( 您好!臺灣時間:2024/04/16 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hung-Pin Hsieh
論文名稱(外文):A Fabrication Approach toward Surface Nanostructures Based on Electrically-Charged Selectivity of Chemical Vapor Deposition
指導教授(外文):Hsien-Yeh Chen
口試委員(外文):Jia-shing YuLing ChaoChi-An Dai
外文關鍵詞:chemical vapor dipositionelectrically-charged selectivity technology of chemical vapor deposition technologyfunctional poly-para-xylylenenanostructured patternsurface modification
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由施加電流的方式,來抑制多種不同功能性聚對二甲苯高分子(functional poly-para-xylene)沉積,且藉由結合奈米微影球技術,使用聚苯乙烯奈米球當作遮罩,製備出蜂窩狀的金屬圖案,搭配電源供應器設備施加0.1 A之電流,與不同之氬氣流速控制,成功於非金屬區域沉積上不同功能性聚對二甲苯高分子,與金屬區域抑制不同功能性聚對二甲苯高分子沉積,形成高度100nm 左右的不同樣貌之圓柱結構圖樣。首先,為了驗證電抑制的效果,我們在沉積的過程中,同時放入為施加電流的基材作為對照組,結束後使用傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometers, FTIR)分析基材上之表面官能基,驗證電抑制的效果。在成功沉積出奈米圓柱結構後,為了驗證製備出的奈米結構高分子,我們使用掃描式電子顯微鏡(scanning electron microscope,SEM)與原子力顯微鏡(atomic force microscope, AFM)觀察其表面型態,另外使用AFM內的分析軟體分析其粗糙度。為了探討表面不同官能基奈米結構高分子對於親疏水性質之改變,使用儀接觸角量測儀(Contact Angle Meter)。在確定表面物理性質後,為了探究其表面官能基的存在性,利用SME上之能量色散X-射線光譜(Energy-dispersive X-ray spectroscopy,EDS)進行特定元素分析。最後,在確定其特定官能基元素時,我們使用Alexa Fluors 350與FITC-RRCC分別對PPX-amine與PPX-TFA進行化學反應,利用超解析多光子光譜顯微鏡進行奈米圖案螢光影像擷取,以代表其官能基之化學反應活性。

In this paper, a variety of functional poly-para-xylylene films were inhibited deposition by applying current. The metal patterns of honeycomb were manufactured with process of nanosphere lithography, which removing the polystyrene by tetrahydrofurane(THF) after using the nanospheres of polystyrene as a mask to deposits the metal. After the device were finished, a power supply device was set as 0.1 A and different argon flow rate in the chemical vapor deposition(CVD) was applied to form the nanostructure pattern of functional poly-para-xylylene with the height of about 100nm. First, in order to verify the effect of the electrically-charged selectivity, we placed the substrate and the control group with no current applied during the deposition process. Then, the surface functional groups of the substrate and the control groups were analyzed by fourier transform infrared spectrometers(FTIR) to verify the effect of electrical deposition inhibition. In order to verify the prepared nanostructured polymers, we observed the surface morphology by scanning electron microscope(SEM) and atomic force microscope(AFM). In addition, the roughness was analyzed by AFM analysis software. The change of hydrophobicity of different functional groups of nanostructures on the surface was investigated with the contact angle meter. For exploring the functional groups presence of its surface pattern, the specific elemental analysis was performed by energy-dispersive X-ray spectroscopy(EDS) on SME. Finally, the specific functional group elements were determined. To verify the chemical reactivity of its functional groups, we used the Alexa Fluors 350 and FITC-RRCC to react with PPX-amine and PPX-TFA, respectively. The ultra-analytical multi-photon spectroscopy was used to capture the nanopattern fluorescence image.

The technology of nano-structure by the bottom-up approaches successfully broke the restrictions of the clarity for mask and curved surface of material. Therefore, it is easy to form a functional nano-structure for any surface material in the future. For the properties of the material, the poly-para-xylene has good light transmittance and great utility to the perovskite solar cells. The use of nanostructures increases the contact area between PbI2 and MAI on titanium dioxide to enhance the conversion efficiency, thereby enhancing the efficiency of solar cell photoelectric conversion. A variety of functional poly-para-xylene can be prepared into a conductive polymer through a series of chemical reactions. It could be a potential candiadate material for flexible device for the solar cells.
致謝 I
摘要 II
Abstract IV
英文縮寫說明 VII
目錄 IX
圖目錄 XI
表目錄 XIV
第一章 介紹 1
1.1前言 1
1.2文獻回顧 3
1.2.1表面改質技術 3
1.2.2表面圖案化與選擇性沉積 7
1.2.3功能性聚對二甲苯高分子 13
第二章 實驗部分 15
2.1實驗設備與藥品 15
2.1.1實驗設備 15
2.1.2藥品 15
2.2奈米圖案之製備 16
2.2.1矽片表面清洗 16
2.2.2聚苯乙烯奈米球單層自組裝 16
2.2.3表面氧電漿蝕刻處理 17
2.2.4蒸鍍金屬與聚苯乙烯奈米球去除 19
2.3 Poly-para-xylylene之選擇性沉積 21
2.3.1電抑制設備搭建 21
2.3.2氣相選擇性沉積功能性聚對二甲苯 22
2.4儀器與測試方法 27
第三章 結果與討論 28
3.1藉由通電的選擇性的沉積 28
3.2由下而上製作氣相沉積高分子薄膜六方堆積表面圖案 30
3.3流速效應藉由CVD電抑制選擇性沉積 31
3.4表面的特性 37
3.5EDS驗證PPX-C,PPX-amine及PPX-TFA元素分布 40
3.6螢光標記驗證PPX-amine及PPX-TFA表面化學反應性 42
第四章 結論與未來展望 45
4.1結論 45
4.2未來展望 47
參考文獻 50
1.Chen, Y. and A. Pepin, Nanofabrication: Conventional and nonconventional methods. Electrophoresis, 2001. 22(2): p. 187-207.
