|
1.Boyer, P. D. The ATP Synthase—A Splendid Molecular Machine. Annu. Rev. Biochem. 66, 717–749 (1997). 2.Devenish, R. J., Prescott, M. & Rodgers, A. J. W. The Structure and Function of Mitochondrial F1Fo-ATP Synthases. International Rev. of Cell and Mol. Bio. 267, 1–58 (2008). 3.Jonckheere, A. I., Smeitink, J. A. M. & Rodenburg, R. J. T. Mitochondrial ATP synthase: Architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211–225 (2012). 4.Gaballo, A., Zanotti, F. & Papa, S. Structures and interactions of proteins involved in the coupling function of the protonmotive FoF1-ATP synthase. Curr. Protein Pept. Sci. 3, 451–460 (2002). 5.Liu, Y., Fiskum, G. & Schubert, D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80, 780–787 (2002). 6.Publication, A., Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583–21587 (2007). 7.Itoh, H., Takahashi, A., Adachi, K., Noji H., Yasuda, R., Yoshida, M. & Kinosita, K. Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004). 8.Vantourout, P., Radojkovic, C., Lichtenstein, L., Pons, V., Champagne, E. & Martinez L. Ecto-F1-ATPase : A moonlighting protein complex and an unexpected apoA-I receptor. World J. Gastroenterol 16, 5925–5935 (2010). 9.Bae, T. J., Kim, M. S., Kim, J. W., Kim, B. W., Choo, H. J., Lee, J. W., Kim, K. B., Lee, C. S., Kim, J. H., Chang, S. Y., Kang, C. Y., Lee, S. W. & Ko, Y. G. Lipid raft proteome reveals ATP synthase complex in the cell surface. 3536–3548 (2004). Proteomics 4, 3536-3548 (2004) 10.Mangiullo, R., Gnoni, A., Leone, A., Gnoni, G., Papa, S. and Zanotti, F. Biochimica et Biophysica Acta Structural & functional characterization of FoF1-ATP synthase on the extracellular surface of rat hepatocytes. Biochimica et Biophysica Acta 1777, 1326–1335 (2008). 11.Esteve, J., Champagne, E., Pineau, T., Rolland, C., Cabezo, E., Walker, J., Perret, B. & Barbaras, R. Ectopic b-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 1, 75–79 (2003). 12.Das, B., Mondragon, M. O., Sadeghian, M., Hatcher, V. B. & Norin, A. J. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J. Exp. Med. 180, 273–281 (1994). 13.Arakaki, N., Nagao, T., Niki, R., Toyofuku, A., Tanaka, H., Kuramoto, Y., Emoto, Y., Shibata, H., Magota, K. & Higuti, T. Possible role of cell surface H+-ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Mol. Cancer Res. 1, 931–939 (2003). 14.Moser, T. L., Stack, M. S., Asplin, I., Enghild, J. J., Højrup, P., Everitt, L., Hubchak, S., Schnaper, H. W. & Pizzo, S. V. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 96, 2811–2816 (1999). 15.Schmidt, C., Lepsverdize, E., Chi, S. L., Das, M., Pizzo, S. V., Dityatev, A. & Schachner, M. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol. Psychiatry 13, 953–969 (2008). 16.Kim, B. W., Choo, H. J., Lee, J. W., Kim, J. H. & Ko, Y. G. Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp. Mol. Med. 36, 476–485 (2004). 17.Chang, H. Y., Huang, H. C., Huang, T. C., Yang, P. C., Wang, Y. C. & Juan, H. F. Ectopic ATP Synthase Blockade Suppresses Lung Adenocarcinoma Growth by Activating the Unfolded Protein Response. Cancer Res. 72, 4696–4706 (2012). 18.Huang, M. & Weiss, W. A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 3, a014415 (2013). 19.Akopian, D., Shen, K. & Zhang, X. Signal Recognition Particle : An Essential Protein-Targeting Machine. Annu. Rev. Biochem. 82, 693-721 (2013). 20.Walter, P. Signal sequence recognition and protein targeting to the membrane. Anllu. Rev. Cell Bioi.10, 87-119 (1994). 21.Weihofen, A., Lemberg, M. K., Ploegh, H. L., Bogyo, M. & Martoglio, B. Release of Signal Peptide Fragments into the Cytosol Requires Cleavage in the Transmembrane Region by a Protease Activity That Is Specifically Blocked by a Novel Cysteine Protease Inhibitor. J. Biol. Chem. 275, 30951–30956 (2000). 22.Sato, K. COPII coat assembly and selective export from the endoplasmic reticulum. J. Biochem. 136, 755–760 (2004). 23.Søgaard, M., Tani, K., Ye, R. R., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J. E. & Söllner, T. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948 (1994). 24.Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, Tethers, Rabs, & SNAREs Work Together to Mediate the Intracellular Destination of a Transport Vesicle. Dev. Cell 12, 671–682 (2007). 25.Zerial, M. & Mcbride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Bio. 2, 107-118 (2001). 26.Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in Membrane Traffic and Cell Physiology. Physiol Rev. 91, 119–149 (2011). 27.Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO reports 1, 411–415 (2000). 28.Paschen, S. A. & Neupert, W. Protein Import Into Mitochondria. IUBMB Life 5, 101–112 (2001). 29.Gabriel, K., Egan, B. & Lithgow, T. Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22, 2380-2386 (2003). 30.Diekert, K., Kispal, G., Guiard, B. & Lill, R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. U. S. A. 96, 11752–11757 (1999). 31.Schmidt, C., Lepsverdize, E., Chi, S. L., Das, M., Pizzo, S. V., Dityatev, A. & Schachner, M. Amyloid precursor protein and amyloid β-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol. Psychiatry 13, 953–969 (2008). 32.Chiang, S. F., Huang, C. Y., Lin, T. Y., Chiou, S. H. & Chow, K. C. An alternative import pathway of AIF to the mitochondria. Int. J. Mol. Med. 29, 365–372 (2012). 33.Raturi, A. & Simmen, T. Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (MAM). Biochim. Biophys. Acta - Mol. Cell Res. 1833, 213–224 (2013). 34.Rai, A. K., Spolaore, B., Harris, D. A., Dabbeni-Sala, F. & Lippe, G. Ectopic FoF1 ATP synthase contains both nuclear and mitochondrially-encoded subunits. J. Bioenerg. Biomembr. 45, 569–579 (2013). 35.Sugiura, A., McLelland, G. L., Fon, E. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 1–15 (2014). 36.Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012). 37.Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J. & Pizzo, S. V. Endothelial cell surface F1-FO ATP synthase is active in ATP synthesis and is inhibited by angiostatin. PNAS 98, 6656-6661 (2001). 38.Caino, M. C., Seo, J. H., Aguinaldo, A., Wait, E., Bryant, K. G, Kossenkov, A. V., Hayden, James. E., Vaira, V., Morotti, A., Ferrero, S., Bosari, S., Gabrilovich, D. I., Languino, L. R., Cohen, A. R. & Altieri, D. C. A. neuronal network of mitochondrial dynamics regulates metastasis. Nat. Commun. 7, 1–11 (2016). 39.Lemasters, J. J. Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Res. 8, 3–5 (2005). 40.Kim, I., Rodriguez-Enriquez, S. & Lemasters, J. J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245–253 (2007). 41.Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011). 42.Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M. & Youle, R. J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367-1380 (2010). 43.Durcan, T. M. & Fon, E. A. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29, 989–999 (2015). 44.Tanaka, A. Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett. 584, 1386–1392 (2010). 45.Chen, Y. & Dorn, G. W. PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science 340, 471–475 (2013). 46.Son, J. H., Shim, J. H., Kim, K. H., Ha, J. Y. & Han, J. Y. Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med. 44, 89 (2012). 47.Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008). 48.Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., Cookson, M. R., & Youle R. J. PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biol. 8, e1000298 (2010). 49.Geisler, S., Holmström, K. M., Skujat, D., Fiesel, F. C, Rothfuss, O. C., Kahle, P. J. & Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010). 50.Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010). 51.Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., P, B. F., Yuan, J., Deeney, J. T., Corkey, B. E., & Shirihai, O. S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008). 52.Tal, R., Winter, G., Ecker, N., Klionsky, D. J. & Abeliovich, H. Aup1p, a Yeast Mitochondrial Protein Phosphatase Homolog, Is Required for Efficient Stationary Phase Mitophagy and Cell Survival. J. Biol. Chem. 282, 5617–5624 (2007). 53.Kissová, I., Deffieu, M., Manon, S. & Camougrand, N. Uth1p Is Involved in the Autophagic Degradation of Mitochondria. J. Biol. Chem. 279, 39068–39074 (2004). 