(18.210.12.229) 您好!臺灣時間:2021/03/01 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張京衡
研究生(外文):Ching-Heng Chang
論文名稱:還原型石墨烯與氧化鋅混合材料作為電子傳遞層對鈣鈦礦太陽能電池之效率提升
論文名稱(外文):Efficiency Enhancement via One-pot Reduced Graphene-Zinc Oxide Hybrid Material of Electron Transporting Layer in Perovskite Solar Cell
指導教授:謝國煌謝國煌引用關係
指導教授(外文):Kuo-Huang Hsieh
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:鈣鈦礦太陽能電池石墨烯氧化鋅靜電作用力
外文關鍵詞:perovskite solar cellgraphenezinc oxideelectrostatic interaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈣鈦礦太陽能電池(Perovskite solar cell)近年來被學者大量地研究,其低汙染、溶液製程且低成本的特性使得研究前仆後繼。另一方面,石墨烯(Graphene)作為一新穎且有著諸多特性的材料也被科學家所重視。
氧化鋅與二氧化鈦常見於鈣鈦礦太陽能電池中電子傳遞層的材料,本研究在探討添加石墨烯與氧化鋅作結合對於鈣鈦礦太陽能電池效率的影響。利用掃描式電子顯微鏡(Scanning electron microscope)、穿透式電子顯微鏡(Transmission electron microscope)、紫外線分光光譜儀(UV spectroscopy)、光電流轉換效率測量儀(Incident photon conversion efficiency)與X-光繞射儀(X-Ray diffraction)測量元件性質並探討效率提升之原因。
使用還原型石墨烯與氧化鋅混合取代傳統電子傳遞層的材料將效率提高到15.02 %。開路電壓(Open-circuit photovoltage)與短路電流密度(Short circuit current density)皆大幅的提升。推測氧化鋅在主動層與石墨烯中藉由靜電作用力(p–π stacking/electrostatic interaction)扮演重要角色使得電子能順暢傳遞進而提升能量轉移效率(Power conversion efficiency)。
Perovskite solar cell is highly studied by scholars in recent years. With the advantage of low pollution, solution process and low cost, perovskite solar cell’s research does not stop. On the other hand, graphene being a novel material with many properties also attracts the attention of scientists.
Zinc oxide (ZnO) and titanium dioxide (TiO2) are commonly used as the materials of electron transporting layer in perovskite solar cell. In this study, we investigate the influence toward efficiency by adding graphene to combine with zinc oxide. Simultaneously, we use scanning electron microscope, transmission electron microscope, UV spectroscopy, incident photon conversion efficiency and X-Ray diffraction to measure physical properties to explore the reason of efficiency improvement.
With the replacement of traditional materials in electron transporting layer by reduced graphene oxide with a zinc oxide nanoparticle (r-GO-ZnO), power conversion efficiency reaches 15.02 %. Open-circuit photovoltage and short circuit current density also increase massively. We speculate zinc oxide playing a crucial role connecting graphene and active layer via p–π stacking/electrostatic interaction and therefore electrons can transport smoothly with the consequence of enhancement of power conversion efficiency.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 4
2-1 太陽能電池的發展歷史 4
2-2 有機太陽能電池發展簡介 6
2-3 有機太陽能電池結構分類 11
2-4 能量轉移機制 14
2-4-1 能量轉移方式 14
2-4-2 工作機制 16
2-5 元件特性參數 18
2-5-1 等效電路(Equivalent circuit) 18
2-5-2 短路電流(Short-circuit photocurrent, Isc) 21
2-5-3 開路電壓(Open-circuit photovoltage, Voc) 22
2-5-4 填充因子(Fill factor, FF) 22
2-5-5 能量轉換效率(Power conversion efficiency, η) 23
2-5-6 外部量子效率(External Quantum Efficiency, EQE) 23
2-6 鈣鈦礦結構 25
2-7 鈣鈦礦太陽能電池發展歷史 28
2-8 石墨烯簡介 31
第三章 實驗部分 32
3-1實驗儀器 32
3-2實驗藥品與溶劑 34
3-3 材料製備 37
第四章 結果與討論 42
4-1 元件性質探討 42
4-1-1 X光繞射儀 43
4-1-2 掃描式電子顯微鏡 45
4-1-3 螢光光譜儀 48
4-1-4 紫外光-可見光分光光譜儀 49
4-1-5 原子力顯微鏡 50
4-2 元件特性參數討論 51
第五章 結論 57
第六章 參考文獻 58
1.Delphi, EIA Monthly Energy Review 2012.
2.I. E. Agency, World Energy Outlook 2012.
3.REN21, Renewables Global Status Report 2012.
4.German advisory council on global change 2003.
5.S-Kei, European PV LCOE range projection 2011.
