|
Arakawa, A. 2004. The cumulus parameterization problem: Past, present, and future. Journal of Climate, 17(13), 2493-2525. ――, J. H. Jung, and C. M. Wu, 2011. Toward unification of the multiscale modeling of the atmosphere. Atmospheric Chemistry and Physics, 11(8), 3731-3742. ――, and W. H. Schubert, 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences, 31(3), 674-701. ――, and C. M. Wu, 2013. A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. Journal of the Atmospheric Sciences, 70(7), 1977-1992. Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, B. Briegleb, C. Bitz, S. J. Lin, and M. Zhang, 2004. Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+ STR, 226. de Roode, S. R., A. P. Siebesma, H. J. Jonker, and Y. de Voogd, 2012. Parameterization of the vertical velocity equation for shallow cumulus clouds. Monthly Weather Review, 140(8), 2424-2436. Fan, J., Y. C. Liu, K. M. Xu, K. North, S. Collis, X. Dong, G. J. Zhang, Q. Chen, P. Kollias, and S. J. Ghan, 2015. Improving representation of convective transport for scale‐aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. Journal of Geophysical Research: Atmospheres, 120(8), 3485-3509. Jung, J. H., and A. Arakawa, 2004. The resolution dependence of model physics: Illustrations from nonhydrostatic model experiments. Journal of the atmospheric sciences, 61(1), 88-102. ――, and ――, 2008. A three-dimensional anelastic model based on the vorticity equation. Monthly Weather Review, 136(1), 276-294. Kim, D., and I. S. Kang, 2012. A bulk mass flux convection scheme for climate model: description and moisture sensitivity. Climate dynamics, 38(1-2), 411-429. Kim, S. Y., and M. I. Lee, 2014, Evaluations of the Cloud-resolving Model in Representing Convective Precipitation Process. 2014 년도 한국기상학회 가을학술대회 프로그램집, 235-236. Liu, Y. C., J. Fan, G. J. Zhang, K. M. Xu, and S. J. Ghan, 2015. Improving representation of convective transport for scale‐aware parameterization: 2. Analysis of cloud‐resolving model simulations. Journal of Geophysical Research: Atmospheres, 120(8), 3510-3532. Lappen, C. L., and D. A. Randall, 2001a. Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. Journal of the atmospheric sciences, 58(15), 2021-2036. ――, and ――, 2001b. Toward a unified parameterization of the boundary layer and moist convection. Part II: Lateral mass exchanges and subplume-scale fluxes. Journal of the atmospheric sciences, 58(15), 2037-2051. ――, and ――, 2001c. Toward a unified parameterization of the boundary layer and moist convection. Part III: Simulations of clear and cloudy convection. Journal of the atmospheric sciences, 58(15), 2052-2072. Wu, C. M., and A. Arakawa, 2014. A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. Journal of the Atmospheric Sciences, 71(6), 2089-2103. Xiao, H., W. I. Gustafson, S. M. Hagos, C. M. Wu, and H. Wan, 2015. Resolution‐dependent behavior of subgrid‐scale vertical transport in the Zhang‐McFarlane convection parameterization. Journal of Advances in Modeling Earth Systems, 7(2), 537-550. Zhang, G. J., and N. A. McFarlane, 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmosphere-ocean, 33(3), 407-446.
|