跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家宜
研究生(外文):Jia-Yi Chang
論文名稱:異重流三角洲於有限長度山谷中之地貌動力學研究:理論、實驗與現地調查
論文名稱(外文):Hyperpycnal delta morphodynamics in finite length valleys: theoretical, experimental and field study
指導教授:卡艾瑋
指導教授(外文):Hervé Capart
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:152
中文關鍵詞:異重流三角洲水庫淤沙水位變化水工模型實驗霧社水庫
外文關鍵詞:hyperpycnal deltareservoir sedimentationvarying water levellaboratory experimentsWushe Reservoir
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究目標為探討異重流三角洲於有限範圍中恆定條件與時變條件下的發展過程。藉由現地調查、水工模型實驗、理論及數值計算來分析整體形貌變化的情形。現地調查以位於台灣南投縣的霧社水庫作為研究案例,進行多次的野外縱剖面測量。為了模擬現地環境,我們利用單寬試驗水槽,配合傾斜岩石底床,以高密度鹽水模擬水庫異重流,並於下游設立可攔阻砂材但可使高密度流流出之網狀壩體,進行一系列水工模型試驗。並藉由影像分析方法得到異重流三角洲的形貌變化。在數值模擬部分,採用雙重擴散理論以及分別於水上水下率定的非線性水砂與坡度關係來模擬三角洲演進過程。最後將數值結果、實驗結果與現地現象進行比較,結果顯示,上游水砂條件顯著影響三角洲頂部(topset)的堆積角度,但對於三角洲前坡段(foreset)並不顯著;另一方面,下游水位控制三角洲河岸線(shoreline)位置並為坡度劇烈改變的基準。這兩種觀察結果於簡單條件(上游水砂及下游水位皆固定)與複雜條件(上游水砂及下游水位皆變化)下皆適用。另外當在水砂比大(Q/J>=30)時,水下三角洲會沿著前坡段產生砂波的現象,並隨著水位上升而出現更多的波段。
In this thesis, the main research goal is to study hyperpycnal delta progradation in finite length reservoirs, under both constant and time-varying boundary conditions. The upstream to downstream morphological evolution is analyzed using field investigation, laboratory experiments, and numerical modeling. For the field study, we investigated the Wushe Reservoir in Nantou County, Taiwan. The experiments were performed using a one-dimensional tank with inclined bedrock and a downstream mesh dam that traps sand while letting gravity currents flow out. For the numerical model, a two-diffusion theory was adopted, with calibrated non-linear transport relations along the topset and foreset. The results show that the upstream water and sand inflows influence greatly the topset slope, and the downstream water level evolution controls the location of the delta shoreline and the resulting slope break. Both observations apply in complex conditions (time-varying boundary conditions) as well as simple cases (constant boundary conditions). For large water and sand inflows (Q/J>=30), subaqueous sand waves form along the delta foreset.
致謝 i
中文摘要 ii
Abstract iii
Table of Contents iv
List of Figures vi
List of Tables xv
Chapter 1 Introduction …………………………………………………………...1
Chapter 2 Field Investigation …...…………………………………………...…...6
2.1 Study area ……………………………………………………………………...7
2.2 Reservoir observations ….…………………………………………………......8
2.3 Past evolution of Wushe Reservoir …………………………………………...11
2.4 Field survey methods……………. …………………………………………...20
2.5 Field survey results………………. …………………………………………..25
Chapter 3 Experiments and Measurement .....……………………………...….43
3.1 Experimental set-up ….……………………………………………………….44
3.2 Sand material …………….…………………………………………………...49
3.3 Experimental procedure ………….…………………………………………...52
3.4 Measuring method ………………. …………………………………………..54
Chapter 4 Theory and Numerical Model .…………………………………...…56
4.1 Governing equation ….……………………………………………………….57
4.2 Numerical computation: The finite volume method (FVM) …………….…...59
4.3 Calibration of sand transport relation ….……………………………………..61
Chapter 5 Results for Constant Boundary Conditions (Series A)………...….69
5.1 Low sediment transport rate (Run1)……………………………………….….72
5.2 Medium sediment transport rate (Run2)……………………………………...76
5.3 High sediment transport rate (Run3)…………………………………………78
5.4 Comparison between different transport rates ………………………………80
5.5 Comparison between experiment and simulation …...………………………83
Chapter 6 Results for Time-varying Boundary Conditions ……………...........89
6.1 Influence of varying water level (Series B) …….……………………………91
6.2 Influence of varying sediment supply (Series C) …………...……………….97
6.3 Influence of varying water supply (Series D) …………….………..……….103
6.4 Varying sediment supply with changing water level (Series E) ….............…118
6.5 Varying water supply with changing water level (Series F) ….………..……125
6.6 Comparison with field observations ……..………………………………….141
Conclusion …………………………………………………………………………...145
Reference ……………………………………………………………………………148
Clarke, J. H., Brucker, S., Muggah, J., Hamilton, T., Cartwright, D., Church, I., & Kuus, P. (2012). Temporal progression and spatial extent of mass wasting events on the Squamish prodelta slope. Landslides and engineered slopes: protecting society through improved understanding, 1091-1096.
