跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉巽澤
研究生(外文):Xun-Ze Liu
論文名稱:雲解析模式受海溫驅動的輻射對流平衡反應
論文名稱(外文):Simulated convective-radiative equilibrium responses to SST forcing in a cloud resolving model
指導教授:隋中興隋中興引用關係
指導教授(外文):Chung-Hsiung Sui
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:45
中文關鍵詞:雲解析模式輻射對流平衡熱帶對流三模型態分級降雨暖化趨勢淺層環流
外文關鍵詞:cloud resolving modelradiative-convective equilibriumtropical convection tri-modal distributionbinned rainfall warming trendshallow circulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對暖化下熱帶環流中的對流與降雨的變異趨勢進行探討。不同於過去以觀測資料和全球模式的結果所做相關的研究我們以三維渦度方程雲解析模式VVM做為工具、提供雲解析模式下的理想化實驗架構來進行研究。透過海溫梯度及準二維的模式設置驅動接近輻射對流平衡的氣候狀態,模擬出類似熱帶哈德里胞、沃克環流的模式內輻射對流平衡態的大尺度環流,我們將本模式架構下的控制組跟三度海溫暖化實驗的平均態之變異作為討論氣候暖化趨勢的研究依據。
在模式架構內的大尺度環流中,高海溫區(亦即暖池區)為主要降雨區和環流上升區;低海溫區(亦即冷池區)則為乾區和環流下沈區。在降雨方面,強降雨為模式降雨量的主要貢獻來源;弱降雨和中度降雨則為頻率發生最高的降雨型態。藉由分析穩定層及水物的垂直分布可以看到有類似觀測資料中的熱帶對流三模型態;而海溫暖化下,上層暖化增強比下層顯著,整體環流有加深、對流結構有上移的趨勢,同時主要降雨區的環流上升速度有增強的趨勢,而在冷池區的整體結構分布亦隨暖化氣柱增厚有上移、下沈氣流增強的趨勢,然而近地層的淺對流隨逆溫層穩定度增強、變淺則有變淺的趨勢。在冷池區邊界層,水氣收支為地表蒸發及水氣通量的水平輻合項、垂直輻合項三項互相調節的結果;在暖化下,水氣通量水平輻散增強,平均狀態而言伴隨環流有下沈增強的趨勢和邊界層由冷池區帶往主要降雨區的水氣通量水平輻散增強,由以上我們推測有一邊界層淺層環流的增強,使得冷池區水氣總含量有變少的趨勢,同時對流、雲雨更不容易發展、淺對流發展高度變低。
暖化的變異下,主要降雨區的降雨量和降雨頻率皆有增加的趨勢,而冷池區降雨量和降雨頻率有減少的趨勢;為方便討論,我們將降雨強度分成四級:不降雨的乾區(亦即降雨強度為零)、降雨強度後50%的弱降雨、中間40%中度降雨以及3.19mm/hr以上的前10%強降雨事件,發現在整體範圍和主要降雨區中的強降雨事件之暖化趨勢為降雨頻率增多、降雨量和降雨強度增大;弱降雨事件的暖化趨勢為降雨頻率減少、降雨強度增強,而弱降雨事件在整體範圍和主要降雨區有不同的降雨量暖化趨勢,分別為整體範圍內降雨量減小、主要降雨區內增大。
然而此雲模式理想化實驗架構有其界線使其解釋度有限,其中一部份主要來自於實驗架構中的週期性震盪及模式輻射強度,上述使得輻射對流平衡有一定殘差,定量上較敏感,因此只能討論定性上的特性。然而本研究提供了一模擬熱帶環流下探討對流與降雨變異趨勢的實驗架構,並得以定性上的變異結果可作為相關議題的進一步佐證與瞭解的根據。
This research focuses on the trend of the variation of convection and rainfall in tropical circulation under global warming. Different from the previous related studies based on observation data and outcome of the global model, our study uses 3-Dimension Vorticity Equation Cloud Resolving Model (3D VVM) as the tool to provide an idealized experiment framework under CRM. Through the prescribed Sea Surface Temperature (SST) gradient and quasi-2D model setting, we drove a near radiative-convective equilibrium to simulate a climate regime with a large-scale circulation under the radiative-convective equilibrium similar to tropical Hadley-Cell, Walker Circulation. Our discussion on climate warming trend is based on the anomaly between the mean state of the control and 3-degree SST uniform warming experiments under model framework.
