跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳映如
研究生(外文):Ying-Ju Chen
論文名稱:西北太平洋大氣長河及其受熱帶氣旋之影響
論文名稱(外文):Atmospheric Rivers in Western North Pacific and Influenced by Tropical Cyclones
指導教授:郭鴻基郭鴻基引用關係
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:85
中文關鍵詞:大氣長河極端降水大雨熱帶氣旋
外文關鍵詞:atmospheric riversextreme rainfallheavy rainfalltropical cyclones
相關次數:
  • 被引用被引用:2
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去對於大氣長河的研究主要集中在大洋東側,討論大氣長河的氣候特徵、斜壓系統如何增強大氣長河,以及大氣長河登陸造成的極端降水事件;然而,西北太平洋地區亦受大氣長河影響,且正壓系統如熱帶氣旋在此區域的水氣輸送上扮演著重要角色。因此拓展大氣長河的研究範圍至西北太平洋沿岸地區,討論其氣候特徵、熱帶氣旋之影響和伴隨台灣極端降水事件的關係為本文的研究重點。
為探討36年大氣長河在西北太平洋之氣候特徵,此研究延續並修改前人發展之大氣長河偵測演算法,以圖形辨識分析1980年到2015年間瞬時垂直積分水氣輸送值大於 450 kg m^(-1) s^(-1)或距平值大於 250 kg m^(-1) s^(-1)之區塊,氣象變數資料取自NASA Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) 再分析資料,颱風中心是採用Joint Typhoon Warning Center (JTWC) 最佳路徑資料。結果顯示在西北太平洋區域,夏季(六、七、八月)的大氣長河發生頻率高於冬季(十二、一、二月),此季節變化恰與東北太平洋區域相反,且西北太平洋區域的大氣長河受颱風影響大於東北部;而熱帶氣旋與環境之交互作用有助於帶狀位渦生成,使大氣長河得以發展;若以大氣長河之發生當作判斷大雨強度以上的極端降水事件之指標,討論台灣地區此指數的預報能力,則平均而言,五六月梅雨季有高前估率71.0%和較低的後符率45.9%,七八月颱風季則有較高的後符率57.3%和較低的前估率38.0%,顯示梅雨季之極端降水事件多與大氣長河有關,而颱風季當中的大氣長河有過半數會伴隨極端降水事件發生。
Past research on atmospheric rivers (ARs) has explored their climatological features, baroclinic mechanisms of enhancement, and the relation to continual extreme precipitation events mainly on the eastern edges of ocean basins. However, ARs also threaten the Western North Pacific (WNP) region and tropical cyclones (TCs) seem to affect the ARs’ intensity. Therefore, extending the previous studies to characterize the ARs in this region, investigating how these ARs are affected by TCs, and examining the relation between extreme rainfall events and ARs are the main objectives of this paper. A modified occurrence-based detection algorithm is applied to the anomalous or total integrated water vapor transport field to identify the ARs from 1980 to 2015 in WNP, using the NASA Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) reanalysis dataset and the Joint Typhoon Warning Center (JTWC) best track data. The results emphasize that ARs occur more frequently in the warm season than in the cold season in the WNP, which is the exact opposite of the situation in the Eastern North Pacific (ENP), and that the impact of TCs is more significant in the WNP than in the ENP. Some of the insights into the influences of TCs on ARs reveal the importance of potential vorticity strips forming between TCs and ARs. Using AR occurrence as a heavy rain forecast index, the forecast skill in Taiwan is discussed briefly: during the “Mei-Yu Season” in May and June, the mean prefigurance is as high as 71.0% and the mean postagreement is relative lower than the prefigurance at a ratio of 45.9%; on the contrary, during the “Typhoon Season” in July and August, the postagreement is relatively high with 57.3% and the prefigurance is 38.0 %. This shows that most of the extreme rainfall events are associated with ARs in the “Mei-Yu Season” while over half of the ARs in the “Typhoon Season” are accompanied by extreme rainfall in Taiwan.
CONTENTS

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Overview of Atmospheric Rivers (ARs) 1
1.2 Structure and Properties of ARs 2
1.3 Motivation – Influence of Tropical Cyclones (TCs) on ARs in Western North Pacific 5
Chapter 2 Data and Methods 12
2.1 Data Sources 12
2.1.1 Atmospheric Variables and the Best Track Data 12
2.1.2 El Niño-Southern Oscillation 12
2.2 Methods 13
2.2.1 Two Commonly Used Fields for AR Detection 13
2.2.2 The Modified AR-detection Algorithm 14
2.2.3 Prefigurance and Postagreement of AR and Extreme Rainfall 19
Chapter 3 Results and Discussion 26
3.1 Climatology of ARs in Western North Pacific 26
3.1.1 Seasonal Variability of ARs 26
3.1.2 Interannual Variability - ENSO 28
3.1.3 ARs with TC Influence in the WNP 29
3.2 The Hypotheses of TCs’ Impact on ARs in the WNP 32
3.2.1 The Case Study - Brief Introduction of TC Goni (2015 16W) 32
3.2.2 Mechanisms of the AR Formation and Maintenance 33
3.3 Heavy Rainfall and ARs in Taiwan 35
Chapter 4 Conclusions 60
REFERENCE 62
Appendix A. The Modified AR Detection Algorithm 66
Appendix B. AR Without Further TC Criteria 78
Appendix C. Details of the Boxplots 79
Appendix D. Prefigurance and Postagreement Based on anomalous IVT fields 80
Appendix E. Sensitivity Test of the Prefigurance and the Postagreement on the Smaller Domain of Taiwan 82
Appendix F. AR evolution in the Mei-Yu Season and in the Typhoon Season of Taiwan 84
季明立,1997:颱風離台引進西南氣流探討,國立台灣大學大氣科學研究所碩士論文,128頁。

Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Monthly Weather Review, 141, 2325-2346.

Bao, J., S. Michelson, P. Neiman, F. Ralph, and J. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Monthly weather review, 134, 1063-1080.

Bosart, L. F., B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Monthly Weather Review, 145, 1245-1273.

Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, 129-153.

Carlson, T. N., 1991: Mid-latitude weather systems. United States: New York, NY (United States); Routledge, Chapman Hall, Inc., 507 pp.

Cavazos, T., and D. Rivas, 2004: Variability of extreme precipitation events in Tijuana, Mexico. Climate Research, 25, 229-243.

Chambers, J., W. Cleveland, B. Kleiner, and P. A. Tukey, 1983: Comparing data distributions. Graphical Methods for Data Analysis (Bell Laboratories), 47-73.

Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Monthly Weather Review, 141, 4234-4255.

Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Monthly weather review, 119, 1929-1953.

Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445-478.

Dirmeyer, P., J. Kinter III, A. Michalak, and R. Jackson, 2009: The “Maya Express”: Floods in the US Midwest. Eos, 90, 101-102.

Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: a mini-review. Frontiers in Earth Science, 2, 2.

Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophysical Research Letters, 37.

Hirata, H., and R. Kawamura, 2014: Scale interaction between typhoons and the North Pacific subtropical high and associated remote effects during the Baiu/Meiyu season. Journal of Geophysical Research: Atmospheres, 119, 5157-5170.

Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. Journal of Climate, 23, 987-1003.

Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. Journal of Climate, 26, 3031-3045.

Knippertz, P., and J. E. Martin, 2007: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Weather and forecasting, 22, 125-144.

Kållberg, P., P. Berrisford, B. Hoskins, A. Simmons, S. Lamy-thépaut, and R. Hine, 2005: ERA-40 atlas. ERA-40 Project Report Series 19, ECMWF, 103 pp.

Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Weather and forecasting, 14, 687-700.

Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophysical Research Letters, 40, 3259-3264.

Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large‐scale climatic circulation. Journal of Geophysical Research: Atmospheres, 117.

McGuirk, J. P., A. H. Thompson, and N. R. Smith, 1987: Moisture bursts over the tropical Pacific Ocean. Monthly weather review, 115, 787-798.

Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. Journal of Climate, 29, 4885-4903.

Nayak, M. A., G. Villarini, and D. A. Lavers, 2014: On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophysical Research Letters, 41, 4354-4362.

Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008a: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology, 9, 22-47.

Neiman, P. J., and Coauthors, 2008b: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Monthly Weather Review, 136, 4398-4420.

Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?–A pilot study. Geophysical research letters, 19, 2401-2404.

Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. Journal of Climate, 27, 7133-7150.

Peixoto, J. P., and A. H. Oort, 1992: Physics of climate. Institude of Physics, 520pp.

Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 132, 1721-1745.

Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Monthly weather review, 133, 889-910.

Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California''s Russian River: Role of atmospheric rivers. Geophysical Research Letters, 33.

Ramos, A. M., R. M. Trigo, M. L. Liberato, and R. Tomé, 2015: Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. Journal of Hydrometeorology, 16, 579-597.

Ramos, A. M., R. M. Trigo, M. L. Liberato, and D. A. Lavers, 2016: Atmospheric rivers moisture sources from a Lagrangian perspective. Earth System Dynamics, 7, 371.

Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24, 3624-3648.

Rivera, E. R., F. Dominguez, and C. L. Castro, 2014: Atmospheric rivers and cool season extreme precipitation events in the Verde River basin of Arizona. Journal of Hydrometeorology, 15, 813-829.

Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? Journal of Climate, 13, 1517-1536.

Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences, 110, 2718-2722.

Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Transactions on Geoscience and Remote Sensing, 51, 2166-2176.

Yoshida, K., 2012: Indirect effects of tropical cyclones on heavy rainfall events in Kyushu, Japan, during the Baiu season. Journal of the Meteorological Society of Japan. Ser. II, 90, 377-401.

Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly weather review, 126, 725-735.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top