跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾美綺
研究生(外文):Mei-Chi Tseng
論文名稱:地表地形對地震震波反應影響之數值模擬
論文名稱(外文):Simulate the Topographic Effects of Seismic Response on Ground Surface
指導教授:林美聆林美聆引用關係
指導教授(外文):Meei-Ling Lin
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:136
中文關鍵詞:地震波地形放大效應波長FLAC傅氏頻譜
外文關鍵詞:earthquaketopographic amplificationwave lengthFLACFourier spectrum
相關次數:
  • 被引用被引用:4
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
回顧歷史上許多地震案例的記載當中,皆指出地表的不規則地形會對震波產生放大的作用,尤其在坡度較陡之邊坡或山頂處,地表振幅被放大數倍以上,極為可能是導致破壞的主因之一。台灣由於造山運動盛行,地形陡峻,山地與丘陵即佔全島三分之二的總面積,又大小地震頻繁,故有可能因為劇烈的地形起伏而使得地表震動加劇,而造成破壞。

本研究主要針對地形放大效應作討論。首先,選定南投縣日月潭氣象站測站為參考測站,並分別蒐集近域、遠域地震事件之加速度紀錄,作為簡化山峰數值模型之輸入運動與進行動態分析。希望藉由數值模型探討地表地形之幾何比例與震波主要波長在放大效應中之角色,以及兩者之間的關係。此外,也同時討論近域、遠域地震事件是否在地形放大效應中有不同的表現。

模擬結果顯示,當震波之主要波長小於山峰寬度的情況下,地形放大比率的分布情形將受到主要波長控制,主要放大區域將被限制在一倍波長的距離內,而非整個坡面;然而,當主要波長大於山峰寬度時,則由山峰寬度控制地形放大比率之分佈,即放大區域將涵蓋整個山峰坡面。

本研究亦利用快速傅立葉轉換在頻率中討論地形效應。均質土層的狀況下,基盤加速度之振幅達到一定程度時將產生土層放大效應,在對應到土層共振頻率的位置會出現傅氏振幅之放大,並且當基盤的振幅越大則此效應越明顯。此外,峰頂受地形放大影響的頻率範圍普遍落在8Hz以內,但當基盤加速度的振幅越大,則傅氏振幅中受影響的範圍也會愈廣。
There are lots of earthquake events indicating that the irregular terrain would cause the amplification of seismic response, especially on the steep slopes or crest of ridges. Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, which results in frequent orogenic activities and steep terrain. As a result, the research was needed to examine the influence of topographic effects on local sites.

This study focused on topographic amplification and investigate the relationship between the geometric ratio of topography and the dominant wavelength of seismic wave. First, the acceleration records of the strong motion station in Sun-Moon Lake weather station was collected. Those acceleration data were used as input motion for numerical dynamic analysis, including near- and far-field seismic events. The simulation results show that the distribution of topographic amplification ratio will be dominated by the dominant wavelength of seismic wave when the wavelength is less than the width of ridge, which means the amplification area will be limited to the distance of wavelength. On the other hand, when the dominant wavelength is greater than the width of ridge, the distribution of AT is controlled by the width, which means the amplification area will cover the entire ridge slope.

