(3.237.178.91) 您好!臺灣時間:2021/03/07 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳軒宇
研究生(外文):Hsuan-Yu Wu
論文名稱:利用長晶模型設計顆粒流體化床反應器
論文名稱(外文):Fluidized bed pellet reactor based on particle growth models
指導教授:吳哲夫吳哲夫引用關係
指導教授(外文):Jefffrey D. Ward
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:86
中文關鍵詞:流體化床顆粒反應器反應器設計長晶模型
外文關鍵詞:Fluidized bed pellet reactorCrystallizationReactor designGrowth rate kinetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:54
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
廢水處理在現代社會一直是個相當重要的議題,傳統的方法包括化學沉澱法,其缺點為產生大量含水之泥漿,處理成本居高不下。顆粒流體化床用於長晶程序最大的優點在於產物不含水,且可做進一步的回收應用。另外流體化之顆粒提供了大量表面積,使反應速率及效率提高。蕭立鼎教授於2001年提出了一數學模型,用來模擬流體化床中溶液濃度變化及晶體顆粒大小之分布。在此論文中,我們首先引用蕭教授之文獻來描述顆粒流體化床中的長晶程序,接著我們利用MATLAB建構出一個數學模型,應用在不同的化學系統中去模擬及檢視各個實驗變數對於時間以及位置的變化性。接著我們根據此模型之模擬結果,提出一個可能的流體化床設計程序。我們可以決定一些基本的實驗參數,匯入模型模擬並且觀察在給定的初始條件下是否能夠達到我們所想要的目標。這個數學模型及設計程序提供了我們相當多有用的資訊,讓我們能夠了解長晶程序於顆粒流體化床中的許多面貌,也能夠進一步的應用在實際的工業製程上。
Wastewater treatment has been a significant issue in modern society, typical process including chemical precipitation, which generates large amounts of water-rich sludge that has to be disposed of with increasing costs. The major advantage of using a fluidized pellet bed for crystallization process is the production of small amount of water-free and reusable pellets without extra sludge. Another characteristic of the FBPR is that fluidization of pellets provides large crystallization surface, so that the process operates at high rate and high efficiency. Shiau et al, 2001[1] proposed a mathematical model to simulate concentration and crystal size profile inside a fluidized pellet bed reactor. In this thesis, we first introduce Shiau’s model to describe the crystallization process in a fluidized pellet bed reactor. Then we apply this model with MATLAB to examine several chemical systems to see how the experimental variables change with time and positions. Next, a general reactor design procedure is built according to the simulation results of the model. We can determine some basic parameters and run the model to see if the outlet consequences meet our goal under certain initial conditions. It provides us many useful information in reactor design and gives general features about a FPBR. It’s also applicable to practical industrial processes.
口試委員會審定書 I
Acknowledgement II
摘要 III
Abstract IV
List of figures VII
List of tables XII
1 Introduction
1.1 Overview 1
1.2 Literature survey 2
1.3 Review of crystallization kinetics 5
2 Modeling of a fluidized pellet bed reactor for crystallization process
2.1 Introduction 6
2.2 Modeling 8
3 Simulation
3.1 Introduction 14
3.2 Case study 14
3.3 Simulation results 15
3.4 Variable verification 20
3.5 Conclusions and discussions 29
4 Application to other chemical systems
4.1 Introduction 31
4.2 Calcium fluoride system 31
4.3 Struvite system 48
5 Reactor design procedure
5.1 Introduction 63
5.2 Reactor design procedure 63
5.3 Case study 65
6 Conclusion 75
7 Notations 76
8 Reference 80
[1]Shiau, L.D. and T.S. Lu, Interactive effects of particle mixing and segregation on the performance characteristics of a fluidized bed crystallizer. Industrial & Engineering Chemistry Research, 2001. 40(2): p. 707-713.
[2]Graveland, A., et al., Developments in water softening by means of pellet reactors. Journal (American Water Works Association), 1983. 75(12): p. 619-625.
[3]Harms, W.D. and R.B. Robinson, SOFTENING BY FLUIDIZED-BED CRYSTALLIZERS. Journal of Environmental Engineering-Asce, 1992. 118(4): p. 513-529.
