(3.220.231.235) 您好!臺灣時間:2021/03/07 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁浩宸
研究生(外文):Hao-Chen Weng
論文名稱:考慮單機台故障率與健康狀態的預防性維修週期與生產排程之決策研究
論文名稱(外文):Single Machine Scheduling with Consideration of Preventive Maintenance and Machine Health
指導教授:黃奎隆
指導教授(外文):Kwei-Long Huang
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工業工程學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:49
中文關鍵詞:工業4.0機台健康狀態預防性維修裝箱問題指派問題
外文關鍵詞:Industry 4.0Machine HealthPreventive MaintenanceBin Packing ProblemAssignment Problem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在工業4.0與物聯網的環境下,數據的取得變得更加便利,透過各種不同感測器的監控,工廠對產線上的機台狀況也一覽無疑,當能夠有效監控機台健康狀態與不同的健康狀態對加工時間,以及機台故障率的影響,在物件加工的排程以及維修保養的規劃上,也能更加有效率,且有效的降低成本。
本研究之探討目標為考量機台健康狀態之單機台的預防性維修與生產排程的問題,當機台健康狀態分為完美、普通,故障時,以及物件加工時間隨著機台健康狀態而改變時,如何規劃預防性維修之週期,以及提出一個整數規劃模型以描述不同的加工順序,造成不同的維修成本的情況。本研究使用MAPLE 17.0與LINGO 11.0進行求解,隨著物件數的增加,問題的複雜度上升,導致欲求解之問題的求解時間過長,導致效率不彰。本研究將使用兩階段演算法對此模型進行求解,以期能夠迅速的得到品質不錯的可行解。透過不同的參數設定,好比加工物件數、機台狀態轉換率與維修保養成本等等,發現兩階段演算法在問題規模較大時,仍保持不錯的求解品質。
According to Industry 4.0 and Internet of things, it is easier to get data from machines through sensors which are equipped on machines. For factories, they can get information about machine health immediately. When factories understand the relationships between machine health and machine failure rate of processing time, they can do scheduling and arrange preventive maintenance effectively.
In this research, we devote to single machine scheduling with consideration of preventive maintenance and machine health. We separate machine status into perfect, normal and breakdown. When machine status changes, the processing time of jobs will increase and the machine failure rate will increase. We try to figure out how to arrange preventive maintenance interval and sequence jobs with consideration of machine health. In the research, we use MAPLE 17.0 and LINGO 11.0 to solve our model; however, when number of jobs increases, the problem becomes complex and it takes a long to get the solution. We apply two-step heuristic method to solve our model, and hoping to get the solution with high quality. Through different parameter settings, such as machine failure rate, number of jobs and repair and maintenance cost, we find out that two-step heuristic can get solution with high quality in big problem.
中文摘要 i
ABSTRACT ii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 工業4.0 1
1.2 智慧工廠 2
1.3 研究背景與動機 4
1.4 研究目的與方法 4
第二章 文獻探討 6
2.1 生產排程 6
2.2 預防性維修(Preventive Maintenance) 6
2.3 機會維修(Opportunistic Maintenance) 7
2.4 機台健康狀況(Machine Health) 8
2.5 風險函數(Hazard Rate Function) 8
2.6 裝箱問題(Bin Packing) 9
2.7 指派問題(Assignment Problem) 10
第三章 問題描述與模型 11
3.1 問題描述 11
3.2 問題基本假設與限制 12
3.3 數學規劃模型 14
3.3.1 參數與決策變數說明 14
3.3.2 數學模型 15
3.3.3 成本模型 16
3.3.4 限制式說明 17
3.4 模型求解範例 18
第四章 兩階段演算法 24
4.1 兩階段求解辦法 24
4.2 問題求解流程 25
4.3 求解範例 30
第五章 數值分析 35
5.1 參數設定 35
5.1.1 維修保養之時間與成本 35
5.1.2 物件加工時間 36
5.2 實驗結果與說明 38
第六章 結論 46
6.1 研究總結 46
6.2 未來展望 46
參考文獻 48
Aghezzaf, E. H., Jamali, M. A., & Ait-Kadi, D. (2007). An integrated production and preventive maintenance planning model. European Journal of Operational Research, 181(2), 679-685.
