跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:奚正文
研究生(外文):Cheng-Wen Hsi
論文名稱:以光鉗技術探討核醣體在rpsO基因轉錄本上對轉譯起始的影響
論文名稱(外文):Observing Translation Initiation of Ribosomes on the rpsO Transcript using Optical Tweezers
指導教授:溫進德
指導教授(外文):Jin-Der Wen
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:核醣體轉譯起始作用單分子技術雷射光鉗rpsO 基因偽結結構雙髮夾結構
外文關鍵詞:ribosometranslation initiationsingle-molecule techniqueoptical tweezersrpsO genepseudoknotdouble-hairpin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在原核生物中,核醣體在轉譯起始的過程中必須先辨識mRNA 5’端未轉譯區(5’UTR)上的Shine-Dalgarno sequence (SD 序列),進而使起始tRNA 配對到起始密碼子,轉譯方能開始。許多單股mRNA 在一般情況下會形成二級結構,在轉譯起始的過程中,這些二級結構必須被解開使密碼子能夠被呈現出來。大腸桿菌中rpsO 基因轉錄本5’UTR(rpsO 5’UTR)能夠藉由形成雙髮夾結構或偽結結構來調控自身序列的轉譯作用,但因為SD 序列被隱藏在雙髮夾結構中,所以核醣體只能結合在偽結結構開始轉譯作用。然而,在偽結結構只有SD 序列是暴露出來的,起始密碼子下游緊鄰另一個二級結構,所以核醣體必須解開下游的二級結構才能完成轉譯起始作用。

本篇研究經由單分子光鉗技術來探討當核醣體小次單元30S 及起始tRNA
存在時,對rpsO 5’UTR 的結構會有何影響。透過研究結果發現,和30S 反應過後的rpsO 5’UTR 和未加入30S 的組別,在光鉗實驗中看不出明顯差異。當同時有加入30S 及起始tRNA 的情況時,rpsO 5’UTR 下游的二級結構會被全部解開。刪減rpsO 5’UTR 兩個髮夾間的核苷酸數量,在光鉗實驗發現核醣體30S結合至RNA 的分子比例降低,在細胞體外轉譯實驗中得知刪減核苷酸數量的組別在轉譯效率上明顯下降。綜合以上結果,在轉譯起始階段30S 和起始tRNA 能夠解開rpsO 5’UTR 下游結構,且雙髮夾間的核苷酸扮演了30S 和起始tRNA 結合RNA 重要的角色。
In prokaryotes, ribosomes have to recognize the Shine-Dalgarno sequence (SDsequence) on mRNA 5’UTR, and then the initiator tRNA can pair to the start codon to initiate translation. Many mRNAs fold into secondary structures in normal situation.During the translation initiation process, these secondary structures have to be unfolded to revel the start codon. The rpsO gene transcript 5’ untranslated region (5’UTR) of Escherichia coli regulates its own translation through folding into a doublehairpin or a pseudoknot conformation. However, the SD sequence is concealed in the double-hairpin structure. Ribosomes can only bind to pseudoknot conformation to initiate translation. The SD sequence is fully exposed only on the pseudoknot. The start codon is adjacent to the downstream secondary structure, so the ribosome has to unwind the secondary structure to complete the initiation process.

