Documentation 6(2), 93–101.
Kim, W., & Kim, Y. (2016). Background Subtraction Using Illumination-Invariant Structural Complexity. IEEE Signal Processing Letters, 23(5), 634-638.
Kneip, L., Chli, M., Siegwart, R., Siegwart, R. Y., & Siegwart, R. Y. (2011). Robust real-time visual odometry with a single camera and an imu, 2011 British Machine Vision Conference, Scotland, UK.
Kole, S., Agarwal, C., Gupta, T., & Singh, S. (2015). SURF and RANSAC: A Conglomerative Approach to Object Recognition. International Journal of Computer Applications, 109(4).
Li, L., Huang, W., Gu, I. Y., & Tian, Q. (2003). Foreground object detection from videos containing complex background. 2003 11th ACM International Conference on Multimedia, California, USA.
Lim, J. S. (1990). Two-dimensional signal and image processing. Englewood Cliffs, NJ, Prentice Hall, 1990, 710p.
Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828), 133-135.
Lowe, D. G. (1999). Object recognition from local scale-invariant features, 1999 the seventh IEEE International Conference on Computer Vision, Kerkyra, Greece.
Mariottini, G. L., Oriolo, G., & Prattichizzo, D. (2007). Image-based visual servoing for nonholonomic mobile robots using epipolar geometry, 2007 IEEE Transactions on Robotics, 23(1), 87-100.
Micheloni, C., & Foresti, G. (2003). A robust feature tracker for active surveillance of outdoor scenes, Electronic Letters on Computer Vision and Image Analysis, 1(1), 21-34.
Migliore, D., Rigamonti, R., Marzorati, D., Matteucci, M., & Sorrenti, D. G. (2009). Use a single camera for simultaneous localization and mapping with mobile object tracking in dynamic environments, International Workshop on Safe Navigation in Open and Dynamic Environments Application to Autonomous Vehicles, Kobe, Japan.
Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem, Eighteenth National Conference on Innovative Applications of Artificial Intelligence, Alberta, Canada.
Nguyen, V.-T., Vu, H., & Tran, T.-H. (2015). An Efficient Combination of RGB and Depth for Background Subtraction. Some Current Advanced Researches on Information and Computer Science in Vietnam (pp. 49-63): Springer.
Pantech Solutions. (2013). Matlab Code for Background Subtraction, available online. https://www.pantechsolutions.net/blog/matlab-code-for-background-subtraction/ (last date accessed: 31 March 2016).
Perceiving Systems. (2016). Computer Vision Performance Evaluation, available online. https://ps.is.tue.mpg.de/research_projects/datasets(last date accessed: 12 May 2016).
Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF, 2011 International Conference on Computer Vision, Barcelona, Spain.
Sajid, H., & Cheung, S.-C. S. (2015). Background subtraction for static & moving camera. 2015 IEEE International Conference on Image Processing, Quebec City, Canada.
Scaramuzza, D., Fraundorfer, F., & Siegwart, R. (2009). Real-time monocular visual odometry for on-road vehicles with 1-point ransac, 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan.
Sheikh, Y., Javed, O., & Kanade, T. (2009). Background subtraction for freely moving cameras. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan.
SlideShare. (2013). An In-Depth Evaluation of Multimodal Video Genre Categorization, available online. http://www.slideshare.net/ionutmironica/cbmi-2013 (last date accessed: 31 March 2016).
Swank, A. J. (2012). Localization Using Visual Odometry and a Single Downward-Pointing Camera, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, Ohio, USA.
Tardif, J.-P., Pavlidis, Y., & Daniilidis, K. (2008). Monocular visual odometry in urban environments using an omnidirectional camera, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France.
Theia Vision Library. (2015). Structure from Motion (SfM), available online. http://www.theia-sfm.org/sfm.html (last date accessed: 31 March 2016).
Tomono, M. (2005). 3-D localization and mapping using a single camera based on structure-from-motion with automatic baseline selection, 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain.
Tsai, D.-M., Chiu, W.-Y., & Tseng, T.-H. (2015). Moving object detection from a mobile robot using basis image matching, 2015 IS&T/SPIE Electronic Imaging, San Francisco, USA.
Valgren, C., & Lilienthal, A. J. (2007). SIFT, SURF and Seasons: Long-term Outdoor Localization Using Local Features, 2007 3rd European Conference on Mobile Robots, Freiburg, Germany.
Van Rijsbergen C. J. (1979). Information Retrieval, 2nd edition, Butterworths. ISBN: 0-408-70929-4.
WAYMO. (2016). Journey, available online. https://waymo.com/journey/ (last date accessed: 12 May 2016).
Zhang, W., & Kosecka, J. (2006). Image based localization in urban environments, Third International Symposium on 3D Data Processing, Visualization, and Transmission, North Carolina, USA.
Zhang, Z. (1998). Determining the epipolar geometry and its uncertainty: A review. International journal of computer vision, 27(2), 161-195.
Zheng, Y., Mahabalagiri, A., & Velipasalar, S. (2013). Detection of moving people with mobile cameras by fast motion segmentation, 2013 Seventh International Conference on Distributed Smart Cameras, California, USA.
Zhou, H., Yuan, Y., & Shi, C. (2009). Object tracking using SIFT features and mean shift. Computer vision and image understanding, 113(3), 345-352.
Zhu, K., Ruan, Q., Yang, T., & Wang, H. (2008). Tracking and measuring a moving object with a binocular camera system, 2008 Ninth International Conference on Signal Processing, Beijing, China.
Zhu, Z., Oskiper, T., Samarasekera, S., Kumar, R., & Sawhney, H. S. (2007). Ten-fold improvement in visual odometry using landmark matching, 2007 IEEE Eleventh International Conference on Computer Vision, Rio de Janeiro, Brazil.
李政軒 (2012)。基於模糊線性區別分析之模糊分群法與結合空間資訊之支撐向量機,交通大學電機工程學系,博士論文,新竹市。
李昆鴻 (2013)。應用影像特徵於底拖攝影系統運動之估計,中山大學海下科技暨應用海洋物理研究所,碩士論文,高雄市。邱明璋 (2011)。基於極線限制條件之單眼視覺式移動物體偵測與追蹤,淡江大學機械與機電工程學系,碩士論文,新北市。謝宗倫 (2010)。單像機高速運動物體 3D 軌跡重建的新方法,亞洲大學生物資訊學系,碩士論文,台中市。鄭傑文 (2007)。射影幾何於攝影測量之應用,臺灣大學土木工程學系,碩士論文,台北市。蔡政芳 (2013)。基於視訊動態背景之運動物體偵測研究,中原大學資訊工程學系,碩士論文,桃園市。蘇恕德 (2009)。兩段式背景相減法偵測移動物體,臺灣大學電機工程學系,碩士論文,台北市。孫琬婷 (2013)。基於運動視訊中動態背景之移動物件偵測與追蹤研究,中原大學資訊工程學系,碩士論文,桃園市。王怡翔 (2008)。利用場景中之消失點產生影像深度圖,中華大學資訊工程學系,碩士論文,新竹市。吳究,張奇與劉銘哲 (2009)。基於尺度不變特徵點轉換之精密多元影像套合,航測及遙測學刊,14(2),141-155。