跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/09 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁婷
研究生(外文):Yu-Ting Lin
論文名稱:利用結合表面電漿共振與電漿波導共振之晶片研究膜蛋白傳輸現象
論文名稱(外文):Monitoring Transport Behaviors of Cell Membrane Transporters by a Surface Plasmon and Plasmon-Waveguide Resonance Combined Chip
指導教授:趙玲趙玲引用關係
指導教授(外文):Ling Chao
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:79
中文關鍵詞:表面電漿共振電漿波導共振微米級孔洞陣列通道蛋白質傳輸動態
外文關鍵詞:surface plasmon resonanceplasmon-waveguide resonancesub-micron grating structuremembrane transport proteinstransport kinetics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
能夠瞭解物質藉由膜上通道蛋白跨膜運輸的現象,對於生物醫藥開發等相關領域來說相當的重要。現今表面電漿共振現象常被應用於免標定的生物感測平台,主要利用光學折射率變化來偵測晶片表面生物分子吸附脫離的情況。為了延伸其應用,我們設計了一個結合表面電漿共振(SPR)與電漿波導共振 (PWR)的平台,並利用模擬驗證出此結構能表現出兩個用於偵測孔洞內部與外部區域濃度的特徵共振角。在本研究中,我們在奈米級厚度的金薄膜上鍍二氧化矽薄膜後,藉由蝕刻製造出微米等級的孔洞陣列,再鋪上由化學發泡法從海拉細胞(Hela cell)取出的含有蛋白質之細胞膜至平台上。其中,細胞脂質膜具有阻隔洞內與洞外物質擴散的功用,也能使通道蛋白質被保持在其原始環境中。蝕刻的孔洞則提供了類似細胞內部的空間,以讓傳輸的物質在洞內進行累積,藉由金薄膜配合雷射所產生的表面電漿共振現象(SPR)和在二氧化矽上方產生的電漿波導共振,可用來同時偵測孔洞內部與外部的物質濃度變化所造成的折射率改變。由於只有特定物質能通過對應之通道蛋白進行傳輸,因此,洞內之濃度變化能夠反映通道蛋白的傳輸行為。這些實驗證明此平台應可用於研究不同藥物對通道蛋白所造成之抑制或促進功效,以及可即時偵測通道蛋白之傳輸動態,在醫藥檢測及研發藥物等廣泛用途具有相當的潛力。
Surface plasmon resonance (SPR) is a powerful label-free and contact-free technique for chemical and biological sensing experiments. However, the traditional use of SPR instruments is for molecular interactions on the surface of metallic film. In order to extend the application of SPR, we integrated the concept of plasmon-waveguide resonance (PWR) and proposed the idea of PWR/SPR combined chip in order to measure the transport behaviors of cell membrane transport proteins. The PWR/SPR combined chip is composed of a silica layer with sub-micron sized pores on a thin gold film. The geometry allows us to use SPR to detect the refractive index change in the pore region, which is correlated to the target species concentration inside the pore, and PWR to simultaneously monitor the change of refractive index at the top silica surface. We deposited the giant plasma membrane vesicles (GPMV) derived from cells onto the PWR/SPR combined chip to construct the lipid membrane with the membrane proteins suspending over the sub-micron sized pores. Consequently, the detection area can be divided into two regions including the space inside the pores and the region above the grating structure. By using COMSOL simulation, we confirmed that this system allows us to simultaneously measure the change of refractive indices in the two regions across the lipid membrane. We experimentally demonstrated how the platform can be used to study how various inhibitors or ligands can influence the glucose transport through the corresponding membrane transport proteins (Glut1, Glut2) in Hela cell plasma membranes.
