|
1.Warburg, O., On respiratory impairment in cancer cells. Science (New York, NY), 1956. 124(3215): p. 269-270. 2.Giacomini, K.M., et al., Membrane transporters in drug development. Nature reviews Drug discovery, 2010. 9(3): p. 215-236. 3.Gonzalez, J.E., et al., Cell-based assays and instrumentation for screening ion-channel targets. Drug discovery today, 1999. 4(9): p. 431-439. 4.Macheda, M.L., S. Rogers, and J.D. Best, Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of cellular physiology, 2005. 202(3): p. 654-662. 5.Borst, P., et al., A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 2000. 92(16): p. 1295-1302. 6.Ritz, M.C., R. Lamb, and M. Kuhar, Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science, 1987. 237(4819): p. 1219-1223. 7.Koob, G.F. and F.E. Bloom, Cellular and molecular mechanisms of drug dependence. Science, 1988. 242(4879): p. 715-723. 8.Kennedy, L.T. and I. Hanbauer, Sodium‐sensitive cocaine binding to rat striatal membrane: Possible relationship to dopamine uptake sites. Journal of neurochemistry, 1983. 41(1): p. 172-178. 9.Zhu, J. and M. Reith, Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2008. 7(5): p. 393-409. 10.Allison, D.B., et al., Antipsychotic-induced weight gain: a comprehensive research synthesis. American journal of Psychiatry, 1999. 11.Dwyer, D.S. and D. Donohoe, Induction of hyperglycemia in mice with atypical antipsychotic drugs that inhibit glucose uptake. Pharmacology Biochemistry and Behavior, 2003. 75(2): p. 255-260. 12.Ardizzone, T.D., et al., Inhibition of glucose transport in PC12 cells by the atypical antipsychotic drugs risperidone and clozapine, and structural analogs of clozapine. Brain research, 2001. 923(1): p. 82-90. 13.Hamill, O.P., et al., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv, 1981. 391(2): p. 85-100. 14.Hansen, J.S., et al., Glucose transport machinery reconstituted in cell models. Chemical Communications, 2015. 51(12): p. 2316-2319. 15.Nimigean, C.M., A radioactive uptake assay to measure ion transport across ion channel–containing liposomes. Nature protocols, 2006. 1(3): p. 1207-1212. 16.Giepmans, B.N., et al., The fluorescent toolbox for assessing protein location and function. science, 2006. 312(5771): p. 217-224. 17.Predki, P.F., Functional protein microarrays in drug discovery. 2007: CRC Press. 18.Kitayama, S., et al., Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proceedings of the National Academy of Sciences, 1992. 89(16): p. 7782-7785. 19.Cheng, M.H., et al., Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine, and cocaine binding. Frontiers in neurology, 2015. 6. 20.Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1): p. 3-15. 21.Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 1983. 4: p. 299-304. 22.Salamon, Z. and G. Tollin, Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophysical journal, 2001. 80(3): p. 1557-1567. 23.Alves, I.D., et al., Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Biophysical journal, 2005. 88(1): p. 198-210. 24.Ng, P.C. and S. Henikoff, SIFT: Predicting amino acid changes that affect protein function. Nucleic acids research, 2003. 31(13): p. 3812-3814. 25.Patching, S.G., Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014. 1838(1): p. 43-55. 26.黄莉雅 and H. Li-Ya, 利用表面電漿共振影像儀探討核酸共軛之蛋白質晶片最佳化研究; Optimization of DNA-Conjugate Protein Chip Studies by Surface Plasmon Resonance Image. 27.Green, R.J., et al., Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials, 2000. 21(18): p. 1823-1835. 28.Zhang, H., et al., Broadband plasmon waveguide resonance spectroscopy for probing biological thin films. Applied spectroscopy, 2009. 63(9): p. 1062-1067. 29.Salamon, Z., H.A. Macleod, and G. Tollin, Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophysical journal, 1997. 73(5): p. 2791-2797. 30.Sezgin, E., et al., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. nature protocols, 2012. 7(6): p. 1042-1051. 31.Gould, G.W. and G.D. Holman, The glucose transporter family: structure, function and tissue-specific expression. Biochemical Journal, 1993. 295(Pt 2): p. 329. 32.Deng, D., et al., Crystal structure of the human glucose transporter GLUT1. Nature, 2014. 510(7503): p. 121-125. 33.Pinkofsky, H.B., D.S. Dwyer, and R.J. Bradley, The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants. Life sciences, 1999. 66(3): p. 271-278. 34.Choi, I.-Y., et al., In vivo measurements of brain glucose transport using the reversible Michaelis–Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. Journal of Cerebral Blood Flow & Metabolism, 2001. 21(6): p. 653-663. 35.Kapoor, K., et al., Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proceedings of the National Academy of Sciences, 2016: p. 201603735. 36.Suzuki, T., et al., Enhanced expression of glucose transporter GLUT3 in tumorigenic HeLa cell hybrids associated with tumor suppressor dysfunction. European journal of biochemistry, 1999. 262(2): p. 534-540. 37.Young, C.D., et al., Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PloS one, 2011. 6(8): p. e23205. 38.Nelson, D.L., A.L. Lehninger, and M.M. Cox, Lehninger principles of biochemistry. 2008: Macmillan. 39.Cras, J., et al., Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors and Bioelectronics, 1999. 14(8): p. 683-688. 40.Baumgart, T., et al., Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(9): p. 3165-3170. 41.Sezgin, E., et al., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature Protocols, 2012. 7(6): p. 1042-1051. 42.Kahn, B.B., Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. Journal of Clinical Investigation, 1992. 89(5): p. 1367. 43.Foster, L.J. and A. Klip, Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells. American Journal of Physiology-Cell Physiology, 2000. 279(4): p. C877-C890. 44.Shennan, D.B. and R.B. Beechey, Mechanisms involved in the uptake of D-glucose into the milk-producing cells of rat mammary tissue. Biochemical and biophysical research communications, 1995. 211(3): p. 986-990. 45.Rodríguez‐Enríquez, S., et al., Kinetics of transport and phosphorylation of glucose in cancer cells. Journal of cellular physiology, 2009. 221(3): p. 552-559. 46.Rabuazzo, A., et al., Inhibition of the high-affinity glucose transporter GLUT 1 affects the sensitivity to glucose in a hamster-derived pancreatic beta cell line (HIT). Diabetologia, 1993. 36(11): p. 1204-1207. 47.Cohen, M., et al., Live imaging of GLUT2 glucose-dependent trafficking and its inhibition in polarized epithelial cysts. Open biology, 2014. 4(7): p. 140091. 48.Mesonero, J., et al., Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem. J, 1995. 312: p. 757-762. 49.Thorens, H.-G.J., Bernard, The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Molecular membrane biology, 2001. 18(4): p. 247-256. 50.Craik, J.D., J.D. Young, and C.I. Cheeseman, GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1998. 274(1): p. R112-R119. 51.Gould, G.W., et al., Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry, 1991. 30(21): p. 5139-5145. 52.Wheeler, T.J. and P. Hinkle, Kinetic properties of the reconstituted glucose transporter from human erythrocytes. Journal of Biological Chemistry, 1981. 256(17): p. 8907-8914.
|