|
Bi, L., Yang, P., Kattawar, G. W., Baum, B. A., Hu, Y. X., Winker, D. M., . . . Lu, J. Q. (2009). Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 mu m. Journal of Geophysical Research-Atmospheres, 114, 8. doi:10.1029/2009jd011759 Chen, W. N., Chiang, C. W., & Nee, J. B. (2002). Lidar ratio and depolarization ratio for cirrus clouds. Applied Optics, 41(30), 6470-6476. doi:10.1364/ao.41.006470 Chen, W. N., Tsai, F. J., Chou, C. C. K., Chang, S. Y., Chen, Y. W., & Chen, J. P. (2007). Optical. properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan. Atmospheric Environment, 41(36), 7698-7714. doi:10.1016/j.atmosenv.2007.06.001 Doherty, S. J., Anderson, T. L., & Charlson, R. J. (1999). Measurement of the lidar ratio for atmospheric aerosols with a 180 degrees backscatter nephelometer. Applied Optics, 38(9), 1823-1832. doi:10.1364/ao.38.001823 Eberhard, W. L. (1986). Cloud Signals from Lidar and Rotating Beam Ceilometer Compared with Pilot Ceiling. Journal of Atmospheric and Oceanic Technology, 3(3), 499-512. doi:10.1175/1520-0426(1986)003<0499:csflar>2.0.co;2 Fernandez, A. J., Apituley, A., Veselovskii, I., Suvorina, A., Henzing, J., Pujadas, M., & Artinano, B. (2015). Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli. Atmospheric Environment, 120, 484-498. doi:10.1016/j.atmosenv.2015.08.079 Klett, J. D. (1981). Stable Analytical Inversion Solution for Processing Lidar Returns. Applied Optics, 20(2), 211-220. doi:10.1364/ao.20.000211 Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z. Y., Hu, Y. X., . . . Hostetler, C. A. (2009). The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Journal of Atmospheric and Oceanic Technology, 26(10), 1994-2014. doi:10.1175/2009jtecha1231.1 Pal, S. R., Steinbrecht, W., & Carswell, A. I. (1992). Automated-Method for Lidar Determination of Cloud-Base Height and Vertical Extent. Applied Optics, 31(10), 1488-1494. Retrieved from ://WOS:A1992HM11000018 Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7(8), 1961-1971. Retrieved from ://WOS:000246455500005 Sapucci, L. F., Machado, L. A. T., da Silveira, R. B., Fisch, G., & Monico, J. F. G. (2005). Analysis of relative humidity sensors at the WMO Radiosonde intercomparison experiment in Brazil. Journal of Atmospheric and Oceanic Technology, 22(6), 664-678. doi:10.1175/jtech1754.1 Wang., Fang, X., Hu, S. X., Hu, H. L., Li, T., & Dou, X. K. (2015). Variation characteristics of water vapor distribution during 2000-2008 over Hefei (31.9 degrees N, 117.2 degrees E) observed by L625 lidar. Atmospheric Research, 164, 1-8. doi:10.1016/j.atmosres.2015.04.003 Wood, R. (2012). Stratocumulus Clouds. Monthly Weather Review, 140(8), 2373-2423. doi:10.1175/mwr-d-11-00121.1 Wu, S. H., Song, X. Q., Liu, B. Y., Dai, G. Y., Liu, J. T., Zhang, K. L., . . . Liu, L. P. (2015). Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement. Optics Express, 23(26), 33870-33892. doi:10.1364/oe.23.033870 陳, 韡鼐.(2002), 中壢上空10-30公里間的卷雲、氣膠、溫度的量測和光散射性質之研究, 國立中央大學物理與天文研究所博士論文 劉, 承玨.(2009), 以光達觀測分析台北之邊界層與氣膠特性, 國立臺灣大學理學院大氣科學研究所碩士論文. 黃, 任廷(2016), 金門地區氣膠吸濕性之探討, 國立臺灣大學理學院大氣科學研究所碩士論文. 呂, 宛蓉(2013), 台北郊區氣膠成雲凝結核之活化特性探討, 國立臺灣大學理學院大氣科學研究所碩士論文. 林, 偉婷(2012), 都市氣膠成為雲凝結核之特性探討, 國立臺灣大學理學院大氣科學研究所碩士論文. 徐, 嘉鴻(2015), 高雄都會區氣膠吸濕性之探討, 國立臺灣大學理學院大氣科學研究所碩士論文.
|