6.C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, Advanced Materials 2014, 26, 1584-1589.
7.M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science 2012, 338, 643-647.
8.C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, Advanced Materials 2014, 26, 1584-1589.
9.V. D''Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith and A. Petrozza, Nature Communications 2014, 5.
10.G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar and T. C. Sum, Science 2013, 342, 344-347.
11.J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature 2013, 499, 316.
12.L. Huang, C. Li, W. Yuan and G. Shi, Nanoscale 2013, 5(9), 3780-3786.
13.J. Sun, L. Xiao, D. Meng, J. Geng and Y. Huang, Chemical Communications 2013, 49(49), 5538-5540.
14.S. Sternstein and A.-J. Zhu, Macromolecules 2002, 35(19), 7262-7273.
15.R. A. Vaia and J. F. Maguire, Chemistry of Materials 2007, 19(11), 2736-2751.
16.X.-L. Zhang, X. Zhao, Z.-B. Liu, S. Shi, W.-Y. Zhou, J.-G. Tian, Y.-F. Xu and Y.-S. Chen, Journal of Optics 2011, 13(7), 075202.
17.G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao and J. Wang, Journal of Materials Chemistry 2012, 22(3), 1033-1039.
18.J. Zhu, G. Zeng, F. Nie, X. Xu, S. Chen, Q. Han and X. Wang, Nanoscale 2010, 2(6), 988-994.
19.A. Pendashteh, M. F. Mousavi and M. S. Rahmanifar, Electrochimica Acta 2013, 88, 347-357.
20.Tseng and Z.-L., Scientific Reports 2015, 5, 13211.
21.D. Kearns and M. Calvin, Journal of Chemical Physics 1958, 29, 950.
22.C. W. Tang, Applied Physics Letters 1986, 48, 183.
23.N. S. Sariciftci, L. Smilowitz, A. J. Heegel and F. Wudl, Science 1992, 258, 1474.
24.G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 1995, 270, 1789.
25.H. Spanggaard and F. C. Krebs, Solar Energy Materials and Solar Cells 2004, 83, 125-146.
26.A. G. Martin, E. Keith and Yoshihi, Solar cell efficiency tables (Ver.49) 2017, 25, 3-13.
27.H. Zhou, L. Yang and W. You, Macromolecules 2012, 45, 607-632.
28.J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D. M. de Leeuw and R. A. J. Janssen, Journal of the American Chemical Society 2009, 131, 16616.
29.N. S. Lewis, Science 2007, 315, 798-801.
30.G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 1995, 270, 1789-1791.
31.S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nature Photonics 2009, 3, 297-U295.
32.R. C. Coffin, J. Peet, J. Rogers and G. C. Bazan, Nature Chemistry 2009, 1, 657-661.
33.B. Oregan and M. Gratzel, Nature 1991, 353, 737-740.
34.M. Gratzel, Nature 2001, 414, 338-344.
35.A. Hagfeldt and M. Gratzel, Chemical Reviews 1995, 95, 49-68.
36.A. Hagfeldt and M. Gratzel, Accounts of Chemical Research 2000, 33, 269-277.
37.H. Sakamoto, S. Igarashi, K. Niume and M. Nagai, Organic Electronics 2011, 12, 1247-1252.
38.D. Hwang, S. M. Jo, D. Y. Kim, V. Armel, D. R. MacFarlane and S.-Y. Jang, Acs Applied Materials & Interfaces 2011, 3, 1521-1527.
39.J. G. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Applied Physics Letters 2004, 85, 5757-5759.
40.J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Advanced Materials 2005, 17, 66.
41.M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee and S. T. Lee, Applied Physics Letters 2007, 91.
42.C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. Macdiarmid, Physical Review Letters 1977, 39, 1098-1101.
43.S. Kirchmeyer, K. Reuter, Journal of Materials Chemistry 2005, 15, 2077-2088
44.J. Chen and Y. Cao, Accounts of Chemical Research 2009, 42, 1709-1718.
45.Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chemical Reviews 2009, 109, 5868-5923.
46.A. Facchetti, Chemistry of Materials 2010, 23, 733-758.
47.張正華, 李陵嵐, 葉楚平 和 楊平華, 北京:化學工業出版社 2006.
48.T. Kietzke, Advances in OptoElectronics 2007, 2007.
49.B. C. Thompson and J. M. J. Fréchet, Angewandte Chemie International Edition 2008, 47, 58-77.
50.S. Guenes, H. Neugebauer and N. S. Sariciftci, Chemical Reviews 2007, 107, 1324-1338.
51.E. Bundgaard and F. C. Krebs, Solar Energy Materials and Solar Cells 2007, 91, 954-985.
52.D. A. Skoog , D. M. West and F. J. Holler, Saunder College Pub 1988.
