跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙興儒
研究生(外文):Hsing-Ju Chao
論文名稱:利用石英晶體微天秤監測氣膠相變化
論文名稱(外文):Phase Transition of Aerosols Monitored by Quartz Crystal Microbalance
指導教授:洪惠敏洪惠敏引用關係
指導教授(外文):Hui-Ming Hung
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:68
中文關鍵詞:石英晶體微天秤潮解點遲滯現象
外文關鍵詞:Quartz Crystal MicrobalanceDeliquescence Relative Humidityhysteresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
氣膠的相態在估算氣膠對於大氣的輻射收支平衡有很明顯的影響,本研究利用高敏感度(0.1 ng)的石英晶體微天平(quartz crystal microbalance, QCM)之共振頻率變化量來量測固態樣品的質量變化,可以觀測樣品潮解前與水之間的吸附作用以及水合物的形成,並利用QCM在液態樣品所造成的頻率變化量與固態樣品不一致,進而決定出樣品因吸濕而轉變相態所需的相對濕度。
本研究利用此技術量測四種單組分無機鹽類(硫酸銨、氯化鈉、氯化鎂,以及硝酸鈣)、兩種內部混和雙組分無機鹽類(氯化鈉-氯化鎂以及氯化鈉-硝酸鈣)、無機鹽類與有機酸類之混合物(硫酸銨-丁二酸)以及2015年4月12日於金門採樣的氣膠樣品之潮解點,並且利用熱力學模式AIOMFAC以及E-AIM Model III計算各個樣品在熱力平衡下之潮解點,並將計算的結果與石英晶體微天平的量測結果作比較。結果顯示單組分的無機鹽類皆呈現一個潮解點,且量測結果與熱力模式計算的結果相近。在雙組分的系統當中,氯化鈉-氯化鎂呈現兩階段的潮解,氯化鈉-硝酸鈣呈現一個階段的潮解,而硫酸銨-丁二酸混合物之潮解點相較於純硫酸銨有下降的趨勢,且潮解後的共振頻率上升比例較純硫酸銨小,說明會潮解的物質占系統中的比例與潮解後的共振頻率上升比例有關係。而金門氣膠樣品的測試結果主要呈現一個潮解點,而此潮解點隨著粒徑的改變與氣膠的組成成份有很大的關係。除此之外,本研究也利用相關的理論去解釋附有氣膠樣品之晶體共振頻率於吸濕過程當中的變化過程。除了能夠量測氣膠的潮解點,此技術也能夠比較氣膠樣品與標準鹽類之量測結果,判斷氣膠樣品當中可能含有的主要成份以及不易潮解的物質的相對多寡,並利用氣膠樣品進行離子層析的結果協助分析其相態變化的過程。
未來希望能利用此技術能夠量測固態樣品質量變化以及相變化的特性,將此技術繼續延伸發展,監測大氣當中的一些化學反應以及可能的物理化學性質。
The physical phase of aerosols can affect the impact of aerosols on the atmosphere radiation budget. A highly sensitive quartz crystal microbalance (QCM) with sensitivity of 0.1 ng was applied to monitor the mass change of solid samples due to the adsorption or desorption processes as the relative humidity (RH) was varied according to the variation of the oscillation frequency of the quartz crystal. With the energy dissipation in the liquid phase different from what happens at solid phase, QCM can also be applied to determine the required RH for the phase transition of the deposited chemical species.
In this study, the deliquescence relative humidity, DRH of single-component systems ((NH4)2SO4, NaCl, MgCl2, and Ca(NO3)2), two-component systems (NaCl-MgCl2 , NaCl-Ca(NO3)2 and (NH4)2SO4-succinic acid mixture), and Kinmen aerosols sampled on April 12, 2015 was measured using a QCM. The determined DRHs were compared with the DRHs calculated by thermodynamic models, AIOMFAC and E-AIM. For the single-component inorganic salts, the measured DRHs are consistent with that from thermodynamic models. As to the two-component systems, NaCl-MgCl2 mixture showed two DRHs while NaCl-Ca(NO3)2 mixture had only one significant DRH. The results in (NH4)2SO4-succinic acid mixture showed only one DRH, slightly lower than that of pure (NH4)2SO4. The normalized change of oscillation frequency after deliquescence is associated with the fraction of soluble species ((NH4)2SO4 in this system). As to the field samples (Kinmen aerosols), only one DRH was observed at a given size range of samples. The observed DRH is size-dependent due to the composition variation with droplet size according to the analysis of ion chromatography.