In the large-scale circulation of model framework, high-SST region is the main-rain region (MR) and ascending region while low-SST region (Cold Pool, CP) is the dry-region and descending region. The heavy rain is the main contribution to the total model rain amount. The light rain and mediate rain are the most frequent rain types. Through analyzing the vertical profile of the stable layer and hydrometeors distribution, we find out it is a structure similar to the tropical convection tri-modal distribution in observation. Under SST warming, upper layer gets warmer than other layers. The total circulation becomes deeper and there is an up-shifting trend of the convection structure. At the same time, the upward velocity of MR region circulation branch becomes larger; on the other hand, there is also an upshift of the total structure in CP region and the downward velocity of CP region circulation branch becomes larger. However, as the low-level inversion becomes stronger and shallower, the shallow convection in low-level layer becomes shallower. In CP region, surface evaporation, the horizontal convergence of vapor flux, and the vertical convergence of vapor flux mutually regulate the water budget of CP boundary layer. Under warming, horizontal divergence of vapor flux becomes stronger. In terms of mean-state, from the results in our model, we find out that the downward motion of the circulation becomes more intense. , and that the horizontal divergence of the vapor flux from CP to MR region in boundary layer gets stronger, which, we suppose, are related to an enhanced boundary level shallow circulation. The shallow circulation results in a decrease on the total water vapor content, a tougher developing of convection and cloud rain, and a lower-height development of shallow convection in the CP region.
Under the warming trend, rainfall amount and rainfall frequency increase in MR region but decrease in CP region. For the convenience of discussion on rainfall intensity, we classify all the rainfall events into four categories: dry region (DRY) with no rain, light rain (LIG) with bottom 50% event, mediate rain (MED) with intermediate 40% event, and heavy rain (HEV) with top 10% event stronger than 3.19 mm/hr. We find out that under the warming, in total domain region and MR region, in HEV’s case, the rainfall frequency of HEV increases, and rainfall amount and rain intensity get larger; on the other hand, in LIG’s case, the rainfall frequency of LIG decreases, and rain intensity gets larger. And interestingly, the rain amount of LIG in total domain region gets smaller while it gets larger in MR region.
However, the framework of the idealized CRM experiment has its limitation in terms of its ability of explanation. Part of the limitation comes from the periodic oscillation of the experiment framework and model radiation intensity, which gives rise to the residual of model radiative-convective equilibrium, and thus it merely allows for discussion on quantitative properties since quantitative properties are too sensitive to the residual. Nonetheless, this research provides an experiment framework to discuss convection and rainfall variation trend under simulated tropical circulation, and further understanding as well as verification of related issues can be achieved based on the qualitative variation results obtained in this study.
口試委員審定書 I
致謝 II
中文摘要 III
ABSTRACT V
目錄 VIII
圖表目錄 IX
第一章 前言 1
第二章 模式與實驗設計 6
2.1 VVM 雲解析模式 6
2.2 理想化實驗設計 6
2.3 資料處理 8
第三章 準二維理想化實驗中大尺度環流結構與暖化變異 9
3.1 大尺度環流結構、主要降雨區與冷池區基本熱力場 9
3.2主要降雨區與冷池區之對流三模結構與暖化變異 11
第四章 降雨特性與水氣收支 16
4.1主要降雨區與冷池區之降雨特性與暖化變異 16
4.2冷池區邊界層水氣收支 18
第五章 總結與討論 20
參考文獻 24
圖表 28
Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321(5895), 1481-1484.
Allan, R. P., Soden, B. J., John, V. O., Ingram, W., & Good, P. (2010). Current changes in tropical precipitation. Environmental Research Letters, 5(2), 025205.
Allen, M. R., Ingram, W. J., & Stainforth, D. A. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419(6903), 224.
Arakawa, A., & Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences, 31(3), 674-701.
Bretherton, C. S., Blossey, P. N., & Peters, M. E. (2006). Interpretation of simple and cloud-resolving simulations of moist convection–radiation interaction with a mock-Walker circulation. Theoretical and Computational Fluid Dynamics, 20(5), 421-442.
Chou, C., & Neelin, J. D. (2004). Mechanisms of global warming impacts on regional tropical precipitation. Journal of climate, 17(13), 2688-2701.:
Chou, C., Neelin, J. D., Chen, C. A., & Tu, J. Y. (2009). Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming.Journal of Climate, 22(8), 1982-2005.
Deardorff, J. W. (1972). Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29(1), 91-115.
Emori, S., & Brown, S. J. (2005). Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32(17).
Fu, Q., Krueger, S. K., & Liou, K. N. (1995). Interactions of radiation and convection in simulated tropical cloud clusters. Journal of the atmospheric sciences, 52(9), 1310-1328.
Gao, W., & Sui, C. H. (2013). A modeling analysis of rainfall and water cycle by the cloud-resolving WRF Model over the western North Pacific. Advances in Atmospheric Sciences, 30(6), 1695-1711.
Grabowski, W. W., Yano, J. I., & Moncrieff, M. W. (2000). Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. Journal of the atmospheric sciences, 57(13), 2022-2040.
