跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永昌
研究生(外文):Yung-Chang Chen
論文名稱:運用光達參數”Power Ratio”判斷雲底位置與氣膠吸濕性
論文名稱(外文):Application of Lidar Power Ratio on Determination of Cloud Base Height and Aerosols Hygroscopicity
指導教授:洪惠敏洪惠敏引用關係陳韡鼐
指導教授(外文):Hui-Ming HungWei-Nai Chen
口試日期:2016-05-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:Power Ratio光達雲底位置氣膠吸濕參數
外文關鍵詞:Power RatioLidarCloud base heightAerosolsHygroscopicity parameter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究依RCEC光達兩波段(355, 532 nm)的原始訊號比值定義了一個光達參數”Power Ratio (PR)”,並利用散射理論(scattering theory)和柯勒理論(Köhler theory)建立一個簡單的模擬系統來模擬氣膠物理化學性質在不同大氣環境下的PR隨高度分布表現,並試圖擬合觀測結果來判斷雲底位置和氣膠的吸濕參數(hygroscopicity parameter, κ)。
模擬結果顯示PR主要由粒徑分布來主導,其中κ、相對濕度(RH)和初始乾粒徑分布會影響柯勒理論所計算出來的濕粒徑分布,進而改變PR的趨勢變化;整體而言,當κ、RH和乾粒徑分布愈大時,PR也會偏大。此外,折射率(Rrfractive index)則會影響散射理論的計算,虛部愈大(粒子有較強的吸收係數),PR愈大;實部愈大(粒子有較強的散光係數),則PR愈小。
在個案分析上,針對2009/1/13、2010/10/31以及2013/10/26三個大氣趨於均勻混合的案例進行PR垂直剖面的模擬。在大氣均勻混合層中,RH隨高度增加,因此模擬結果顯示PR隨著高度上升而變大;而κ則會改變PR隨高度變化的斜率,在較高κ時,PR在較低的RH便能有明顯上升的轉折變化。在給定的乾粒徑分布下,當κ = 0.2時,2009/1/13和2010/10/31案例中模擬結果較貼近觀測結果,而2013/10/26的案例則是κ = 0.4。因此,PR的趨勢變化可以提供κ的判定指標。
根據理論與多組觀測資料比較,當粒徑分布因為成雲而有大幅度改變時,觀測訊號(背向散射比(R)、消偏振率(DP)和PR)也會有明顯的變化,將訊號變化幅度最甚之處定義為雲底位置(cloud base height),結果顯示PR最為敏感、DP最不適用。另外判定雲底之方法為PR的模擬調整,乃是經由調整κ和RH垂直剖面等來擬合觀測結果,並獲得雲底位置,其中2009/1/13和2013/10/26個案中,兩種方法所找到的雲底位置相近。因此本研究中所定義的PR,除了可以提供κ的訊息外,還可以提供較靈敏的雲底位置的判斷,對後續探討局部渦流形成雲可提供觀測輔助。
In this study, a new parameter of Power Ratio (PR), the ratio of original signal of RCEC Lidar (355, 532 nm), is introduced to illustrate the lidar signal affected by aerosols. PR was simulated at different atmospheric conditions incoporating Köhler theory and scattering theory. The hygroscopicity parameter of aerosols (κ) and cloud base height were determined by the comparision of the simulation and lidar signal.
The results show that PR is mainly dependent on the size distribution of ambient aerosols, which were then controlled by dry size distribution, κ, and relative humidity (RH). In general, larger κ, RH and dry size distribution would cause larger PR. In addition, PR is affected by refractive index (m) with scattering theory. A larger imaginary part (absorption part) would result in a larger PR, while a larger real part (scattering part) would result in a smaller PR.
For case studies, PR profiles are simulated for three cases: 2009/1/13, 2010/10/31 and 2013/10/26, with well mixed boundary layer. In these cases, RH increases with altitude, so PR increases as RH increases. Furthermore, the rising slope of PR with height will be affected by κ. In cases of 2009/1/13 and 2010/10/31, the results of simulation for a given κ = 0.2 are more consistent with the observation result, while κ = 0.4 for the case of 2013/10/26.
In the comparison of simulation and observation, the ambient size distribution of aerosols plays a major role to control PR. As the cloud droplets present, the overall wet size distribution shifts dramatically and cause a significant change in backscattering ratio (R), depolarization ratio (DP) and PR. Such dramatically change was applied to determine the cloud base height, which is more sensitive in PR but less sensitive in DP. To fit the observed PR, κ and RH profile were adjusted in the simulation. Overall, cloud base heights determined in this study using different methods are consistent for cases of 2009/1/13 and 2013/10/26. Therefore, PR defined in this study can be an index of κ and further procide a better indication for the cloud base height, which could be useful to understand the eddies in the boundary layer for the future.