This research also discussed the topographic amplification in frequency domain with using fast Fourier Transform. In homogeneous soil layer, when the acceleration of base motion is large enough, the soil amplification will be excited so the Fourier amplitude will be amplified at the resonant frequencies according to fundamental frequency. For topography effect, generally the frequency spectrum of the crest will be amplified within 8Hz. However, when the amplitude of the base motion increases, the affected range in the Fourier spectrum will increase too.
摘要 III
ABSTRACT V
目錄 VII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 研究方法與內容 1
第二章 文獻回顧 3
2.1 震波傳遞原理 3
2.2 地震放大效應之形態 4
2.2.1 土層放大效應(Soil Amplification) 4
2.2.2 地形放大效應(Topographic Amplification) 4
2.2.3 盆地放大效應(Basin Effect) 5
2.3 地震反應影響評估方式 5
2.3.1 歷史災害統計分析法 6
2.3.2 模型試驗法 6
2.3.3 數值分析法 7
2.4 山峰地形之影響 9
第三章 研究區域與單向度波傳分析 27
3.1 研究區域介紹 27
3.1.1 地質背景 27
3.1.2 材料參數 28
3.2 單向度波傳分析 28
3.2.1 SHAKE程式簡介 28
3.2.2 土壤動態參數曲線 31
3.3 選用之地震資料 31
3.3.1 反卷積計算基盤加速度 32
3.3.2 加速度時間域分析 32
3.3.3 加速度頻率域分析 32
第四章 二維震波傳遞之數值分析模式 55
4.1 二維波傳分析 55
4.1.1 FLAC程式簡介 55
4.1.2 模型組成律模式 56
4.1.3 網格與邊界設定 57
4.1.4 動態分析流程 57
4.2 數值模型之驗證 58
4.2.1 小型振動台邊坡模型試驗簡介 58
4.2.2 利用小振動台邊坡試驗進行數值模型驗證 59
第五章 簡化地形模型之動態分析 69
5.1 模型之型式 69
5.1.1 模型之建立 69
5.1.2 模型基本設定 70
5.2 單峰模型 71
5.2.1 山峰寬度2L = 500 m 71
5.2.2 山峰寬度2L = 300 m 72
5.2.3 山峰寬度2L = 800 m 73
5.3 雙峰模型 73
5.4 雙峰加河谷模型 74
5.4.1 山峰寬度2L = 500 m 74
5.4.2 山峰寬度2L = 1000 m 75
5.5 傅氏譜放大比率 75
5.5.1 基盤與自由場地表頻譜之比較 75
5.5.2 水平土層加速度頻譜 76
5.5.3 簡化地形模擬結果之頻譜比較 76
第六章 研究區域現地受震紀錄分析 117
6.1 研究區測站分佈 117
6.2 仁愛地震事件各測站紀錄比較 117
6.3 魚池地震事件各測站紀錄比較 118
第七章 結論與建議 131
7.1 結論 131
7.2 建議 132
參考文獻 133
Anggraeni, D. (2010). Modelling the impact of topography on seismic amplification at regional scale. Enschede, The Netherlands: International Institute for Geo-Information Science and Earth Observation (ITC).
Ashford, S.A., & Sitar, N. (1997). Analysis of Topographic Amplification of Inclined Shear Waves in a Steep Coastal Bluff. Bulletin of the Seismological Society of America, Vol. 87(3), 692-700.
Ashford, S.A., Sitar, N., Lysmer, J., & Deng, N. (1997). Topographic effects on the seismic response of steep slopes. Bulletin of the Seismological Society of America, Vol. 87, 701-709.
Athanasopoulos, G.A., Pelekis, P.C., & Leonidou, E. A. (1999). Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dynamics and Earthquake Engineering, Vol. 18, 135-149.
Bouchon, M. (1973). Effect of Topography on Surface Motion. Bulletin of the Seismological Society of America, Vol. 63(3), 615-632.
Das, B.M., & Sobhan K. (2012) Principles of geotechnical engineering (8th ed.). Cengage Learning.
Davis, L.L., & West, L.R. (1973). Observed Effect of topography on ground motion. Bulletin of Seismological Society of America, Vol. 63, 283-298.
Fiore, V.D. (2010). Seismic site amplification induced by topographic irregularity: Results of a numerical analysis on 2D synthetic models. Engineering Geology, Vol.114, 109–115.
FLAC Version 7.0 manual (2011). ITASCA Consulting Group, Inc.
Geli, L., Bard, P.-Y., & Jullien, B. (1988). The effect of topography on earthquake ground motion: A review and new results. Bulletin of the Seismological Society of America, Vol. 78(1), 42-63.
Idriss, I.M. (1990). Response of Soft Soil Sites during Earthquakes. Proceedings, Memorial Symposium to honor Professor Harry Bolton Seed, Berkeley, California, Vol. II, May, 273-289.
Idriss, I.M. (1991). Earthquake Ground Motions at Soft Soil Sites. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Special Session. 3.