Acknowlegement i
摘要 iv
Abstract v
Table of Content vi
Figure Captions ix
Table Captions xiv
Chapter 1 Introduction 1
1.1 Cell Membrane Species 3
1.2 Surface Plasmon Resonance (SPR) 4
1.2.1 Angle Scanning Mode 7
1.2.2 Real Time Mode 8
1.3 Plasmon Waveguide Resonance (PWR) 9
1.4 Giant Plasma Membrane Vesicles (GPMV) 10
1.5 Cell Membrane Transport 12
1.6 Glucose Transporter Family 12
1.6.1 Glucose Transporter Family 12
1.6.2 Glucose Transporter 1 (GLUT1) and Glucose Transporter 2 (GLUT2) 13
1.7 Glucose Transport Kinetics 14
Chapter 2 Materials and Method 18
2.1 Materials 18
2.2 Apparatus 19
2.3 Materials of Homemade SPR System 20
2.4 COMSOL Simulation 20
2.5 Fabrication of a PWR / SPR Combined Chip 21
2.6 Standard Test of Chips 23
2.7 Cell Culture and Labeling 24
2.8 GPMV Preparation and Deposition Method 24
2.9 Fluorescence Microscopy and Fluorescence Recovery After Photo-bleaching (FRAP) 25
2.10 Preparation of Solutions 25
2.11 Giant Plasma Membrane Vesicles (GPMVs) Deposition on the Chip 26
2.12 Fabrication of Flow Chamber 26
2.13 Glucose Transport Experiments 27
2.13.1 Find Position with GPMV Membranes Over the Pores 27
2.13.2 Glucose Transport Experiment with Solution Injection Process 27
2.14 Using MATLAB Code to Determine the Resonance Angle 29
Chapter 3 Results and Discussions 30
3.1 PWR/SPR Combined Chip 30
3.1.1 Simulation Results of Different Grating Size 30
3.1.2 Simulation Results of Different Etching Depth 32
3.1.3 The Independent Feature of Two Resonance Peaks 33
3.2 The Examination of Parameters through Different Group of Chips 36
3.3 Optical Microscopy 37
3.4 Sensitivity Test 40
3.4.1 Optimizing Substance Deposition Pparameters 41
3.4.2 Optimizing Annealing Parameters 42
3.4.3 Optimizing Exposure Energy and Development Time 44
3.4.4 Optimizing Etching Time 47
3.5 Fluorescence Microscope Imaging and Fluorescence Recovery after Photobleaching (FRAP) 49
3.6 Angle Scanning Mode 51
3.6.1 Minimizing the Laser Spot Size to Avoid Multiple SPR Resonance Peaks 51
3.6.2 Comparison of Positions with and without Membrane 55
3.6.3 The Variations between Different Detecting Positions and Chip Samples 62
3.7 Real Time Mode 64
3.7.1 Simple Diffusion 64
3.7.2 Transport Kinetics 65
3.8 Filtering and Smoothing the Detected Signal by MATLAB 66
3.9 Proposed Mechanism of Glucose Transport across the GPMV Membrane 67
3.10 Nonlinear Fitting Method 70
Chapter 4 Conclusion 75
Chapter 5 References 77
1.Warburg, O., On respiratory impairment in cancer cells. Science (New York, NY), 1956. 124(3215): p. 269-270.
2.Giacomini, K.M., et al., Membrane transporters in drug development. Nature reviews Drug discovery, 2010. 9(3): p. 215-236.
3.Gonzalez, J.E., et al., Cell-based assays and instrumentation for screening ion-channel targets. Drug discovery today, 1999. 4(9): p. 431-439.
4.Macheda, M.L., S. Rogers, and J.D. Best, Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of cellular physiology, 2005. 202(3): p. 654-662.
5.Borst, P., et al., A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 2000. 92(16): p. 1295-1302.
6.Ritz, M.C., R. Lamb, and M. Kuhar, Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science, 1987. 237(4819): p. 1219-1223.
7.Koob, G.F. and F.E. Bloom, Cellular and molecular mechanisms of drug dependence. Science, 1988. 242(4879): p. 715-723.
8.Kennedy, L.T. and I. Hanbauer, Sodium‐sensitive cocaine binding to rat striatal membrane: Possible relationship to dopamine uptake sites. Journal of neurochemistry, 1983. 41(1): p. 172-178.
9.Zhu, J. and M. Reith, Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2008. 7(5): p. 393-409.
10.Allison, D.B., et al., Antipsychotic-induced weight gain: a comprehensive research synthesis. American journal of Psychiatry, 1999.
11.Dwyer, D.S. and D. Donohoe, Induction of hyperglycemia in mice with atypical antipsychotic drugs that inhibit glucose uptake. Pharmacology Biochemistry and Behavior, 2003. 75(2): p. 255-260.
12.Ardizzone, T.D., et al., Inhibition of glucose transport in PC12 cells by the atypical antipsychotic drugs risperidone and clozapine, and structural analogs of clozapine. Brain research, 2001. 923(1): p. 82-90.
13.Hamill, O.P., et al., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv, 1981. 391(2): p. 85-100.
14.Hansen, J.S., et al., Glucose transport machinery reconstituted in cell models. Chemical Communications, 2015. 51(12): p. 2316-2319.
15.Nimigean, C.M., A radioactive uptake assay to measure ion transport across ion channel–containing liposomes. Nature protocols, 2006. 1(3): p. 1207-1212.
16.Giepmans, B.N., et al., The fluorescent toolbox for assessing protein location and function. science, 2006. 312(5771): p. 217-224.
17.Predki, P.F., Functional protein microarrays in drug discovery. 2007: CRC Press.
18.Kitayama, S., et al., Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proceedings of the National Academy of Sciences, 1992. 89(16): p. 7782-7785.
