[1]Altham, P. M. (1978). Two generalizations of the binomial distribution. Applied Statistics, 162-167.
[2]Alwan, L. C., & Roberts, H. V. (1988). Time-series modeling for statistical process control. Journal of Business & Economic Statistics, 6(1), 87-95.
[3]Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees: CRC press.
[4]Dawod, A., Riaz, M., & Abbasi, S. A. (2016). On Model Selection for Autocorrelated Processes in Statistical Process Control. Quality and Reliability Engineering International.
[5]De Vries, A., & Reneau, J. (2010). Application of statistical process control charts to monitor changes in animal production systems. Journal of Animal Science, 88(13), E11-E24.
[6]Fan, Q., & Fan, H. (2015). Reliability Analysis and Failure Prediction of Construction Equipment with Time Series Models. Journal of Advanced Management Science Vol, 3(3).
[7]Fisher, R. A. (1934). Statistical methods for research workers.
[8]Gayawan, E., & Ipinyomi, R. A. (2009). A comparison of Akaike, Schwarz and R square criteria for model selection using some fertility models. Australian Journal of Basic and Applied Sciences, 3(4), 3524-3530.
[9]Ho, S., & Xie, M. (1998). The use of ARIMA models for reliability forecasting and analysis. Computers & industrial engineering, 35(1-2), 213-216.
[10]Huang, X., Bisgaard, S., & Xu, N. (2014). Model‐based Multivariate Monitoring Charts for Autocorrelated Processes. Quality and Reliability Engineering International, 30(4), 527-543.
[11]Klein, M., & Linton, P. (2013). On a comparison of tests of homogeneity of binomial proportions. J Stat Theo Appl, 12(3), 208-224.
[12]Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. Expert Systems with Applications, 39(3), 2590-2596.
[13]McCray, A. T., McNames, J., & Abercrombie, D. (2005). Locating disturbances in semiconductor manufacturing with stepwise regression. IEEE Transactions on Semiconductor Manufacturing, 18(3), 458-468.
[14]Nass, C. (1959). The χ 2 test for small expectations in contingency tables, with special reference to accidents and absenteeism. Biometrika, 46(3/4), 365-385.
[15]Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175.
[16]Potthoff, R. F., & Whittinghill, M. (1966). Testing for homogeneity: I. The binomial and multinomial distributions. Biometrika, 167-182.
[17]Ripley, B. (2005). tree: Classification and regression trees. R package version, 1.0-19.
[18]Ross, S. M. (2005). Introductory statistics: Academic Press.
[19]Seibold, D. R., & McPHEE, R. D. (1979). Commonality analysis: A method for decomposing explained variance in multiple regression analyses. Human Communication Research, 5(4), 355-365.
[20]Shewhart, W. A. (1931). Economic control of quality of manufactured product: ASQ Quality Press.
[21]Woodall, W. H., & Thomas, E. V. (1995). Statistical process control with several components of common cause variability. IIE transactions, 27(6), 757-764.
[22]張秉裕, 陳琨太, & 王振宇. (2011). 利用 WAT 資料建構晶圓良率預測模型之研究. 品質學報, 18(6), 519-538.[23]陳旭昇. (2013). 時間序列分析: 總體經濟與財務金融之應用: 臺灣東華.
[24]簡禎富, 林昀萱, & 鄭仁傑. (2008). 建構模糊決策樹及其在有交互作用之半導體資料之資料挖礦以提昇良率之研究. 品質學報, 15(3), 193-210.