跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪詣軒
研究生(外文):Yi-Hsuan Hung
論文名稱:異位表達ATP合成酶之運輸途徑: 不依靠粒線體自噬路徑
論文名稱(外文):Ectopic ATP Synthase Trafficking: Mitophagy-independent Pathway
指導教授:阮雪芬阮雪芬引用關係
指導教授(外文):Hsueh-Fen Juan
口試日期:2017-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:106
中文關鍵詞:ATP合成酶異位表達ATP合成酶運輸細胞膜粒腺體自噬
外文關鍵詞:ATP synthaseectopic ATP synthasetraffickingplasma membranemitophagysyntaphilin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ATP合成酶是一個位在粒線體內膜上的蛋白質,在能量生合成中扮演著不可或缺的角色。我們發現ATP合成酶在某些癌細胞例如肺癌細胞與神經母細胞瘤癌細胞的細胞膜上也會出現,這些在細胞膜上的ATP合成酶,我們稱之為異位表達ATP合成酶。而有趣的是,這個現象在正常細胞膜上並不常見。而在我們的分析中,我們也發現,愈惡性的癌細胞會比相對較良性的癌細胞有著更多的異位表達ATP合成酶。此外,若把癌細胞處理異位表達ATP合成酶抑制劑的話,其生長會被抑制。因此,最近也越來越多的報導指出,抑制癌細胞的異位表達ATP合成酶將可能成為一個具高效用的癌症標靶治療手段。即使異位表達ATP合成酶的研究已經不勝枚舉,但它如何被運輸到細胞膜上的機制仍保留許多未解之謎。ATP合成酶位於粒腺體內膜,這意味著ATP合成酶必須透過某些機制從粒腺體內釋出,進一步運送至膜上。而近期的研究指出,有些細胞內的蛋白質例如ATG16L1會透過細胞自噬的方式運送至細胞膜。這似乎也暗示著ATP合成酶有可能透過粒線體的計畫性凋亡—粒腺體自噬,來達成釋出ATP合成酶的條件,並進一步運送至細胞膜上。此外,我們也根據異位表達ATP合成酶多與少的細胞之基因表現量變化,透過生物資訊學方法分析,找到粒腺體自噬以外的可能途徑—粒線體直接運送至細胞膜上,這個假說由syntaphilin做為穿梭其中的關鍵蛋白,調控著粒腺體的運輸,進而影響異位表達ATP合成酶。而整體分析結果顯示,粒線體直接運送的可能性明顯高於粒腺體自噬途徑。經過一系列的實驗,我們也證實異位表達ATP合成酶並不是經過粒腺體自噬的途徑來運送。總結來說,我們透過資訊分析的方式找到兩條可能的異位表達ATP合成酶運送途徑:粒線體直接運送途徑與粒腺體自噬途徑。並且透過實驗證實異位表達ATP合成酶的運送是不依靠粒腺體自噬途徑的。
ATP synthase is a critical transmembrane protein complex on mitochondria inner membrane and plays an essential role in biological energy conversion. We showed that ATP synthases is also located on several cancer cell surfaces (named as ectopic ATP synthase) such as lung cancer and neuroblastoma, whereas it was not observed in normal cells. Moreover, inhibition of ectopic ATP synthase with citreoviridin is able to repress cancer cell proliferation. Many reports show that targeting ectopic ATP synthase provides a powerful cancer therapeutic strategy, however, the mechanism of ectopic ATP synthase trafficking to cell surface remains unclear. Previous studies showed that the intracellular proteins such as ATG16L1 translocate to plasma membrane during autophagy. This phenomenon may infer that ATP synthase is released from mitochondria and subsequently transported to cell surface under mitochondria-specific autophagy, mitophagy. To further confirm our hypothesis, we performed a series of experiments and finally found that ectopic ATP synthase trafficking pathway was not dependent on mitophagy. On the other side, we analyzed RNA-sequencing data of neuroblastoma and discovered the other pathway, mitophagy-independent pathway, which mitochondria directly transported to cell surface and fused with plasma membrane. In addition, we performed differential expression analysis of various clinical patient datasets of neuroblastoma and indicated that syntaphilin, which can modulate mitochondrial trafficking, involved in ectopic ATP synthase trafficking by mitophagy-independent manner. Taken together, we reveal the ectopic ATP synthase trafficking pathway may not mitophagy-dependent but syntaphilin-modulated.