[4]Montastruc, L., et al., A General Framework for Pellet Reactor Modelling: Application to P-Recovery. Chemical Engineering Research and Design, 2003. 81(9): p. 1271-1278.
[5]Montastruc, L., et al., A systemic approach for pellet reactor modeling: Application to water treatment. Aiche Journal, 2004. 50(10): p. 2514-2525.
[6]Montastruc, L., et al., Methodology of study and modelization of dephosphorization of aqueous effluents. Canadian Journal of Chemical Engineering, 2005. 83(4): p. 742-754.
[7]Montastruc, L., et al., Experimental Validation of Calcium Phosphate Precipitation Modeling in a Pellet Reactor. Environmental Technology, 2005. 26(6): p. 683-694.
[8]Tai, C.Y., Crystal growth kinetics of two-step growth process in liquid fluidized-bed crystallizers. Journal of Crystal Growth, 1999. 206(1-2): p. 109-118.
[9]Aldaco, R., A. Garea, and A. Irabien, Fluoride Recovery in a Fluidized Bed:  Crystallization of Calcium Fluoride on Silica Sand. Industrial & Engineering Chemistry Research, 2006. 45(2): p. 796-802.
[10]Aldaco, R., A. Garea, and A. Irabien, Modeling of particle growth: Application to water treatment in a fluidized bed reactor. Chemical Engineering Journal, 2007. 134(1-3): p. 66-71.
[11]Aldaco, R., A. Garea, and A. Irabien, Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor. Water Research, 2007. 41(4): p. 810-818.
[12]Aldaco, R., A. Irabien, and P. Luis, Fluidized bed reactor for fluoride removal. Chemical Engineering Journal, 2005. 107(1-3): p. 113-117.
[13]Garea, A., R. Aldaco, and A. Irabien, Improvement of calcium fluoride crystallization by means of the reduction of fines formation. Chemical Engineering Journal, 2009. 154(1): p. 231-235.
[14]Tai, C.Y., W.C. Chien, and C.Y. Chen, Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer. Aiche Journal, 1999. 45(8): p. 1605-1614.
[15]Tai, C.Y., et al., Interpretation of calcite growth data using the two-step crystal growth model. Chemical Engineering Science, 2006. 61(16): p. 5346-5354.
[16]Al Nasser, W.N. and F.H. Al Salhi, Kinetics determination of calcium carbonate precipitation behavior by inline techniques. Powder Technology, 2015. 270: p. 548-560.
[17]Hu, R.Z., et al., Modelling particle growth of calcium carbonate in a pilot-scale pellet fluidized bed reactor. Water Science and Technology-Water Supply, 2017. 17(3): p. 643-651.
[18]Ali, M.I. and P.A. Schneider, An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description. Chemical Engineering Science, 2008. 63(13): p. 3514-3525.
[19]Iqbal, M., H. Bhuiyan, and D.S. Mavinic, ASSESSING STRUVITE PRECIPITATION IN A PILOT‐SCALE FLUIDIZED BED CRYSTALLIZER. Environmental Technology, 2008. 29(11): p. 1157-1167.
[20]Bhuiyan, M.I.H., D.S. Mavinic, and R.D. Beckie, Nucleation and growth kinetics of struvite in a fluidized bed reactor. Journal of Crystal Growth, 2008. 310(6): p. 1187-1194.
[21]Ye, X., et al., A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 2016. 295: p. 16-26.
[22]Shih, Y.-J., et al., Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 2017. 173: p. 466-473.
[23]Le Corre, K.S., et al., Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 2009. 39(6): p. 433-477.
[24]Bhuiyan, M.I.H., D.S. Mavinic, and F.A. Koch, Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Water Science and Technology, 2008. 57(2): p. 175-181.
[25]Jiang, K., et al., Growth kinetics of calcium fluoride at high supersaturation in a fluidized bed reactor. Environmental Technology, 2014. 35(1): p. 82-88.
[26]Zhou, P., et al., Heavy metal removal from wastewater in fluidized bed reactor. Water Research, 1999. 33(8): p. 1918-1924.
[27]Lee, C.I. and W.F. Yang, Heavy Metal Removal from Aqueous Solution in Sequential Fluidized-Bed Reactors. Environmental Technology, 2005. 26(12): p. 1345-1354.