Kallou, P.V., Gazetas, G., & Psarropou, P. N. (2001). A Case History on Soil and Topographic Effects in the 7th September 1999 Athens Earthquake. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.
Lee, S.-J., Chen, H.-W., Liu, Q., Komatitsch, D., Huang, B.-S., & Tromp, J. (2008). Three-Dimensional Simulations of Seismic-Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method. Bulletin of the Seismological Society of America, Vol. 98(1), 253–264, doi:10.1785/0120070033
Meunier, P., Hovius, N., & Haines, J. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, Vol. 275, 221-232, doi:10.1016/j.epsl.2008.07.020
Nguyen, K.-V., & Gatmiri, B. (2007). Evaluation of seismic ground motion induced by topographic irregularity. Soil Dynamics and Earthquake Engineering, Vol. 27, 183–188.
Okawa, I., Kashima, T., & Kitagawa, Y. (1992). Site effect characterization using records of dense strong motion earthquake seismometer array in Sendai. Earthquake Engineering Tenth World Conference, Japan, 1009-1014.
Pagliaroli, A., Lanzo, G., & D''Elia, B. (2011). Numerical Evaluation of Topographic Effects at the Nicastro Ridge in Southern Italy. Journal of Earthquake Engineering, Vol. 5(3), 404-232.
Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering and Structural Dynamics, Vol. 31, 1831-1853.
Razmkhah, A., Kamalian, M., & Sadroldini, S.M.A. (2008). Application of boundary element method to study the seismic response of triangular hills.
Razmkhah, A., Kamalian, M., & Sadroldini, S.M.A. (2008, October). Application of boundary element method to study the seismic response of triangular hills. The 14th World Conference on Earthquake Engineering, Beijing, China.
Sánchez-Sesma, F.J. (1990). Elementary solution for response of a wedge-shaped medium to incident SH and SV waves. Bulletin of the Seismological Society of America, Vol. 80, No. 3, 737-742.
Sánchez-Sesma, F.J., Pérez-Rocha, L.E., & Chávez-Pérez, S. (1989). Diffraction of elastic waves by three-dimensional surface irregularities. (Part II). Bulletin of the Seismological Society of America, Vol. 79(1), 101-112.
Schnabel, P.B., Lysmer, J., & Seed, H.B. (1972). SHAKE—a computer program for earthquake response analysis of horizontally layered sites. Earthquake Engineering Research Center, University of California, Berkeley.
Singh, S.K., Mena, E., & Castro, R. (1988). Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data. Bulletin of the Seismological Society of America, Vol. 78(2), 451-477.
Ҫelebi, M. (1987). Topography and geological amplifications determined from strong motion and aftershock records of the 3 March 1985 Chile earthquake. Bulletin of the Seismological Society of America, Vol. 77, No. 4, 1147-1167.
Ҫelebi, M. (1991). Topographical and geological amplification: case studies and engineering implications. Structural Safety, Vol. 10, 199-129.
王元度(2005),小型振動台之模型邊坡動態試驗研究,國立台灣大學土木工程研究所碩士論文。
王國隆,林美聆(2010),1-g條件下之大型邊坡模型受震行為,地工技術,第125期,第23-34頁。
林京翰(2007),利用小型振動台模擬邊坡受震情形之研究,國立台灣大學土木工程研究所碩士論文。
邱建銘(2001),以剪力波速評估員林地區液化及其地層動態反應研究,國立台灣大學土木工程研究所碩士論文。
陳俊甫(2015),地形對地表放大效應之影響,國立台灣大學土木工程研究所碩士論文。
黃靖雅(2013),地震引致邊坡崩塌之影響範圍與滑動量數值模擬,國立台灣大學土木工程研究所論文。
經濟部中央地質調查所(2001),數值地質圖資料規範(第三版)。
經濟部中央地質調查所(2008),高山聚落地區地質災害基本調查(2/4),地質敏感區災害潛勢評估與監測計畫。
鄒銘徽(2011),振動台模型相似律及滑移行為分析,國立台灣大學土木工程研究所碩士論文。
謝昭輝(1992),地形效應對地震波形影響之物理模型研究,中央氣象局地震技術,第三期,第157-185頁。
藍詩婷(2014),地形對地震震波反應之影響,國立台灣大學土木工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top