Furthermore, this technique may be utilized to monitor the chemical reactions and possible hygroscopic properties (e.g., liquid viscosity) happening in the atmosphere base on the response of QCM investigated in this study.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
表目錄 vii
圖目錄 viii
論文中定義之參數及其符號 x
第一章 簡介 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 潮解在熱力學中的解釋 3
2.1.1 單組分系統之潮解 3
2.1.2 雙組分系統之潮解點 3
2.2 量測潮解點之技術 4
2.3 過去相關研究 6
2.3.1 單組分以及雙組分鹽類之潮解點 6
2.3.2 無機鹽類與有機酸類的潮解點 7
2.3.3 實際採樣氣膠之潮解點 9
第三章 研究方法 10
3.1 實驗流程與設備 10
3.1.1 實驗流程與儀器配置 10
3.1.2 實驗儀器 10
3.1.3 實驗測試之藥品與氣膠樣品 12
3.2 QCM量測潮解點之原理 12
3.3 利用熱力學模式計算潮解點 14
3.3.1熱力學模式:AIOMFAC 14
3.3.2熱力學模式:E-AIM 15
第四章 研究結果 16
4.1 單組分無機鹽類之潮解 16
4.1.1 穩定性測試及共振頻率隨相對濕度之變化 16
4.1.2 各鹽類之潮解點 17
4.2 吸濕過程各階段之∆f_N之比較 18
4.2.1 潮解前∆f_N之比較 18
4.2.2 潮解時∆f_N之比較 19
4.2.3 潮解後∆f_N之比較 20
4.3 雙組分物質之潮解 22
4.4 金門採樣氣膠(2015年4月12日) 24
4.4.1 採樣時之天氣分析與氣膠之成分分析 24
4.4.2 金門採樣氣膠之化學組成分析以及潮解點 25
第五章 結論與未來工作展望 28
5.1 結論 28
5.2 未來工作展望 30
參考文獻 32
附錄、石英晶體微天平 36
A.1 壓電效應 36
A.2 石英晶體的切割與特性 37
A.3 QCM的原理 37
Adams, J. R., & Merz, A. R. (1929). Hygroscopicity of fertilizer materials and mixtures. Industrial and Engineering Chemistry, 21, 305-307. doi:10.1021/ie50232a003
Al-Abadleh, H. A., Krueger, B. J., Ross, J. L., & Grassian, V. H. (2003). Phase transitions in calcium nitrate thin films. Chemical Communications(22), 2796-2797. doi:10.1039/b308632a
Arenas, K. J. L., Schill, S. R., Malla, A., & Hudson, P. K. (2012). Deliquescence Phase Transition Measurements by Quartz Crystal Microbalance Frequency Shifts. Journal of Physical Chemistry A, 116(29), 7658-7667. doi:10.1021/jp3016722
Chan, M. N., & Chan, C. K. (2007). Mass transfer effects on the hygroscopic growth of ammonium sulfate particles with a water-insoluble coating. Atmospheric Environment, 41(21), 4423-4433. doi:10.1016/j.atmosenv.2007.01.047
Choi, M. Y., & Chan, C. K. (2002). The effects of organic species on the hygroscopic behaviors of inorganic aerosols. Environmental Science & Technology, 36(11), 2422-2428. doi:10.1021/es0113293
Cruz, C. N., & Pandis, S. N. (2000). Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol. Environmental Science & Technology, 34(20), 4313-4319. doi:10.1021/es9907109
D''Angelo, L., Rovelli, G., Casati, M., Sangiorgi, G., Perrone, M. G., Bolzacchini, E., & Ferrero, L. (2016). Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): Implications for remote sensing applications. Atmospheric Research, 176, 87-95. doi:10.1016/j.atmosres.2016.02.011
Espinosa, R. M., Franke, L., & Deckelmann, G. (2008). Phase changes of salts in porous materials: Crystallization, hydration and deliquescence. Construction and Building Materials, 22(8), 1758-1773. doi:10.1016/j.conbuildmat.2007.05.005
Fong, B. N., Kennon, J. T., & Ali, H. M. (2016). Mole Ratio Dependence of the Mutual Deliquescence Relative Humidity of Aqueous Salts of Atmospheric Importance. Journal of Physical Chemistry A, 120(20), 3596-3601. doi:10.1021/acs.jpca.6b02706
Glassford, A. P. M. (1978). Response of a Quartz Crystal Microbalance to a Liquid Deposit. Journal of Vacuum Science & Technology, 15(6), 1836-1843. doi:10.1116/1.569851
Gupta, D., Eom, H. J., Cho, H. R., & Ro, C. U. (2015). Hygroscopic behavior of NaCl-MgCl2 mixture particles as nascent sea-spray aerosol surrogates and observation of efflorescence during humidification. Atmospheric Chemistry and Physics, 15(19), 11273-11290. doi:10.5194/acp-15-11273-2015
Gupta, D., Kim, H., Park, G., Li, X., Eom, H. J., & Ro, C. U. (2015). Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates. Atmospheric Chemistry and Physics, 15(6), 3379-3393. doi:10.5194/acp-15-3379-2015
Jing, B., Peng, C., Wang, Y. D., Liu, Q. F., Tong, S. R., Zhang, Y. H., & Ge, M. F. (2017). Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles. Scientific Reports, 7, 11. doi:10.1038/srep43572
Kanazawa, K. K., & Gordon, J. G. (1985). The Oscillation Frequency of a Quartz Resonator in Contact with a Liquid. Analytica Chimica Acta, 175(SEP), 99-105.