53.J. R. Lakowicz, Kluwer Academic 1999.
54.M. Pope and C. E. Swenberg, Oxford University Press: Oxford 1999.
55.J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey and J. L. Brédas, Journal of the American Chemical Society 1998, 120, 1289-1299.
56.葉名倉 和 蕭全佑, 國科會高瞻自然科學教學資料平台 2010.
57.N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 1992, 258, 1474-1476.
58.C. J. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, Springer 2003.
59.M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, Advanced Materials 2006, 18, 789.
60.M. D. Perez, C. Borek, S. R. Forrest and M. E. Thompson, Journal of the American Chemical Society 2009, 131, 9281-9286.
61.K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas and J. V. Manca, Nature Materials 2009, 8, 904-909.
62.L. Yang, H. Zhou and W. You, Journal of Physical Chemistry C 2010, 114, 16793-16800.
63.A. R. Chakhmouradian and R. H. MITCTIELL, The Canadian Mineralogist 1997, 953–969.
64.H. D. Megaw, Nature 1945, 155, 484-485.
65.Z. Cheng and J. Lin, CrystEngComm 2010, 12, 2646.
66.D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess and A. M. Guloy, Science 1995, 267, 1473-1476.
67.A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050.
68.J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale 2011, 3, 4088-4093.
69.H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Scientific Reports 2012, 2, 591.
70.J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature 2013, 499, 316-319.
71.M. Liu, M. B. Johnston and H. J. Snaith, Nature 2013, 501, 395-398.
72.H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science 2014, 345, 542-546.
73.Z. Song, S. C. Watthage, A. B. Phillips and M. J. Heben, Journal of Photonics for Energy 2016.
74.F. Hao, C. C. Stoumpos, Z. Liu, P. H. Chang and M. G. Kanatzidis, Journal of the American Chemical Society 2014, 136, 16411-16419.
75.A. K. Geim, Science 2009, 324, 1530-1534.
76.Y. Q. Sun, Q. O. Wu and G. Q. Shi, Energy and Environmental Science 2011, 4, 1113-1132.
77.P. Simon and Y. Gogotsi, Nature 2008, 7, 845-854.
78.G. M. Scheuermann, L .Rumi, P. Steurer, W. Bannwarth and R. Muelhaupt, Journal of the American Chemical Society 2009, 131, 8262-8270.
79.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Letters 2008, 8, 902-907.
80.D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chemical Society Reiviews 2010, 39, 228-240.
81.D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu and H. M. Cheng, Acs Nano 2009, 3, 1745-1752.
82.M. Liang and L. Zhi, Journal of Materials Chemistry 2009, 19, 5871-5878.
83.Y. Liang, D. Wu, X. Feng and K. Muellen, Advanced Materials 2009, 21, 1679.
84.M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, Energy and Environmental Science 2009, 2, 1231-1257.
85.L. S. Zhang, X. Q. Liang, W. G. Song and Z. Y. Wu, Physical Chemistry Chemical Physics 2010, 12, 12055-12059.
86.M. Zhang, R. R. Parajuli, D. Mastrogiovanni, B. Dai, P. Lo, W. Cheung, R. Brukh, P. L. Chiu, T. Zhou, Z. Liu, E. Garfunkel and H. He, Small 2010, 6, 1100-1107.
87.X. Y. Zhang, H. P. Li, X. L. Cui and Y. Lin, Journal of Materials Chemistry 2010, 20, 2801-2806.
88.R. Dominko, M. Gaberscek, J . Drofenik, M. Bele and J. Jamnik, Electrochimica Acta 2003, 48, 3709-3716.
89.Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H. M. Cheng, Acs Nano 2010, 3187-3194.
90.S. Chen, J. Zhu, X. Wu. Q. Han and X. Wang, Acs Nano 2010, 4, 2822-2830.
91.H. Bai, C. Li and G. Shi, Advanced Materials 2011, 23, 1089-1115
92.A. Abouimrane, O. C. Compton, K. Amine and S. T. Nguyen, Journal of Physical Chemistry C 2010, 114, 12800-12804.
93.C. Li, H. Bai and G. Shi, Chemical Society Reviews 2009, 38, 2397-2409.
94.P. Li, X. Chen, J. B. Zeng, L. Gan and M. Wang, Advanced Materials 2016, 6, 5784-5791.
95.H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, H. J. Yum, J. E. Moser, M. Grätzel, N. G. Park, Scientific Reports 2012, 2, 591-597.
96.I. Elashmawi, N. Hakeem, L. Marei and F. Hanna, Physica B 2010, 405(19), 4163-4169.
97.A. Olad and R. Nosrati, Programs in Organic Coatings 2013, 76, 113-118.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