Cao, D., Chen, M., & Wan, G. (2005). Parallel machine selection and job scheduling to minimize machine cost and job tardiness. Computers & operations research, 32(8), 1995-2012.
Cassady, C. R., & Kutanoglu, E. (2005). Integrating preventive maintenance planning and production scheduling for a single machine. IEEE Transactions on reliability, 54(2), 304-309.
Chen, A., & Wu, G. (2007). Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging Markovian deterioration. International Journal of Production Research, 45(15), 3351-3379.
Chen, J.-S. (2008). Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan. European Journal of Operational Research, 190(1), 90-102.
Kaufman, D. L., & Lewis, M. E. (2007). Machine maintenance with workload considerations. Naval Research Logistics (NRL), 54(7), 750-766.
Kazaz, B., & Sloan, T. W. (2013). The impact of process deterioration on production and maintenance policies. European Journal of Operational Research, 227(1), 88-100.
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1), 314-334.
Liao, W., Pan, E., & Xi, L. (2010). Preventive maintenance scheduling for repairable system with deterioration. Journal of Intelligent Manufacturing, 21(6), 875-884.
Lim, J.-H., & Park, D. H. (2007). Optimal periodic preventive maintenance schedules with improvement factors depending on number of preventive maintenances. Asia-Pacific Journal of Operational Research, 24(01), 111-124.
Liu, Y., & Huang, H.-Z. (2010). Optimal selective maintenance strategy for multi-state systems under imperfect maintenance. IEEE Transactions on reliability, 59(2), 356-367.
Mobley, R. K. (2002). An introduction to predictive maintenance: Butterworth-Heinemann.
Nourelfath, M., Fitouhi, M.-C., & Machani, M. (2010). An integrated model for production and preventive maintenance planning in multi-state systems. IEEE Transactions on reliability, 59(3), 496-506.
Pham, H. T., & Yang, B.-S. (2010). Estimation and forecasting of machine health condition using ARMA/GARCH model. Mechanical Systems and Signal Processing, 24(2), 546-558.
Ruiz-Castro, J. E., & Li, Q.-L. (2011). Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons. European Journal of Operational Research, 211(1), 97-111.
Wang, C.-H., & Tsai, S.-W. (2014). Optimizing bi-objective imperfect preventive maintenance model for series-parallel system using established hybrid genetic algorithm. Journal of Intelligent Manufacturing, 25(3), 603-616.
Wang, S., & Liu, M. (2013). A branch and bound algorithm for single-machine production scheduling integrated with preventive maintenance planning. International Journal of Production Research, 51(3), 847-868.
Xia, T., Jin, X., Xi, L., & Ni, J. (2015). Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling. European Journal of Operational Research, 240(3), 781-790. doi:10.1016/j.ejor.2014.08.004
Xia, T., Xi, L., Zhou, X., & Lee, J. (2012). Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology. European Journal of Operational Research, 221(1), 231-240.
Yong, J. (2006). Condition-based hazard rate estimation and optimal maintenance scheduling for electrical transmission system.
Zhou, B., Yu, J., Shao, J., & Trentesaux, D. (2015). Bottleneck-based opportunistic maintenance model for series production systems. Journal of Quality in Maintenance Engineering, 21(1), 70-88.
Zhou, X., Xi, L., & Lee, J. (2009). Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programming. International Journal of Production Economics, 118(2), 361-366.
韋康博. (2016). 工業 4.0: 從製造業到 [智] 造業, 下一波產業革命如何顛覆全世界? : Shang zhou chu ban.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