In this research, we investigate the conformational change of the rpsO 5’ UTR in the presence of the ribosomal subunit 30S and initiator tRNA by using optical tweezers. Our results showed that there was no significant difference for the rpsO 5’UTR treated with or without 30S. In the presence of the 30S and initiator tRNA, rpsO 5’ UTR downstream secondary structure could be completely unfolded. The optical tweezers’ data showed that nucleotides deletion between the two hairpins decreased the 30S binding probability to RNA molecules, and also decreased the in vitro translation efficiency. These results demonstrate that the 30S and initiator tRNA can unfold the rpsO 5’ UTR downstream secondary structure, and the length of nucleotides between the two hairpins plays an important role in binding of 30S and tRNA to rpsO 5’ UTR.
口試委員會審定書 ii
致謝 iii
中文摘要 iv
ABSTRACT v
目錄 6
圖目錄 9
第一章 導論 11
1.1核醣體 11
1.1.1 功能 11
1.1.2 發現 11
1.1.3 組成 11
1.1.4 解旋能力 12
1.2轉譯 13
1.2.1 起始 13
1.2.2 延長 14
1.2.3 終止 14
1.3 rpsO基因 15
1.3.1 大腸桿菌(Escherichia coli)核醣體蛋白S15 15
1.3.2 核醣體蛋白S15的轉譯自體調節(Translational autoregulation) 15
1.4 單分子技術 (Single-Molecule Techniques) 16
1.4.1 介紹 16
1.4.2 光鉗 (Optical tweezers) 17
1.5 研究動機 17
第二章 材料與方法 18
2.1 材料 18
2.1.1 勝任細胞品系 18
2.1.2 質體 18
2.1.3 低聚物(Oligomers)及引子(Primers)設計 19
2.1.4 試劑組 21
2.1.5 藥品 22
2.1.6 酵素 23
2.1.7 儀器 24
2.1.8溶液 24
2.2 方法 27
2.2.1 載體構築 27
2.2.2 細胞外轉錄作用 ( in vitro transcription ) 29
2.2.3 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 29
2.2.4 DNA handle與RNA之黏合反應 30
2.2.5 核醣體30S小次單元的純化 30
2.2.6 核醣體30S活性檢測 33
2.2.7 細胞外轉譯(in vitro Translation) 33
2.2.8 螢光素酶檢測(Luciferase assay) 33
第三章 結果 34
3.1 RNA樣本製備 34
3.2 核醣體小次單元30S對rpsO 5’UTR之影響 34
3.2.1 核醣體30S對野生型rpsO 5’ UTR之影響 35
3.2.1 核醣體30S對SD加強型rpsO 5’ UTR之影響 35
3.3 前轉譯起始複合體對rpsO 5’UTR之影響 36
3.4 SD序列和Stem 1之間的距離刪減對rpsO 5’UTR之影響 37
3.4.1 確認S15msSD-5nt之樣式 37
3.4.2 核醣體30S對S15msSD-5nt之影響 37
3.4.3 核醣體30S及起始tRNA對S15msSD-5nt之影響 38
3.4.4 雙髮夾結構間的核苷酸數量對轉譯起始的重要性 39
3.5 刪減rpsO 5’UTR雙髮夾間核苷酸數量對轉譯的影響 39
第四章 討論 40
4.1 rpsO 5’ UTR加入30S在光鉗實驗中觀察不出差異 40
4.2 S15msSD-5nt RNA的外力施予與否表現出的結構型態不同 40
4.3 未來實驗 41
參考文獻 42
圖1. pS15wt載體構築示意圖及部分序列示意圖 48
圖2. pS15wt-Rluc載體構築示意圖及部分序列示意圖 49
圖3. Insert序列更換限制酵素切位實驗設計示意圖 51
圖4. 光鉗實驗設置示意圖 52
圖5. 核醣體30S純化結果 53
圖6. 野生型rpsO 5'' UTR (S15wt)的結構、樣式比例及Force - extension分佈 55
圖7. 野生型rpsO 5'' UTR加入30S反應的樣式比例及Force - extension分佈 57
圖8. SD強化型rpsO 5'' UTR (S15msSD)結構示意圖 58
圖9. SD強化型rpsO 5'' UTR (S15msSD)的樣式比例及Force - extension分佈 59
圖10. SD強化型rpsO 5'' UTR 加入30S的樣式比例及Force - extension分佈 60
圖11. SD強化型rpsO 5'' UTR加入30S和起始tRNA的樣式、結構及Force - extension分佈 61
圖12. SD強化型rpsO 5'' UTR加入30S和起始tRNA後出現Stem 1開啟之力量範圍變大的分子 62
圖13. SD強化型rpsO 5 ''UTR 刪減5 nt (S15msSD-5nt)結構示意圖 64
圖14. SD強化型rpsO 5'' UTR 刪減5 nt的樣式及Force - extension分佈 65
圖15. SD強化型rpsO 5'' UTR 刪減5 nt加入30S的樣式及Force - extension分佈 66
圖16. 核醣體30S及起始tRNA充斥在S15msSD-5nt RNA會觀察到2T、1T及PK樣式交替出現 67
圖17. S15msSD-5nt摺疊的過程很可能是以雙髮夾結構出現 68
圖18. S15msSD、S15msSD-5nt細胞外轉譯效率圖 69
Agalarov, S. C., G. Sridhar Prasad, P. M. Funke, C. D. Stout and J. R. Williamson (2000). "Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain." Science 288(5463): 107-113.

Aoki, H., S. L. Adams, M. A. Turner and M. C. Ganoza (1997). "Molecular characterization of the prokaryotic efp gene product involved in a peptidyltransferase reaction." Biochimie 79(1): 7-11.

Blattner, F. R., G. Plunkett, 3rd, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau and Y. Shao (1997). "The complete genome sequence of Escherichia coli K-12." Science 277(5331): 1453-1462.

Bruce Alberts, Alexander Johnson, M. R. Julian Lewis, Keith Roberts and P. Walter. (2002). "The Molecular Biology of the Cell, fourth edition." Garland Science: pg. 342.

Cech, T. (2000). "Structural biology. The ribosome is a ribozyme." Science.
Chang, S. Y. (2015). "碩士論文 利用單分子螢光共振能量轉移技術探討核醣體在rpsO基因轉錄本上對轉譯起始的影響."

Dinos, G., D. L. Kalpaxis, D. N. Wilson and K. H. Nierhaus (2005). "Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu." Nucleic Acids Research 33(16): 5291-5296.

Frank, J., J. Zhu, P. Penczek, Y. Li, S. Srivastava, A. Verschoor, M. Radermacher, R. Grassucci, R. K. Lata and R. K. Agrawal (1995). "A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome." Nature 376(6539): 441-444.

