跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建彰
研究生(外文):Chien-Chang Huang
論文名稱:熱動力效率與海燕颱風(2013)快速增強之探討
論文名稱(外文):Dynamic Efficiency of Heat and the Rapid Intensification of Typhoon Haiyan (2013)
指導教授:郭鴻基郭鴻基引用關係
指導教授(外文):Hung-Chi Kuo
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:海燕颱風快速增強RI熱動力效率雲解析風暴模式
外文關鍵詞:typhoon Haiyanrapid intensificationRIdynamic efficiencyCReSS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
海燕颱風(2013)經歷了一段快速增強(Rapid intensification, RI)的過程。根據聯合颱風警報中心(JTWC) 1分鐘平均最大風速的評估,從11月5日0000 UTC至11月6日 0000 UTC之1分鐘平均最大風速增強了30 m s^(-1),相當於Hendricks et al. (2010) 所定義之RI門檻值19.5 m s^(-1) day^(-1)之約1.5倍。在SSMIS 91 GHz 衛星圖中發現到海燕颱風在RI期間,中心南側的對流逐漸內縮,眼牆建立並軸對稱化的過程。
此研究為了探討海燕颱風RI之過程,而藉由Hack and Schubert (1986) 所提出動力能量效率之概念進行診斷。此物理量能夠定量描述可用位能轉換成動能的能量轉換率,並以加熱為量度基準。
在Hack and Schubert (1986)的實驗設計中,給定理想的渦旋結構與總加熱量以探討其轉換效率;在此研究中,利用全物理雲解析模式CReSS (Cloud-Resolving Storm Simulator)模擬海燕颱風的RI過程,得到較真實的高解析渦旋結構,以診斷模式中海燕颱風在RI期間的動力轉換效率,並探討其結構分布以及隨時間的變化。
結果顯示,模擬的海燕颱風在RI過程中的強度變化同樣達到30 m s^(-1) day^(-1),且亦有中心南側的對流內縮建立眼牆並對稱化之過程,與觀測相似。於模擬的海燕颱風動力轉換效率分析中,可以發現在其RI初期就擁有較高的動力轉換效率,顯示此時的渦旋結構可以很有效率地將對流的潛熱釋放轉換成動能,使系統劇烈地增強。
Typhoon Haiyan (2013) underwent an extreme rapid intensification (RI) process. According to the Joint Typhoon Warning Center (JTWC), one-minute maximum sustained wind speed increased 30 m s^(-1) from 0000 UTC Nov 5 to 0000 UTC Nov 6, which is about 1.5 times the RI threshold, 19.5 m s^(-1) day^(-1), defined by Hendricks et al. (2010). The SSMIS 91 GHz satellite map reveals the process that the convection on the south side of the eye contracted, and the eyewall was established and was axisymmetrized in RI period.
In order to study the RI process of typhoon Haiyan, we apply dynamic efficiency of heat developed by Hack and Schubert (1986) to diagnose. Through this concept, we can examine the effect of heating on the energy conversion rate, converting total potential energy into total kinetic energy.
Hack and Schubert (1986) used idealized vortex structure and ideal diabatic heating to examine the dynamic efficiency. However, in this study, we simulate the RI process of typhoon Haiyan by the Cloud-Resolving Storm Simulator (CReSS) and obtain the high-resolution structure of typhoon Haiyan, which are more realistic than idealized vortex structure, to examine the dynamic efficiency and its structural distribution and its changes over time.
