跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁紹倫
研究生(外文):Liang Shaolun
論文名稱:冰核對雲和降水的影響:在東亞地區冬季鋒面系統環境下的數值模擬個案研究
論文名稱(外文):The Effects of Ice Nuclei on Clouds and Precipitation: A Numerical Case Study of a Winter Frontal System in East Asia
指導教授:陳維婷陳維婷引用關係
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:48
中文關鍵詞:冰核異質核化冰成核參數化雲微物理冰相水物
外文關鍵詞:ice nucleusheterogeneous nucleationice nucleation parameterizationcloud microphysicsice-phase hydrometeor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用WRF模式搭配CLR雲微物理參數化方案對一次東亞地區冬季鋒面過程進行數值模擬,探討冰核濃度增加時,對雲屬性和降水有何種影響,以及當採用不同的冰成核參數化方案時,雲屬性和降水的變化產生何種差異。實驗測試了3種不同的冰成核參數化方案,一種只受環境溫度影響,一種只受環境過飽和度影響,另一種受環境過飽和度及冰核濃度共同影響。每種參數化方案對應3個冰核濃度,相比對照組擴大或縮小10倍,共計9組敏感性測試。

數值模擬結果表明,冰核濃度增加造成500~700hPa的冰晶異質核化作用變強,冰晶和雪粒子變多,凝華增長作用增強。冰相粒子通過白吉龍過程凝華增長時消耗液態水,使雲滴顯著減少。雲滴的減少導致500hPa上方發生的冰晶同質核化過程減弱,因此高層冰晶含量下降,也導致雪粒子淞化增長作用減弱,抵消了凝華增長增強的效果,因此降水總量和空間分佈沒有明顯的變化。

當使用不同的冰成核參數化方案時,冰核濃度增加使水物含量、雲微物理過程的變化幅度產生差異。關於冰晶異質核化過程在冰核濃度不同的幾組敏感性測試間的差異,依賴溫度的參數化方案只在高層溫度低的區域產生明顯的差異,另兩種參數化方案在對流層中層亦可產生明顯差異。同時依賴過飽和度和冰核濃度的方案對異質核化作用的診斷在環境冰核消耗時會減弱,所以模擬的變化幅度比只依賴過飽和度的方案小。因為只依賴過飽和度的方案在500~700hPa能夠模擬出較明顯的冰晶異質核化變化,所以此方案模擬的雪粒子凝華增長和淞化增長變化幅度也較大。
In this study, a simulation was conducted by WRF model coupled with CLR microphysics scheme to investigate the effect on cloud properties and precipitation when ice nuclei concentration increases, and the difference of this effect when different ice nucleation parameterizations are applied. 3 ice nucleation parameterizations are tested, the first one is only dependent on ambient temperature, the second one is only dependent on ambient supersaturation, and the other one is dependent on both ambient supersaturation and ice nuclei concentration. For each parameterization, 3 values of ice nuclei concentration are tested, with the other two having a difference of 10 times larger or smaller compared with control runs, and there are 9 simulations in total.

The results show that increasing ice nuclei enhances the heterogeneous nucleation of ice crystals between 500 and 700hPa, thus there are more ice crystals and snow particles, and depositional growth process is enhanced. These ice-phase particles grow by deposition via Bergeron process at the expense of liquid water, reducing cloud drops significantly. The decrease of cloud drops leads to the decline of homogeneous nucleation process upon 500hPa, resulting in less ice crystals in the upper troposphere, as well as the decline of riming process of snow particles, cancelling out the enhancement of depositional growth. Therefore, no significant changes are shown in total precipitation and its spatial distribution.

When different ice nucleation parameterizations are applied, the changes of hydrometeors and cloud microphysics processes due to the increase of ice nuclei concentration have different amplitude. Simulating the difference of heterogeneous ice nucleation between the three sensitivity tests with low and high ice nuclei concentration, there is only significant difference in the upper troposphere where the temperature is low when the parameterization dependent on temperature is used, while significant difference also exist in the middle troposphere when the other two parameterization are used. Meanwhile, the amplitude of the changes simulated by the parameterization dependent on both supersaturation and ice nuclei concentration is less than the parameterization which is only dependent on supersaturation because the former one will diagnose weaker heterogeneous ice nucleation when ambient ice nuclei are consumed. With a significant change of heterogeneous ice nucleation simulated between 500 and 700hPa, the parameterization dependent only on supersaturation can also simulate a significant change of the depositional and riming growth of snow consequently.
致謝 i
中文摘要 ii
Abstract iii
目 錄 v
表目錄 vi
圖目錄 vii
第一章 引言 1
第二章 數值模式與實驗設計 5
2.1 CLR雲微物理參數化方案簡介 5
2.1.1 CLR中的冰成核參數化方案 5
2.1.2 CLR中的冰晶異質成核過程演算 7
2.2 個案描述 8
2.3 實驗設計 9
第三章 實驗結果 10
3.1 模擬結果與觀測資料的對比 10
3.2 冰核對雲和降水的影響 11
3.2.1 水物和降水 11
3.2.2 雲微物理過程 13
3.3 冰成核參數化方案對環境的敏感性 14
第四章 分析與討論 16
4.1 冰核濃度增加對雲和降水的影響 16
4.2 冰核濃度增加對雲和降水的影響在不同冰成核參數化方案之間的差異 17
第五章 總結與展望 18
參考文獻 19
圖表 24
Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227-1231.