Gu, G., & Adler, R. F. (2013). Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability?. Climate dynamics, 40(11-12), 3009-3022. :
Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686-5699.
Held, I. M., Hemler, R. S., & Ramaswamy, V. (1993). Radiative-convective equilibrium with explicit two-dimensional moist convection. Journal of the atmospheric sciences, 50(23), 3909-3927.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13).
Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., & Schubert, W. H. (1999). Trimodal characteristics of tropical convection. Journal of climate, 12(8), 2397-2418.
Jung, J. H., & Arakawa, A. (2008). A three-dimensional anelastic model based on the vorticity equation. Monthly Weather Review, 136(1), 276-294.
Krueger, S. K., Fu, Q., Liou, K. N., & Chin, H. N. S. (1995). Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. Journal of Applied Meteorology, 34(1), 281-287.
Kuang, Z. (2012). Weakly forced mock walker cells. Journal of the Atmospheric Sciences, 69(9), 2759-2786.
Lau, K. M., & Wu, H. T. (2003). Warm rain processes over tropical oceans and climate implications. Geophysical Research Letters, 30(24)
Lau, K. M., & Wu, H. T. (2007). Detecting trends in tropical rainfall characteristics, 1979–2003. International Journal of Climatology, 27(8), 979-988.
Lau, K. M., Sui, C. H., Chou, M. D., & Tao, W. K. (1994). An inquiry into the cirrus‐cloud thermostat effect for tropical sea surface temperature. Geophysical research letters, 21(12), 1157-1160.
Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22(6), 1065-1092
Liou, K. N., Yang, P., Takano, Y., Sassen, K., Charlock, T., & Arnott, W. (1998). On the radiative properties of contrail cirrus. Geophysical research letters, 25(8), 1161-1164.
Manabe, S., & Strickler, R. F. (1964). Thermal equilibrium of the atmosphere with a convective adjustment. Journal of the Atmospheric Sciences, 21(4), 361-385.
Manabe, S., & Wetherald, R. T. (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences, 24(3), 241-259.
Mapes, B. E., & Houze Jr, R. A. (1995). Diabatic divergence profiles in western Pacific mesoscale convective systems. Journal of the atmospheric sciences,52(10), 1807-1828.
Muller, C. J., O''Gorman, P. A., & Back, L. E. (2011). Intensification of precipitation extremes with warming in a cloud-resolving model. Journal of climate, 24(11), 2784-2800.
Neelin, J. D., Chou, C., & Su, H. (2003). Tropical drought regions in global warming and El Nino teleconnections. Geophysical Research Letters, 30(24).
O''Gorman, P. A., & Schneider, T. (2009). The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences, 106(35), 14773-14777.
Riley, E. M. (2013). Examining the form-function relationship of convective organization and the larger scale with observations and models (Doctoral dissertation, University of Miami).
Romps, D. M. (2011). Response of tropical precipitation to global warming.Journal of the Atmospheric Sciences, 68(1), 123-138.
Slawinska, J., Pauluis, O., Majda, A. J., & Grabowski, W. W. (2015). Multiscale interactions in an idealized Walker cell: Simulations with sparse space–time superparameterization. Monthly Weather Review, 143(2), 563-580.
Sobel, A. H., & Neelin, J. D. (2006). The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theoretical and Computational Fluid Dynamics, 20(5), 323-350.
Sui, C. H., Lau, K. M., Tao, W. K., & Simpson, J. (1994). The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate.Journal of the atmospheric sciences, 51(5), 711-728.
Tett, S. F., Jones, G. S., Stott, P. A., Hill, D. C., Mitchell, J. F., Allen, M. R., ... & Roberts, D. L. (2002). Estimation of natural and anthropogenic contributions to twentieth century temperature change. Journal of Geophysical Research: Atmospheres, 107(D16).
Tompkins, A. M. (2001). Organization of tropical convection in low vertical wind shears: The role of cold pools. Journal of the atmospheric sciences, 58(13), 1650-1672.
Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84(9), 1205-1217.
Wang, S., & Sobel, A. H. (2011). Response of convection to relative sea surface temperature: Cloud‐resolving simulations in two and three dimensions.Journal of Geophysical Research: Atmospheres, 116(D11).
Wofsy, J., & Kuang, Z. (2012). Cloud-resolving model simulations and a simple model of an idealized Walker cell. Journal of Climate, 25(23), 8090-8107.
Wu, Z. (2003). A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics.Journal of the atmospheric sciences, 60(2), 377-392.
Xu, K. M., Arakawa, A., & Krueger, S. K., 1992 : The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. Journal of the atmospheric sciences, 49, 2402-2420.
孫既仁. (2013). 熱帶降水趨勢的時空變動特徵分析. 臺灣大學大氣科學研究所學位論文, 1-44.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文