[28]Veeken, A.H.M., et al., Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Research, 2003. 37(15): p. 3709-3717.
[29]Seckler, M.M., O.S.L. Bruinsma, and G.M. VanRosmalen, Phosphate removal in a fluidized bed .1. Identification of physical processes. Water Research, 1996. 30(7): p. 1585-1588.
[30]Seckler, M.M., O.S.L. Bruinsma, and G.M. VanRosmalen, Calcium phosphate precipitation in a fluidized bed in relation to process conditions: A black box approach. Water Research, 1996. 30(7): p. 1677-1685.
[31]Seckler, M.M., et al., Phosphate removal in a fluidized bed .2. Process optimization. Water Research, 1996. 30(7): p. 1589-1596.
[32]Su, C.-C., et al., Magnesium phosphate crystallization in a fluidized-bed reactor: Effects of pH, Mg:P molar ratio and seed. Separation and Purification Technology, 2014. 125: p. 90-96.
[33]Zhang, C., et al., Recovery of Phosphorus and Potassium from Source-Separated Urine Using a Fluidized Bed Reactor: Optimization Operation and Mechanism Modeling. Industrial & Engineering Chemistry Research, 2017. 56(11): p. 3033-3039.
[34]Zamora, P., et al., Long-term operation of a pilot-scale reactor for phosphorus recovery as struvite from source-separated urine. Journal of Chemical Technology and Biotechnology, 2017. 92(5): p. 1035-1045.
[35]Chen, J.P. and H. Yu, Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2000. 35(6): p. 817-835.
[36]Li, C.-W., Y.-M. Liang, and Y.-M. Chen, Combined ultrafiltration and suspended pellets for lead removal. Separation and Purification Technology, 2005. 45(3): p. 213-219.
[37]de Luna, M.D.G., et al., Removal and recovery of lead in a fluidized-bed reactor by crystallization process. Hydrometallurgy, 2015. 155: p. 6-12.
[38]Huang, C., et al., Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process. Journal of Chemical Technology and Biotechnology, 2007. 82(3): p. 289-294.
[39]Deng, L.Y., et al., Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals. Chemical Engineering Journal, 2016. 287: p. 83-91.
[40]Tai, C.Y., P.C. Chen, and T.M. Tsao, Growth kinetics of CaF2 in a pH-stat fluidized-bed crystallizer. Journal of Crystal Growth, 2006. 290(2): p. 576-584.
[41]Lee, C.-I., W.-F. Yang, and C.-I. Hsieh, Removal of Cu(II) from aqueous solution in a fluidized-bed reactor. Chemosphere, 2004. 57(9): p. 1173-1180.
[42]Boonrattanakij, N., M.C. Lu, and J. Anotai, Iron crystallization in a fluidized-bed Fenton process. Water Research, 2011. 45(10): p. 3255-3262.
[43]Shimizu, Y. and I. Hirasawa, Effect of Seeding on Metal Ion Recovery from Wastewater by Reactive Crystallization of Metal Carbonates. Chemical Engineering & Technology, 2012. 35(9): p. 1588-1592.
[44]Guillard, D. and A.E. Lewis, Nickel carbonate precipitation in a fluidized-bed reactor. Industrial & Engineering Chemistry Research, 2001. 40(23): p. 5564-5569.
[45]Guillard, D. and A.E. Lewis, Optimization of nickel hydroxycarbonate precipitation using a laboratory pellet reactor. Industrial & Engineering Chemistry Research, 2002. 41(13): p. 3110-3114.
[46]Costodes, V.C.T. and A.E. Lewis, Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor: Fines production and column design. Chemical Engineering Science, 2006. 61(5): p. 1377-1385.
[47]van Schagen, K.M., et al., Model-based operational constraints for fluidised bed crystallisation. Water Research, 2008. 42(1-2): p. 327-337.
[48]Nielsen, A.E., Electrolyte crystal growth mechanisms. Journal of Crystal Growth, 1984. 67(2): p. 289-310.
[49]Richardson, J.F. and W.N. Zaki, Sedimentation and fluidisation: Part I. Chemical Engineering Research and Design, 1997. 75: p. S82-S100.
[50]Kunii, D. and Levenspiel, O., Fluidization Engineering. Wiley Press, New York, 1969.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