Bergeron, T. (1935). On the physics of cloud and precipitation.

Bigg, E. K. (1953). The supercooling of water. Proceedings of the Physical Society. Section B, 66(8), 688.

Chen, J. P., & Liu, S. T. (2004). Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Quarterly Journal of the Royal Meteorological Society, 130(596), 51-78.

Chen, J. P., Hazra, A., & Levin, Z. (2008). Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmospheric Chemistry and Physics, 8(24), 7431-7449.

Cheng, C. T., Wang, W. C., & Chen, J. P. (2010). Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmospheric Research, 96(2), 461-476.

Cooper, W. A. (1986). Ice initiation in natural clouds. In Precipitation Enhancement: A Scientific Challenge (pp. 29-32). American Meteorological Society.

DeMott, P. J., & Rogers, D. C. (1990). Freezing nucleation rates of dilute solution droplets measured between -30 and -40 C in laboratory simulations of natural clouds. Journal of the atmospheric sciences, 47(9), 1056-1064.

DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni, A. J., & Kreidenweis, S. M. (2003). African dust aerosols as atmospheric ice nuclei. Geophysical Research Letters, 30(14).

DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M.S., Eidhammer, T., & Rogers, D. C. (2010). Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 107(25), 11217-11222.

Fletcher, N. H. (1962). Physics of Rain Clouds, Cambridge University Press, 386 pp.

Gong, W., Min, Q., Li, R., Teller, A., Joseph, E., & Morris, V. (2010). Detailed cloud resolving model simulations of the impacts of Saharan air layer dust on tropical deep convection–Part 1: Dust acts as ice nuclei. Atmospheric Chemistry and Physics Discussions, 10(5), 12907-12952.

Huffman, P. J. (1973). Supersaturation spectra of AgI and natural ice nuclei. Journal of Applied Meteorology, 12(6), 1080-1082.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

Levin, Z., & Cotton, W. R. (2009). Aerosol pollution impact on precipitation: a scientific review. Springer, 386pp.

Meyers, M. P., DeMott, P. J., & Cotton, W. R. (1992). New primary ice-nucleation parameterizations in an explicit cloud model. Journal of Applied Meteorology, 31(7), 708-721.

Min, Q. L., Li, R., Lin, B., Joseph, E., Wang, S., Hu, Y., Morris, V., & Chang, F. (2009). Evidence of mineral dust altering cloud microphysics and precipitation. Atmospheric Chemistry and Physics, 9(9), 3223-3231.

Pruppacher, H. R. and Klett, J. D. (1997). Microphysics of Clouds and Precipitation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 954 pp.

Ramanathan, V. C. P. J., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119-2124.

Reisner, J., Rasmussen, R. M., & Bruintjes, R. T. (1998). Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quarterly Journal of the Royal Meteorological Society, 124(548), 1071-1107.

Rosenfeld, D., Rudich, Y., & Lahav, R. (2001). Desert dust suppressing precipitation: A possible desertification feedback loop. Proceedings of the National Academy of Sciences, 98(11), 5975-5980.

Stith, J. L., Twohy, C. H., DeMott, P. J., Baumgardner, D., Campos, T., Gao, R., & Anderson, J. (2011). Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm. Atmospheric Chemistry and Physics, 11(13), 6229-6243.

Tao, W. K., Chen, J. P., Li, Z., Wang, C., & Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 50(2).

Teller, A., & Levin, Z. (2006). The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmospheric Chemistry and Physics, 6(1), 67-80.

Teller, A., Xue, L., & Levin, Z. (2012). The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation. Atmospheric Chemistry and Physics, 12(19), 9303.

Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 34(7), 1149-1152.

Vali, G., & Stansbury, E. J. (1966). Time-dependent characteristics of the heterogeneous nucleation of ice. Canadian Journal of Physics, 44(3), 477-502.

Whitby, K. T. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment (1967), 12(1-3), 135-159.

Yin, Y., & Chen, L. (2007). The effects of heating by transported dust layers on cloud and precipitation: a numerical study. Atmospheric Chemistry and Physics, 7(13), 3497-3505.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top