致謝 II
中文摘要 IV
Abstract V
Contents VII
List of Figures XI
Chapter 1 Introduction 1
1.1 ATP synthase 1
1.2 Ectopic ATP synthase 2
1.3 Protein sorting 4
1.3.1 General protein sorting mechanism 4
1.3.2 Co-translational translocation 4
1.3.3 Post-translational translocation 5
1.3.4 Trafficking of ectopic ATP synthase 5
1.4 Mitophagy 8
1.5 Gene expression analysis 9
1.6 Motivation 9
Chapter 2 Material & Methods 11
2.1 Cell Culture 11
2.2 Construction of pATP5B-EGFP and pATP5B-PAGFP plasmid 11
2.2.1 Total RNA extraction 11
2.2.2 ATP5B amplification 12
2.2.3 Restriction enzyme digestion 13
2.2.4 Ligation 14
2.2.5 Bacteria strains and culture 14
2.2.6 Transformation 14
2.2.7 Colony PCR 15
2.2.8 Plasmid DNA purification 15
2.2.9 Transfection 17
2.2.10 Stable clone selection 17
2.3 Immunocytochemistry (ICC) 17
2.3.1 Sample Preparation 17
2.3.2 Confocal microscope 18
2.3.3 DeltaVision microscope 19
2.4 Live imaging 19
2.5 Flow cytometry (FACS) 20
2.6 Western blotting 20
2.7 Mitophagy induction 22
2.8 Plasma membrane extraction 22
2.9 Gene expression analysis 22
2.10 Gene Ontology enrichment analysis 23
2.11 Gene set enrichment analysis (GSEA) 23
2.12 Analysis of MYCN chromatin immunoprecipitation (ChIP) sequencing 24
Chapter 3 Results 26
3.1 Different abundance of ectopic ATP synthase in different cancer cells 26
3.2 Malignant cancer cells have more ectopic ATP synthase 27
3.3 ATP synthase was transported to plasma membrane in A549 lung cancer cells 28
3.4 Two hypothesized pathways of ATP synthase trafficking: mitophagy and mitochondrial trafficking pathway 30
3.5 GSEA results supported the mitochondrial trafficking pathway 32
3.6 SNPH might be the possible gene to regulate ectopic ATP synthase during mitochondrial trafficking 33
3.7 Mitophagy did not affect ectopic ATP synthase abundance 35
Chapter 4 Discussion 38
4.1 Mitophagy pathway independent 38
4.2 CCCP-induced mitophagy pathway 38
4.3 GSEA results supported mitochondrial trafficking pathway but not mitophagy pathway 38
4.4 Mitochondrial trafficking pathway 39
4.5 SNPH decreased along with higher stage of neuroblastoma patients tissue 41
Chapter 5 Conclusion 42
Chapter 6 References 44
Figures 53
Appendix 84
1.Boyer, P. D. The ATP Synthase—A Splendid Molecular Machine. Annu. Rev. Biochem. 66, 717–749 (1997).
2.Devenish, R. J., Prescott, M. & Rodgers, A. J. W. The Structure and Function of Mitochondrial F1Fo-ATP Synthases. International Rev. of Cell and Mol. Bio. 267, 1–58 (2008).
3.Jonckheere, A. I., Smeitink, J. A. M. & Rodenburg, R. J. T. Mitochondrial ATP synthase: Architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211–225 (2012).
4.Gaballo, A., Zanotti, F. & Papa, S. Structures and interactions of proteins involved in the coupling function of the protonmotive FoF1-ATP synthase. Curr. Protein Pept. Sci. 3, 451–460 (2002).
5.Liu, Y., Fiskum, G. & Schubert, D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80, 780–787 (2002).
6.Publication, A., Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583–21587 (2007).
7.Itoh, H., Takahashi, A., Adachi, K., Noji H., Yasuda, R., Yoshida, M. & Kinosita, K. Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004).
