[1]Akter, N., and K. Tsuboki, 2012: Numerical simulation of cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789-810.
[2]Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917-943.
[3]Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 65, 233-240.
[4]Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor. 25, 1658-1680.
[5]Mersereau, D., 2015: "At 200 MPH, hurricane Patricia is now the strongest tropical cyclone ever recorded". The Vane. Archived from the original on October 23, 2015.
[6]Gray, W. M., 1968: Global view of the original of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.
[7]Hack, J. J., W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559-1573.
[8]Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705-722.
[9]Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. J. Atmos. Sci., 138, 3243-3271.
[10]Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Tech. Rep. MRI, 28, 238.
[11]Ito, K., 2016: Errors in tropical cyclone intensity forecast by RSMC Tokyo and statistical correction using environmental parameters. SOLA, 12, 247−252
[12]Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093-1108.
[13]Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096.
[14]Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196-2209.
[15]Lin, I. I., I. F. Pun, and C. C. Lien, 2014: ‘Category-6’ Supertyphoon Haiyan in global warming hiatus: contribution from subsurface ocean warming. Geophys. Res. Lett. 41, 8547–8553.
[16]Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065–1092.
[17]Lowag, A., M. L. Black, and M. D. Eastin, 2008: Structural and intensity changes of Hurricane Bret (1999). Part I: Environmental influences. Mon. Wea. Rev., 136, 4320-4333.
[18]Mark, F. D., and L. K. Shay, 1998: Landfalling tropical cyclons: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305-323.
[19]Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the axisymmetric spontaneous intensification of tropical cyclones. J. Atmos. Sci., 70, 112-129.
[20]Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 2666-2681.
[21]Murakami M. 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud: the 19 July 1981 CCOPE cloud. Journal of the Meteorological Society of Japan 68: 107-128.
[22]Murakami M., T. L. Clark, and W. D. Hall, 1994: Numerical Simulations of Convective Snow Clouds over the Sea of Japan; Two-Dimensional Simulations of Mixed Layer Development and Convective Snow Cloud Formation. Journal of the Meteorological Society of Japan 72: 43-62.
[23]Two-Dimensional Simulations of Mixed Layer Development and Convective Snow Cloud Formation
[24]Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805-821.
[25]Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687-1697.
[26]Shimizu, S., H. Uyeda, Q. Moteki, T. Maesaka, Y. Takaya, K. Akaeda, T. Kato and M. Yoshizaki, 2008: Structure and formation mechanism on the 24 May 2000 supercell-like storm developing in a moist environment over the Kanto Plain, Japan. Mon. Wea. Rev., 136, 2389-2407.
[27]Shu, S., and F. Zhang, 2015: Influence of equatorial waves on the genesis of super typhoon Haiyan (2013). J. Atmos. Sci., 72, 4591-4613.
[28]Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383.
[29]Shu, S., J. Ming, and P. Chi, 2011: Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western north pacific basin. Wea. Forecasting, 27, 411-423.
[30]Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 2013: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for typhoon Morakot (2009). J. Hydrol, 506, 26-41.
[31]Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411.
[32]林李耀,1997 : 颮線的數值模擬研究。國立臺灣大學理學院大氣科學系博士論文,未出版,臺北。[33]許天耀,2015 : 平衡渦旋模型之熱與動量動力效率。國立臺灣大學理學院大氣科學系碩士論文,未出版,臺北。