Gualerzi, C., G. Risuleo and C. L. Pon (1977). "Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3." Biochemistry 16(8): 1684-1689.

Gualerzi, C. O. and C. L. Pon (1990). "Initiation of mRNA translation in prokaryotes." Biochemistry 29(25): 5881-5889.

Kapanidis, A. N. and T. Strick (2009). "Biology, one molecule at a time." Trends in Biochemical Sciences 34(5): 234-243.

Keller EB and Z. PC (1956). "The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins." J Biol Chem.: 221(221):245-259.

Kennell, D. and H. Riezman (1977). "Transcription and translation initiation frequencies of the Escherichia coli lac operon." J Mol Biol 114(1): 1-21.

La Teana, A., C. O. Gualerzi and R. Brimacombe (1995). "From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors." RNA 1(8): 772-782.


Lake, J. A. (1976). "Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes." J Mol Biol 105(1): 131-139.

Liljas, A. and S. al-Karadaghi (1997). "Structural aspects of protein synthesis." Nat Struct Biol 4(10): 767-771.

Lingelbach, K. and B. Dobberstein (1988). "An extended RNA/RNA duplex structure within the coding region of mRNA does not block translational elongation." Nucleic Acids Res: 16(18): 3405-3414.

Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipurksy SL and D. J (2004). "Molecular Cell Biology (5th ed.)." 309,310.

Marzi, S., A. G. Myasnikov, A. Serganov, C. Ehresmann, P. Romby, M. Yusupov and B. P. Klaholz (2007). "Structured mRNAs regulate translation initiation by binding to the platform of the ribosome." Cell 130(6): 1019-1031.

Min Jou, W., G. Haegeman, M. Ysebaert and W. Fiers (1972). "Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein." Nature 237(5350): 82-88.

Mitra, K., C. Schaffitzel, T. Shaikh, F. Tama, S. Jenni, C. L. Brooks, 3rd, N. Ban and J. Frank (2005). "Structure of the E. coli protein-conducting channel bound to a translating ribosome." Nature 438(7066): 318-324.

Moffitt, J. R., Y. R. Chemla, D. Izhaky and C. Bustamante (2006). "Differential detection of dual traps improves the spatial resolution of optical tweezers." Proc Natl Acad Sci U S A 103(24): 9006-9011.

Neill and Campbell (1996). "Biology; Fourth edition." The Benjamin / Cummings Publishing Company: 309,310.

Palade, G. E. (1955). "A small particulate component of the cytoplasm." J Biophys Biochem Cytol 1(1): 59-68.

Philippe, C., F. Eyermann, L. Benard, C. Portier, B. Ehresmann and C. Ehresmann (1993). "Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site." Proc Natl Acad Sci U S A 90(10): 4394-4398.

Philippe, C., C. Portier, M. Mougel, M. Grunberg-Manago, J. P. Ebel, B. Ehresmann and C. Ehresmann (1990). "Target site of Escherichia coli ribosomal protein S15 on its messenger RNA. Conformation and interaction with the protein." J Mol Biol 211(2): 415-426.

Roberts, R. B. (1958). ""Introduction" in Microsomal Particles and Protein Synthesis." New York: Pergamon Press, Inc.

Savir, Y. and T. Tlusty (2013). "The ribosome as an optimal decoder: a lesson in molecular recognition." Cell 153(2): 471-479.

Schlax, P. J. and D. J. Worhunsky (2003). "Translational repression mechanisms in prokaryotes." Mol Microbiol 48(5): 1157-1169.

Schmeing, T. M., K. S. Huang, S. A. Strobel and T. A. Steitz (2005). "An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA." Nature 438(7067): 520-524.

Sengupta, J., R. K. Agrawal and J. Frank (2001). "Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA." Proceedings of the National Academy of Sciences of the United States of America 98(21): 11991-11996.

Takyar, S., R. P. Hickerson and H. F. Noller (2005). "mRNA helicase activity of the ribosome." Cell 120(1): 49-58.

Walter, N. G., C. Y. Huang, A. J. Manzo and M. A. Sobhy (2008). "Do-it-yourself guide: how to use the modern single-molecule toolkit." Nature Methods 5(6): 475-489.

Weinger, J. S., K. M. Parnell, S. Dorner, R. Green and S. A. Strobel (2004). "Substrate-assisted catalysis of peptide bond formation by the ribosome." Nat Struct Mol Biol 11(11): 1101-1106.

Wu, Y. J., C. H. Wu, A. Y. C. Yeh and J. D. Wen (2014). "Folding a stable RNA pseudoknot through rearrangement of two hairpin structures." Nucleic Acids Research 42(7): 4505-4515.

Yusupova, G. Z., M. M. Yusupov, J. H. D. Cate and H. F. Noller (2001). "The path of messenger RNA through the ribosome." Cell 106(2): 233-241.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