8.Vantourout, P., Radojkovic, C., Lichtenstein, L., Pons, V., Champagne, E. & Martinez L. Ecto-F1-ATPase : A moonlighting protein complex and an unexpected apoA-I receptor. World J. Gastroenterol 16, 5925–5935 (2010).
9.Bae, T. J., Kim, M. S., Kim, J. W., Kim, B. W., Choo, H. J., Lee, J. W., Kim, K. B., Lee, C. S., Kim, J. H., Chang, S. Y., Kang, C. Y., Lee, S. W. & Ko, Y. G. Lipid raft proteome reveals ATP synthase complex in the cell surface. 3536–3548 (2004). Proteomics 4, 3536-3548 (2004)
10.Mangiullo, R., Gnoni, A., Leone, A., Gnoni, G., Papa, S. and Zanotti, F. Biochimica et Biophysica Acta Structural & functional characterization of FoF1-ATP synthase on the extracellular surface of rat hepatocytes. Biochimica et Biophysica Acta 1777, 1326–1335 (2008).
11.Esteve, J., Champagne, E., Pineau, T., Rolland, C., Cabezo, E., Walker, J., Perret, B. & Barbaras, R. Ectopic b-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 1, 75–79 (2003).
12.Das, B., Mondragon, M. O., Sadeghian, M., Hatcher, V. B. & Norin, A. J. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J. Exp. Med. 180, 273–281 (1994).
13.Arakaki, N., Nagao, T., Niki, R., Toyofuku, A., Tanaka, H., Kuramoto, Y., Emoto, Y., Shibata, H., Magota, K. & Higuti, T. Possible role of cell surface H+-ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Mol. Cancer Res. 1, 931–939 (2003).
14.Moser, T. L., Stack, M. S., Asplin, I., Enghild, J. J., Højrup, P., Everitt, L., Hubchak, S., Schnaper, H. W. & Pizzo, S. V. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 96, 2811–2816 (1999).
15.Schmidt, C., Lepsverdize, E., Chi, S. L., Das, M., Pizzo, S. V., Dityatev, A. & Schachner, M. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol. Psychiatry 13, 953–969 (2008).
16.Kim, B. W., Choo, H. J., Lee, J. W., Kim, J. H. & Ko, Y. G. Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp. Mol. Med. 36, 476–485 (2004).
17.Chang, H. Y., Huang, H. C., Huang, T. C., Yang, P. C., Wang, Y. C. & Juan, H. F. Ectopic ATP Synthase Blockade Suppresses Lung Adenocarcinoma Growth by Activating the Unfolded Protein Response. Cancer Res. 72, 4696–4706 (2012).
18.Huang, M. & Weiss, W. A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 3, a014415 (2013).
19.Akopian, D., Shen, K. & Zhang, X. Signal Recognition Particle : An Essential Protein-Targeting Machine. Annu. Rev. Biochem. 82, 693-721 (2013).
20.Walter, P. Signal sequence recognition and protein targeting to the membrane. Anllu. Rev. Cell Bioi.10, 87-119 (1994).
21.Weihofen, A., Lemberg, M. K., Ploegh, H. L., Bogyo, M. & Martoglio, B. Release of Signal Peptide Fragments into the Cytosol Requires Cleavage in the Transmembrane Region by a Protease Activity That Is Specifically Blocked by a Novel Cysteine Protease Inhibitor. J. Biol. Chem. 275, 30951–30956 (2000).
22.Sato, K. COPII coat assembly and selective export from the endoplasmic reticulum. J. Biochem. 136, 755–760 (2004).
23.Søgaard, M., Tani, K., Ye, R. R., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J. E. & Söllner, T. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948 (1994).
24.Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, Tethers, Rabs, & SNAREs Work Together to Mediate the Intracellular Destination of a Transport Vesicle. Dev. Cell 12, 671–682 (2007).
25.Zerial, M. & Mcbride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Bio. 2, 107-118 (2001).
26.Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in Membrane Traffic and Cell Physiology. Physiol Rev. 91, 119–149 (2011).
27.Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO reports 1, 411–415 (2000).