54.Schweers, R. L., Zhang, J., Randall, M. S., Loyd, M. R., Li, W., Dorsey, F. C., Kundu, M., Opferman, J. T., Cleveland, J. L., Miller, J. L. & Ney, P. A. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. 104, 19500–19505 (2007). 55.Kundu, M., Lindsten, T., Yang, C. Y., Wu, J., Zhao, F., Zhang, J., Selak, M. A., Ney, P. A. & Thompson, C. B. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008). 56.Hsu, C. L., Chang, H. Y., Chang, J. Y., Hsu, W. M., Huang, H. C. & Juan, H. F. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 7, 36293–36310 (2016). 57.Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003). 58.Edsjö, A., Nilsson, H., Vandesompele, J., Karlsson, J., Pattyn, F., Culp, L. A., Speleman, F. & Påhlman, S. Neuroblastoma cells with overexpressed MYCN retain their capacity to undergo neuronal differentiation. Lab. Investig. 84, 406–417 (2004). 59.van derBliek, A. M., Shen, Q. & Kawajiri, S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 5, 1-16 (2013). 60.Cai, Q., Zakaria, H. M. & Sheng, Z. H. Long time-lapse imaging reveals unique features of PARK2/Parkin-mediated mitophagy in mature cortical neurons. Autophagy 8, 976–978 (2012). 61.Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–46 (2014). 62.Posner, M. R., Antoniou, D., Griffin, J., Schlossman, S. F. &Lazarus, H. Divisions Tumor Immunology and 2 Medicine, Sidney Farber Cancer Institute, and the Departments of Medicine and Pathology. Harvard School of Medicine, Boston, MA 02115, U.S.A. 48, 23–31 (1982). 63.Marcel, A. B. & Erwin, S. Cell biology: A table for two. Nature 501, 498-499 (2013). 64.Ivatt, R. M. & Whitworth, A. J. The many faces of mitophagy. EMBO Rep. 15, 5–6 (2014). 65.Pyakurel, A., Savoia, C., Hess, D. & Scorrano, L. Extracellular Regulated Kinase Phosphorylates Mitofusin 1 to Control Mitochondrial Morphology and Apoptosis. Mol. Cell 58, 244–254 (2015). 66.Tooze, S. A. & Yoshimori, T. The origin of the autophagosomal membrane. Nat. Cell Biol. 12, 831–835 (2010). 67.Schlegel, A., Arvan, P. & Lisanti, M. P. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J. Biol. Chem. 276, 4398–4408 (2001). 68.Mehrotra, S., Languino, L.R,. Raskett, C.M., Mercurio, A.M., Dohi, T., Altieri, D.C., Weeraratna, A., O’Connell, M., Jernigan, D., Fatatis, A., Languino, L. R. ,Bosari, S. & Altieri, D. C. Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. Cancer Cell. 17, 53–64 (2013). 69.Senft, D. & Ronai, Z. A. Regulators of mitochondrial dynamics in cancer. Curr. Opin. Cell Biol. 39, 43–52 (2016). 70.Sheng, Z. H. Mitochondrial trafficking and anchoring in neurons: New insight and implications. J. Cell Biol. 204, 1087-1098 (2014). 71.Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J. & Pizzo, S. V. Endothelial cell surface F1-Fo ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl. Acad. Sci. U. S. A. 98, 6656–6661 (2001). 72.Allen, H. G., Stanton, T. R., DiPietro, F., Moseley, G. L. & Abelson, J. Social Media Release Increases Dissemination of Original Articles in the Clinical Pain Sciences. PLoS One 8, e68914 (2013). 73.Sato, S. & Hattori, N. Genetic mutations and mitochondrial toxins shed new light on the pathogenesis of Parkinson’s disease. Parkinsons. Dis. 11, 979231 (2011). 74.Desai, S. P., Bhatia, S. N., Toner, M. & Irimia, D. Mitochondrial Localization and the Persistent Migration of Epithelial Cancer cells. Biophys. J. 104, 2077–2088 (2013). 75.Caino, M. C., Ghosh, J. C., Chae, Y. C., Vaira, V., Rivadeneira, D. B., Faversani, A., Rampini, P., Kossenkov, A. V., Aird, K. M., Zhang, R., Webster, M. R., Weeraratna, A. T., Bosari, S., Languino, L. R. & Altieri, D. C. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc. Natl. Acad. Sci. U. S. A. 112, 8638–8643 (2015). 76.Kang, J. S., Tian, J. H., Pan, P. Y., Zald, P., Li, C., Deng, C. & Sheng, Z. H. Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation. Cell 132, 137–148 (2008). 77.Huang, T. Y. The Role of Microtubules in the Trafficking of Ectopic ATP Synthase. Master Thesis, National Taiwan University, Taipei, Taiwan (2017).
|