Clarke, J. H., Brucker, S., Muggah, J., Church, I., Cartwright, D., Kuus, P., ... & Eisan, B. (2012). The Squamish ProDelta: monitoring active landslides and turbidity currents. In Canadian Hydrographic Conference 2012, Proceedings (p. 15).
Clarke, J. E. H., Marques, C. R. V., & Pratomo, D. (2014). Imaging active mass-wasting and sediment flows on a fjord delta, Squamish, British Columbia. In Submarine Mass Movements and Their Consequences (pp. 249-260). Springer International Publishing.
Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M., & Roering, J. J. (2003). Geomorphic transport laws for predicting landscape form and dynamics. Prediction in geomorphology, 103-132.
Fan, J., & Morris, G. L. (1992). Reservoir sedimentation. I: Delta and density current deposits. Journal of Hydraulic Engineering, 118(3), 354-369.
Grover, N. C., & Howard, C. S. (1938). The passage of turbid water through Lake Mead. Transactions of the American Society of Civil Engineers, 103(1), 720-781.
Hsu, P. C. (2007). Onset and growth of tributary-dammed lakesacross alluvial rivers: theory and experiments, M.S. thesis, Graduate Institute of Civil Engineering. National Taiwan University, Taiwan.
Ke, W. T. (2016). Delta progradation, reservoir infill, and deposit removal in idealized and field reservoirs, Ph.D. thesis, Graduate Institute of Civil Engineering. National Taiwan University, Taiwan.
Kenyon, P. M., & Turcotte, D. L. (1985). Morphology of a delta prograding by bulk sediment transport. Geological Society of America Bulletin, 96(11), 1457-1465.
Kim, W., & Muto, T. (2007). Autogenic response of alluvial‐bedrock transition to base‐level variation: Experiment and theory. Journal of Geophysical Research: Earth Surface, 112(F3).
Kostic, S., Parker, G., & Marr, J. G. (2002). Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water. Journal of Sedimentary Research, 72(3), 353-362.
Kostic, S., & Parker, G. (2003). Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling. Journal of Hydraulic Research, 41(2), 127-140.
Kostic, S., & Parker, G. (2003). Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation. Journal of Hydraulic Research, 41(2), 141-152.
Lai, S. Y. J. (2006). Self-similar delta formation by hyperpycnal flows: theory and experiment, M.S. thesis, Graduate Institute of Civil Engineering. National Taiwan University, Taiwan.
Lai, S. Y., & Capart, H. (2007). Two‐diffusion description of hyperpycnal deltas. Journal of Geophysical Research: Earth Surface, 112(F3).
Lai, S. Y., & Capart, H. (2009). Reservoir infill by hyperpycnal deltas over bedrock. Geophysical Research Letters, 36(8).
Lai, S. Y., & Capart, H. (2009). Response of hyperpycnal deltas to a steady rise in base level. In 5th iahr symposium on river, coastal and estuarine morphodynamics.
Lee, H. Y., & Yu, W. S. (1997). Experimental study of reservoir turbidity current. Journal of Hydraulic Engineering, 123(6), 520-528.
Liu, H. H. (2010). The influence of water level fluctuation on reservoir delta morphodynamics: experiment and field measurement, M.S. thesis, Graduate Institute of Civil Engineering. National Taiwan University, Taiwan.
Muto, T., & Steel, R. J. (1992). Retreat of the front in a prograding delta. Geology, 20(11), 967-970.
Muto, T., & Steel, R. J. (2001). Autostepping during the transgressive growth of deltas: Results from flume experiments. Geology, 29(9), 771-774.
Muto, T., & Steel, R. J. (2004). Autogenic response of fluvial deltas to steady sea-level fall: Implications from flume-tank experiments. Geology, 32(5), 401-404.
Muto, T., & Swenson, J. B. (2006). Autogenic attainment of large-scale alluvial grade with steady sea-level fall: An analog tank-flume experiment. Geology, 34(3), 161-164.
Ni, W. J. (2005). Groundwater drainage and recharge by geomorphically active gullies, M.S. thesis, Graduate Institute of Civil Engineering. National Taiwan University, Taiwan.
Roering, J. J., Kirchner, J. W., & Dietrich, W. E. (1999). Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research, 35(3), 853-870.
Roering, J. J., Kirchner, J. W., & Dietrich, W. E. (2001). Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales. Journal of Geophysical Research: Solid Earth, 106(B8), 16499-16513.
Smith, W. O., Vetter, C. P., & Cummings, G. B. (1960). Comprehensive survey of sedimentation in Lake Mead, 1948-49. US Government Printing Office.
Talling, P. J., Allin, J., Armitage, D. A., Arnott, R. W., Cartigny, M. J., Clare, M. A., ... & Hill, P. R. (2015). Key future directions for research on turbidity currents and their deposits. Journal of Sedimentary Research, 85(2), 153-169.
Wang, W. L. (2009). Delta fronts formed by bedload and turbid influxes into mountain reservoir: Field survey and Experiments, M.S. thesis, Graduate Institute of Civil Engineering. National Taiwan University, Taiwan.
中興工程顧問股份有限公司(2017),萬大發電廠#1、#2機組進水口前淤積改善-導水隧道改造為排砂可行性研究,台灣電力股份有限公司萬大發電廠。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top