28.Paschen, S. A. & Neupert, W. Protein Import Into Mitochondria. IUBMB Life 5, 101–112 (2001).
29.Gabriel, K., Egan, B. & Lithgow, T. Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22, 2380-2386 (2003).
30.Diekert, K., Kispal, G., Guiard, B. & Lill, R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. U. S. A. 96, 11752–11757 (1999).
31.Schmidt, C., Lepsverdize, E., Chi, S. L., Das, M., Pizzo, S. V., Dityatev, A. & Schachner, M. Amyloid precursor protein and amyloid β-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol. Psychiatry 13, 953–969 (2008).
32.Chiang, S. F., Huang, C. Y., Lin, T. Y., Chiou, S. H. & Chow, K. C. An alternative import pathway of AIF to the mitochondria. Int. J. Mol. Med. 29, 365–372 (2012).
33.Raturi, A. & Simmen, T. Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (MAM). Biochim. Biophys. Acta - Mol. Cell Res. 1833, 213–224 (2013).
34.Rai, A. K., Spolaore, B., Harris, D. A., Dabbeni-Sala, F. & Lippe, G. Ectopic FoF1 ATP synthase contains both nuclear and mitochondrially-encoded subunits. J. Bioenerg. Biomembr. 45, 569–579 (2013).
35.Sugiura, A., McLelland, G. L., Fon, E. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 1–15 (2014).
36.Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).
37.Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J. & Pizzo, S. V. Endothelial cell surface F1-FO ATP synthase is active in ATP synthesis and is inhibited by angiostatin. PNAS 98, 6656-6661 (2001).
38.Caino, M. C., Seo, J. H., Aguinaldo, A., Wait, E., Bryant, K. G, Kossenkov, A. V., Hayden, James. E., Vaira, V., Morotti, A., Ferrero, S., Bosari, S., Gabrilovich, D. I., Languino, L. R., Cohen, A. R. & Altieri, D. C. A. neuronal network of mitochondrial dynamics regulates metastasis. Nat. Commun. 7, 1–11 (2016).
39.Lemasters, J. J. Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Res. 8, 3–5 (2005).
40.Kim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253 (2007).
41.Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).
42.Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M. & Youle, R. J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367-1380 (2010).
43.Durcan, T. M. & Fon, E. A. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29, 989–999 (2015).
44.Tanaka, A. Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett. 584, 1386–1392 (2010).
45.Chen, Y. & Dorn, G. W. PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science 340, 471–475 (2013).
46.Son, J. H., Shim, J. H., Kim, K. H., Ha, J. Y. & Han, J. Y. Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med. 44, 89 (2012).
47.Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).
48.Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., Cookson, M. R., & Youle R. J. PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biol. 8, e1000298 (2010).
49.Geisler, S., Holmström, K. M., Skujat, D., Fiesel, F. C, Rothfuss, O. C., Kahle, P. J. & Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).
50.Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).
51.Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., P, B. F., Yuan, J., Deeney, J. T., Corkey, B. E., & Shirihai, O. S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).
52.Tal, R., Winter, G., Ecker, N., Klionsky, D. J. & Abeliovich, H. Aup1p, a Yeast Mitochondrial Protein Phosphatase Homolog, Is Required for Efficient Stationary Phase Mitophagy and Cell Survival. J. Biol. Chem. 282, 5617–5624 (2007).
53.Kissová, I., Deffieu, M., Manon, S. & Camougrand, N. Uth1p Is Involved in the Autophagic Degradation of Mitochondria. J. Biol. Chem. 279, 39068–39074 (2004).
54.Schweers, R. L., Zhang, J., Randall, M. S., Loyd, M. R., Li, W., Dorsey, F. C., Kundu, M., Opferman, J. T., Cleveland, J. L., Miller, J. L. & Ney, P. A. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. 104, 19500–19505 (2007).
55.Kundu, M., Lindsten, T., Yang, C. Y., Wu, J., Zhao, F., Zhang, J., Selak, M. A., Ney, P. A. & Thompson, C. B. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008).
56.Hsu, C. L., Chang, H. Y., Chang, J. Y., Hsu, W. M., Huang, H. C. & Juan, H. F. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 7, 36293–36310 (2016).