19.Cheng, M.H., et al., Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine, and cocaine binding. Frontiers in neurology, 2015. 6.
20.Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1): p. 3-15.
21.Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 1983. 4: p. 299-304.
22.Salamon, Z. and G. Tollin, Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophysical journal, 2001. 80(3): p. 1557-1567.
23.Alves, I.D., et al., Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Biophysical journal, 2005. 88(1): p. 198-210.
24.Ng, P.C. and S. Henikoff, SIFT: Predicting amino acid changes that affect protein function. Nucleic acids research, 2003. 31(13): p. 3812-3814.
25.Patching, S.G., Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014. 1838(1): p. 43-55.
26.黄莉雅 and H. Li-Ya, 利用表面電漿共振影像儀探討核酸共軛之蛋白質晶片最佳化研究; Optimization of DNA-Conjugate Protein Chip Studies by Surface Plasmon Resonance Image.
27.Green, R.J., et al., Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials, 2000. 21(18): p. 1823-1835.
28.Zhang, H., et al., Broadband plasmon waveguide resonance spectroscopy for probing biological thin films. Applied spectroscopy, 2009. 63(9): p. 1062-1067.
29.Salamon, Z., H.A. Macleod, and G. Tollin, Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophysical journal, 1997. 73(5): p. 2791-2797.
30.Sezgin, E., et al., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. nature protocols, 2012. 7(6): p. 1042-1051.
31.Gould, G.W. and G.D. Holman, The glucose transporter family: structure, function and tissue-specific expression. Biochemical Journal, 1993. 295(Pt 2): p. 329.
32.Deng, D., et al., Crystal structure of the human glucose transporter GLUT1. Nature, 2014. 510(7503): p. 121-125.
33.Pinkofsky, H.B., D.S. Dwyer, and R.J. Bradley, The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants. Life sciences, 1999. 66(3): p. 271-278.
34.Choi, I.-Y., et al., In vivo measurements of brain glucose transport using the reversible Michaelis–Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. Journal of Cerebral Blood Flow & Metabolism, 2001. 21(6): p. 653-663.
35.Kapoor, K., et al., Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proceedings of the National Academy of Sciences, 2016: p. 201603735.
36.Suzuki, T., et al., Enhanced expression of glucose transporter GLUT3 in tumorigenic HeLa cell hybrids associated with tumor suppressor dysfunction. European journal of biochemistry, 1999. 262(2): p. 534-540.
37.Young, C.D., et al., Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PloS one, 2011. 6(8): p. e23205.
38.Nelson, D.L., A.L. Lehninger, and M.M. Cox, Lehninger principles of biochemistry. 2008: Macmillan.
39.Cras, J., et al., Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors and Bioelectronics, 1999. 14(8): p. 683-688.
40.Baumgart, T., et al., Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(9): p. 3165-3170.
41.Sezgin, E., et al., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature Protocols, 2012. 7(6): p. 1042-1051.
42.Kahn, B.B., Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. Journal of Clinical Investigation, 1992. 89(5): p. 1367.
43.Foster, L.J. and A. Klip, Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells. American Journal of Physiology-Cell Physiology, 2000. 279(4): p. C877-C890.
44.Shennan, D.B. and R.B. Beechey, Mechanisms involved in the uptake of D-glucose into the milk-producing cells of rat mammary tissue. Biochemical and biophysical research communications, 1995. 211(3): p. 986-990.
45.Rodríguez‐Enríquez, S., et al., Kinetics of transport and phosphorylation of glucose in cancer cells. Journal of cellular physiology, 2009. 221(3): p. 552-559.
46.Rabuazzo, A., et al., Inhibition of the high-affinity glucose transporter GLUT 1 affects the sensitivity to glucose in a hamster-derived pancreatic beta cell line (HIT). Diabetologia, 1993. 36(11): p. 1204-1207.
47.Cohen, M., et al., Live imaging of GLUT2 glucose-dependent trafficking and its inhibition in polarized epithelial cysts. Open biology, 2014. 4(7): p. 140091.
48.Mesonero, J., et al., Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem. J, 1995. 312: p. 757-762.
49.Thorens, H.-G.J., Bernard, The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Molecular membrane biology, 2001. 18(4): p. 247-256.
50.Craik, J.D., J.D. Young, and C.I. Cheeseman, GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1998. 274(1): p. R112-R119.
51.Gould, G.W., et al., Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry, 1991. 30(21): p. 5139-5145.
52.Wheeler, T.J. and P. Hinkle, Kinetic properties of the reconstituted glucose transporter from human erythrocytes. Journal of Biological Chemistry, 1981. 256(17): p. 8907-8914.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top