The results indicate that CReSS model can reproduce the intensity change rate, the contraction of the convection on the south side of the eye, and the establishment and axisymmetrization of the eyewall. The dynamic efficiency analysis suggests there is high efficiency in the early stage of RI, and the vortex structure at this time can efficiently convert the latent heat into kinetic energy, which rapidly enhances system intensity.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 xi
第1章 前言 1
1.1 研究背景 1
1.2 動機與目的 2
第2章 資料來源與研究方法 4
2.1 資料來源 4
2.2 模式簡介 4
2.3 海燕颱風發展 7
2.3.1 海燕颱風簡介 7
2.3.2 海燕颱風之快速增強過程 8
2.4 研究方法 9
2.4.1 圓柱座標中的熱動力效率公式推倒 10
2.4.2 診斷程序 13
2.5 模式設定 14
第3章 模擬結果 16
3.1 颱風路徑與強度變化 16
3.2 颱風對流結構演化 17
3.3 小結 18
第4章 熱動力轉換效率分析結果 19
4.1 颱風結構因子分析 19
4.2 熱動力效率分析 20
4.3 平均範圍之敏感度測試 21
4.4 正壓與斜壓之敏感度測試 22
4.5 小結 23
第5章 軸對稱性 25
5.1 軸對稱度之定義 25
5.2 模擬之海燕颱風軸對稱度演化 25
5.3 小結 27
第6章 總結 28
圖 31
表 62
參考資料 64
附錄 67
[1]Akter, N., and K. Tsuboki, 2012: Numerical simulation of cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789-810.
[2]Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917-943.
[3]Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 65, 233-240.
[4]Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor. 25, 1658-1680.
[5]Mersereau, D., 2015: "At 200 MPH, hurricane Patricia is now the strongest tropical cyclone ever recorded". The Vane. Archived from the original on October 23, 2015.
[6]Gray, W. M., 1968: Global view of the original of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.
[7]Hack, J. J., W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559-1573.
[8]Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705-722.
[9]Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. J. Atmos. Sci., 138, 3243-3271.
[10]Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Tech. Rep. MRI, 28, 238.
[11]Ito, K., 2016: Errors in tropical cyclone intensity forecast by RSMC Tokyo and statistical correction using environmental parameters. SOLA, 12, 247−252
[12]Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093-1108.
[13]Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096.
[14]Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196-2209.
[15]Lin, I. I., I. F. Pun, and C. C. Lien, 2014: ‘Category-6’ Supertyphoon Haiyan in global warming hiatus: contribution from subsurface ocean warming. Geophys. Res. Lett. 41, 8547–8553.
[16]Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065–1092.
[17]Lowag, A., M. L. Black, and M. D. Eastin, 2008: Structural and intensity changes of Hurricane Bret (1999). Part I: Environmental influences. Mon. Wea. Rev., 136, 4320-4333.
[18]Mark, F. D., and L. K. Shay, 1998: Landfalling tropical cyclons: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305-323.
[19]Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the axisymmetric spontaneous intensification of tropical cyclones. J. Atmos. Sci., 70, 112-129.
[20]Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 2666-2681.
[21]Murakami M. 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud: the 19 July 1981 CCOPE cloud. Journal of the Meteorological Society of Japan 68: 107-128.
[22]Murakami M., T. L. Clark, and W. D. Hall, 1994: Numerical Simulations of Convective Snow Clouds over the Sea of Japan; Two-Dimensional Simulations of Mixed Layer Development and Convective Snow Cloud Formation. Journal of the Meteorological Society of Japan 72: 43-62.
[23]Two-Dimensional Simulations of Mixed Layer Development and Convective Snow Cloud Formation
[24]Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805-821.
[25]Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687-1697.
[26]Shimizu, S., H. Uyeda, Q. Moteki, T. Maesaka, Y. Takaya, K. Akaeda, T. Kato and M. Yoshizaki, 2008: Structure and formation mechanism on the 24 May 2000 supercell-like storm developing in a moist environment over the Kanto Plain, Japan. Mon. Wea. Rev., 136, 2389-2407.
[27]Shu, S., and F. Zhang, 2015: Influence of equatorial waves on the genesis of super typhoon Haiyan (2013). J. Atmos. Sci., 72, 4591-4613.
[28]Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383.
[29]Shu, S., J. Ming, and P. Chi, 2011: Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western north pacific basin. Wea. Forecasting, 27, 411-423.
[30]Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 2013: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for typhoon Morakot (2009). J. Hydrol, 506, 26-41.
[31]Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411.
[32]林李耀,1997 : 颮線的數值模擬研究。國立臺灣大學理學院大氣科學系博士論文,未出版,臺北。
[33]許天耀,2015 : 平衡渦旋模型之熱與動量動力效率。國立臺灣大學理學院大氣科學系碩士論文,未出版,臺北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top