57.Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003).
58.Edsjö, A., Nilsson, H., Vandesompele, J., Karlsson, J., Pattyn, F., Culp, L. A., Speleman, F. & Påhlman, S. Neuroblastoma cells with overexpressed MYCN retain their capacity to undergo neuronal differentiation. Lab. Investig. 84, 406–417 (2004).
59.van derBliek, A. M., Shen, Q. & Kawajiri, S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 5, 1-16 (2013).
60.Cai, Q., Zakaria, H. M. & Sheng, Z. H. Long time-lapse imaging reveals unique features of PARK2/Parkin-mediated mitophagy in mature cortical neurons. Autophagy 8, 976–978 (2012).
61.Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–46 (2014).
62.Posner, M. R., Antoniou, D., Griffin, J., Schlossman, S. F. &Lazarus, H. Divisions Tumor Immunology and 2 Medicine, Sidney Farber Cancer Institute, and the Departments of Medicine and Pathology. Harvard School of Medicine, Boston, MA 02115, U.S.A. 48, 23–31 (1982).
63.Marcel, A. B. & Erwin, S. Cell biology: A table for two. Nature 501, 498-499 (2013).
64.Ivatt, R. M. & Whitworth, A. J. The many faces of mitophagy. EMBO Rep. 15, 5–6 (2014).
65.Pyakurel, A., Savoia, C., Hess, D. & Scorrano, L. Extracellular Regulated Kinase Phosphorylates Mitofusin 1 to Control Mitochondrial Morphology and Apoptosis. Mol. Cell 58, 244–254 (2015).
66.Tooze, S. A. & Yoshimori, T. The origin of the autophagosomal membrane. Nat. Cell Biol. 12, 831–835 (2010).
67.Schlegel, A., Arvan, P. & Lisanti, M. P. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J. Biol. Chem. 276, 4398–4408 (2001).
68.Mehrotra, S., Languino, L.R,. Raskett, C.M., Mercurio, A.M., Dohi, T., Altieri, D.C., Weeraratna, A., O’Connell, M., Jernigan, D., Fatatis, A., Languino, L. R. ,Bosari, S. & Altieri, D. C. Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. Cancer Cell. 17, 53–64 (2013).
69.Senft, D. & Ronai, Z. A. Regulators of mitochondrial dynamics in cancer. Curr. Opin. Cell Biol. 39, 43–52 (2016).
70.Sheng, Z. H. Mitochondrial trafficking and anchoring in neurons: New insight and implications. J. Cell Biol. 204, 1087-1098 (2014).
71.Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J. & Pizzo, S. V. Endothelial cell surface F1-Fo ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl. Acad. Sci. U. S. A. 98, 6656–6661 (2001).
72.Allen, H. G., Stanton, T. R., DiPietro, F., Moseley, G. L. & Abelson, J. Social Media Release Increases Dissemination of Original Articles in the Clinical Pain Sciences. PLoS One 8, e68914 (2013).
73.Sato, S. & Hattori, N. Genetic mutations and mitochondrial toxins shed new light on the pathogenesis of Parkinson’s disease. Parkinsons. Dis. 11, 979231 (2011).
74.Desai, S. P., Bhatia, S. N., Toner, M. & Irimia, D. Mitochondrial Localization and the Persistent Migration of Epithelial Cancer cells. Biophys. J. 104, 2077–2088 (2013).
75.Caino, M. C., Ghosh, J. C., Chae, Y. C., Vaira, V., Rivadeneira, D. B., Faversani, A., Rampini, P., Kossenkov, A. V., Aird, K. M., Zhang, R., Webster, M. R., Weeraratna, A. T., Bosari, S., Languino, L. R. & Altieri, D. C. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc. Natl. Acad. Sci. U. S. A. 112, 8638–8643 (2015).
76.Kang, J. S., Tian, J. H., Pan, P. Y., Zald, P., Li, C., Deng, C. & Sheng, Z. H. Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation. Cell 132, 137–148 (2008).
77.Huang, T. Y. The Role of Microtubules in the Trafficking of Ectopic ATP Synthase. Master Thesis, National Taiwan University, Taipei, Taiwan (2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top