Kelly, J. T., & Wexler, A. S. (2006). Water uptake by aerosol: Water activity in supersaturated potassium solutions and deliquescence as a function of temperature. Atmospheric Environment, 40(24), 4450-4468. doi:10.1016/j.atmosenv.2006.04.017
Kelly, J. T., Wexler, A. S., Chan, C. K., & Chan, M. N. (2008). Aerosol thermodynamics of potassium salts, double salts, and water content near the eutectic. Atmospheric Environment, 42(16), 3717-3728. doi:10.1016/j.atmosenv.2008.01.001
Levy, R. C., Remer, L. A., & Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research-Atmospheres, 112(D13), 15. doi:10.1029/2006jd007815
Li, X., Gupta, D., Eom, H. J., Kim, H., & Ro, C. U. (2014). Deliquescence and efflorescence behavior of individual NaCl and KCl mixture aerosol particles. Atmospheric Environment, 82, 36-43. doi:10.1016/j.atmosenv.2013.10.011
Lightstone, J. M., Onasch, T. B., Imre, D., & Oatis, S. (2000). Deliquescence, efflorescence, and water activity in ammonium nitrate and mixed ammonium nitrate/succinic acid microparticles. Journal of Physical Chemistry A, 104(41), 9337-9346. doi:10.1021/jp002137h
Liu, Y. J., Zhu, T., Zhao, D. F., & Zhang, Z. F. (2008). Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles by micro-Raman spectrometry. Atmospheric Chemistry and Physics, 8(23), 7205-7215.
Marcolli, C., & Krieger, U. K. (2006). Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols. Journal of Physical Chemistry A, 110(5), 1881-1893. doi:10.1021/jp0556759
Minambres, L., Mendez, E., Sanchez, M. N., Castano, F., & Basterretxea, F. J. (2013). Water uptake of internally mixed ammonium sulfate and dicarboxylic acid particles probed by infrared spectroscopy. Atmospheric Environment, 70, 108-116. doi:10.1016/j.atmosenv.2013.01.007
O''Sullivan, C. K., & Guilbault, G. G. (1999). Commercial quartz crystal microbalances - theory and applications. Biosensors & Bioelectronics, 14(8-9), 663-670. doi:10.1016/s0956-5663(99)00040-8
Pant, A., Fok, A., Parsons, M. T., Mak, J., & Bertram, A. K. (2004). Deliquescence and crystallization of ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles. Geophysical Research Letters, 31(12), 4. doi:10.1029/2004gl020025
Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7(8), 1961-1971.
Prenni, A. J., De Mott, P. J., & Kreidenweis, S. M. (2003). Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids. Atmospheric Environment, 37(30), 4243-4251. doi:10.1016/s1352-2310(03)00559-4
Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wagung Dunner Schichten und zur Mikrowzgung. Zeitschrift Fur Physik, 155(2), 206-222. doi:10.1007/bf01337937
Saxena, P., & Hildemann, L. M. (1996). Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry, 24(1), 57-109. doi:10.1007/bf00053823
Schroeder, J. R., & Beyer, K. D. (2016). Deliquescence Relative Humidities of Organic and Inorganic Salts Important in the Atmosphere. Journal of Physical Chemistry A, 120(50), 9948-9957. doi:10.1021/acs.jpca.6b08725
Tang, I. N. (1976). Phase transformation and growth of aerosol particles composed of mixed salts. J. Aerosol Sci, 7, 361-371. doi:10.1016/0021-8502(76)90022-7
Wang, J., Hoffmann, A. A., Park, R. J., Jacob, D. J., & Martin, S. T. (2008). Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions. Journal of Geophysical Research-Atmospheres, 113(D11), 11. doi:10.1029/2007jd009367
Wang, J., Jacob, D. J., & Martin, S. T. (2008). Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions. Journal of Geophysical Research-Atmospheres, 113(D11), 15. doi:10.1029/2007jd009368
Change, I.P.o.C.(2015). Climate change 2014:mitigation of climate change, Cambridge University Press
Yukhnevi.Gv, Vetrov, A. A., & Shelyukh.Bp. (1970). Dependence of Frequencies of Intermolecular Vibrations Associated Water Molecules Upon Size of Association Complexs. Australian Journal of Chemistry, 23(8), 1507-&.
黃任廷 (2016), 金門地區氣膠吸濕特性之探討, 台灣大學大氣科學研究所學位論文, 1-77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top