摘要 1
章節目錄 5
圖表目錄 7
List of Principal symbols 11
第一章 前言 12
第二章 光達原理及理論運算 15
2.1 儀器介紹 15
2.2 光達方程式 15
第三章 研究方法 18
3.1 光達所反演的參數 18
3.1.1 距離修正訊號(Range-Squared-Corrected Signal, RSCS) 18
3.1.2 背向散射比(Backscattering Ratio, R) 19
3.1.3 消偏振率(Depolarization Ratio, DP) 19
3.2 光達在計算過程中的不確定性 20
3.3 Power Ratio (PR) 21
3.4 模擬的基礎理論和設定 22
3.4.1 柯勒理論(Köhler Theory) 22
3.4.2 散射理論(Scattering Theory) 24
3.4.3 模擬設定 26
3.5 雲底位置(cloud base height)判定 26
第四章 結果和討論 28
4.1 模擬測試 28
4.2 2009/1/13個案觀測分析 29
4.2.1 綜觀天氣和氣象資訊 29
4.2.2 距離修正訊號(RSCS) 29
4.2.3 Power Ratio (PR) 30
4.2.4 背向散射比(Backscattering Ratio, R) 31
4.2.5 消偏振率(Depolarization Ratio, DP) 31
4.2.6 判定雲底位置(觀測) 32
4.3 2009/1/13個案模擬分析 32
4.3.1 Power Ratio的模擬結果 32
4.3.2 判定雲底位置(模擬) -改變相對濕度 34
4.3.3 吸濕參數(κ)對於Power Ratio的影響 34
4.3.4 初始乾粒徑分布對Power Ratio的影響 35
4.3.5 折射率對Power Ratio的影響 35
4.4 2010/10/31個案模擬分析及雲底判定 36
4.5 2013/10/26 個案模擬分析及雲底判定 37
4.6 邊界層中的擾動探討(Turbulence) 38
第五章 結論與未來展望 40
5.1 結論 40
5.2 未來展望 41
參考文獻 42
附圖 44
附表 68
附錄一 Overlap的修正 69
附錄二 Ångström exponent (α) 71
附錄三 探空量測誤差(RH) 72
附錄四 雲滴大小對於PR的影響 74
Bi, L., Yang, P., Kattawar, G. W., Baum, B. A., Hu, Y. X., Winker, D. M., . . . Lu, J. Q. (2009). Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 mu m. Journal of Geophysical Research-Atmospheres, 114, 8. doi:10.1029/2009jd011759
Chen, W. N., Chiang, C. W., & Nee, J. B. (2002). Lidar ratio and depolarization ratio for cirrus clouds. Applied Optics, 41(30), 6470-6476. doi:10.1364/ao.41.006470
Chen, W. N., Tsai, F. J., Chou, C. C. K., Chang, S. Y., Chen, Y. W., & Chen, J. P. (2007). Optical. properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan. Atmospheric Environment, 41(36), 7698-7714. doi:10.1016/j.atmosenv.2007.06.001
Doherty, S. J., Anderson, T. L., & Charlson, R. J. (1999). Measurement of the lidar ratio for atmospheric aerosols with a 180 degrees backscatter nephelometer. Applied Optics, 38(9), 1823-1832. doi:10.1364/ao.38.001823
Eberhard, W. L. (1986). Cloud Signals from Lidar and Rotating Beam Ceilometer Compared with Pilot Ceiling. Journal of Atmospheric and Oceanic Technology, 3(3), 499-512. doi:10.1175/1520-0426(1986)003<0499:csflar>2.0.co;2
Fernandez, A. J., Apituley, A., Veselovskii, I., Suvorina, A., Henzing, J., Pujadas, M., & Artinano, B. (2015). Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli. Atmospheric Environment, 120, 484-498. doi:10.1016/j.atmosenv.2015.08.079
Klett, J. D. (1981). Stable Analytical Inversion Solution for Processing Lidar Returns. Applied Optics, 20(2), 211-220. doi:10.1364/ao.20.000211
Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z. Y., Hu, Y. X., . . . Hostetler, C. A. (2009). The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Journal of Atmospheric and Oceanic Technology, 26(10), 1994-2014. doi:10.1175/2009jtecha1231.1
Pal, S. R., Steinbrecht, W., & Carswell, A. I. (1992). Automated-Method for Lidar Determination of Cloud-Base Height and Vertical Extent. Applied Optics, 31(10), 1488-1494. Retrieved from ://WOS:A1992HM11000018
Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7(8), 1961-1971. Retrieved from ://WOS:000246455500005
Sapucci, L. F., Machado, L. A. T., da Silveira, R. B., Fisch, G., & Monico, J. F. G. (2005). Analysis of relative humidity sensors at the WMO Radiosonde intercomparison experiment in Brazil. Journal of Atmospheric and Oceanic Technology, 22(6), 664-678. doi:10.1175/jtech1754.1
Wang., Fang, X., Hu, S. X., Hu, H. L., Li, T., & Dou, X. K. (2015). Variation characteristics of water vapor distribution during 2000-2008 over Hefei (31.9 degrees N, 117.2 degrees E) observed by L625 lidar. Atmospheric Research, 164, 1-8. doi:10.1016/j.atmosres.2015.04.003
Wood, R. (2012). Stratocumulus Clouds. Monthly Weather Review, 140(8), 2373-2423. doi:10.1175/mwr-d-11-00121.1
Wu, S. H., Song, X. Q., Liu, B. Y., Dai, G. Y., Liu, J. T., Zhang, K. L., . . . Liu, L. P. (2015). Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement. Optics Express, 23(26), 33870-33892. doi:10.1364/oe.23.033870
陳, 韡鼐.(2002), 中壢上空10-30公里間的卷雲、氣膠、溫度的量測和光散射性質之研究, 國立中央大學物理與天文研究所博士論文
劉, 承玨.(2009), 以光達觀測分析台北之邊界層與氣膠特性, 國立臺灣大學理學院大氣科學研究所碩士論文.
黃, 任廷(2016), 金門地區氣膠吸濕性之探討, 國立臺灣大學理學院大氣科學研究所碩士論文.
呂, 宛蓉(2013), 台北郊區氣膠成雲凝結核之活化特性探討, 國立臺灣大學理學院大氣科學研究所碩士論文.
林, 偉婷(2012), 都市氣膠成為雲凝結核之特性探討, 國立臺灣大學理學院大氣科學研究所碩士論文.
徐, 嘉鴻(2015), 高雄都會區氣膠吸濕性之探討, 國立臺灣大學理學院大氣科學研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top