2.Beccalli, A., et al. Demonstration of production readiness of an immersion lithography cell. in SPIE Advanced Lithography. 2008. International Society for Optics and Photonics.
3.Cole, M.A., et al., Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials, 2009. 30(9): p. 1827-1850.
4.Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-1138.
5.Sun, T., et al., Functional biointerface materials inspired from nature. Chemical Society Reviews, 2011. 40(5): p. 2909-2921.
6.Dalby, M.J., et al., Use of nanotopography to study mechanotransduction in fibroblasts–methods and perspectives. European journal of cell biology, 2004. 83(4): p. 159-169.
7.Geiger, B., J.P. Spatz, and A.D. Bershadsky, Environmental sensing through focal adhesions. Nature reviews Molecular cell biology, 2009. 10(1): p. 21-33.
8.Sniadecki, N.J., et al., Magnetic microposts as an approach to apply forces to living cells. Proceedings of the National Academy of Sciences, 2007. 104(37): p. 14553-14558.
9.Nie, Z. and E. Kumacheva, Patterning surfaces with functional polymers. Nature materials, 2008. 7(4): p. 277-290.
10.Hauser, C.A. and S. Zhang, Designer self-assembling peptide nanofiber biological materials. Chemical Society Reviews, 2010. 39(8): p. 2780-2790.
11.Lu, W. and C.M. Lieber, Nanoelectronics from the bottom up. Nature materials, 2007. 6(11): p. 841-850.
12.Hu, S., et al., Surface-directed, graft polymerization within microfluidic channels. Analytical chemistry, 2004. 76(7): p. 1865-1870.
13.Hu, S., et al., Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical chemistry, 2002. 74(16): p. 4117-4123.
14.Loh, F., et al., Near-uv radiation induced surface graft copolymerization of some O3-pretreated conventional polymer films. European polymer journal, 1995. 31(5): p. 481-488.
15.Genzer, J., D.A. Fischer, and K. Efimenko, Fabricating Two‐Dimensional Molecular Gradients via Asymmetric Deformation of Uniformly‐Coated Elastomer Sheets. Advanced Materials, 2003. 15(18): p. 1545-1547.
16.Corelli, J., et al., Ultralow dose effects in ion-beam induced grafting of polymethylmethacrylate (PMMA). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1987. 19: p. 1009-1012.
17.Xiao, D. and M.J. Wirth, Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules, 2002. 35(8): p. 2919-2925.
18.Bergbreiter, D.E., G.F. Xu, and C. Zapata Jr, Heterogeneous grafting chemistry using residual unsaturation as a graft site precursor. Macromolecules, 1994. 27(6): p. 1597-1602.
19.Chen, H. and G. Belfort, Surface modification of poly (ether sulfone) ultrafiltration membranes by low‐temperature plasma‐induced graft polymerization. Journal of Applied Polymer Science, 1999. 72(13): p. 1699-1711.
20.Dreyer, D.R., et al., Perspectives on poly (dopamine). Chemical Science, 2013. 4(10): p. 3796-3802.
21.Sheng, W., et al., Brushing up from “anywhere” under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science, 2015. 6(3): p. 2068-2073.
22.Chen, H.-Y., et al., Colloids with high-definition surface structures. Proceedings of the National Academy of Sciences, 2007. 104(27): p. 11173-11178.
23.贤文, 表面與薄膜處理技術. 2005: 全華科技圖書股份有限公司.
24.Cao, G., Nanostructures and nanomaterials: synthesis, properties and applications. 2004: World Scientific.
25.Sze, S.M., Semiconductor devices: physics and technology. 2008: John Wiley & Sons.
26.Smith, K.H., et al., Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials. Chemical Society Reviews, 2011. 40(9): p. 4563-4577.
27.Yang, S.M., et al., Nanomachining by colloidal lithography. small, 2006. 2(4): p. 458-475.
28.Plettl, A., et al., Non‐Close‐Packed Crystals from Self‐Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography. Advanced Functional Materials, 2009. 19(20): p. 3279-3284.
29.Hsu, C.-M., et al., Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Applied Physics Letters, 2008. 93(13): p. 133109.
30.Huang, Z., et al., Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanes as templates. Langmuir, 1997. 13(24): p. 6480-6484.
31.Chen, H.Y. and J. Lahann, Vapor‐Assisted Micropatterning in Replica Structures: A Solventless Approach towards Topologically and Chemically Designable Surfaces. Advanced Materials, 2007. 19(22): p. 3801-3808.
32.Vaeth, K.M. and K.F. Jensen, Selective Growth of Poly (p‐phenylene vinylene) Prepared by Chemical Vapor Deposition. Advanced Materials, 1999. 11(10): p. 814-820.
33.Vaeth, K.M. and K.F. Jensen, Transition metals for selective chemical vapor deposition of parylene-based polymers. Chemistry of materials, 2000. 12(5): p. 1305-1313.
34.Suh, K.Y., R. Langer, and J. Lahann, Fabrication of elastomeric stamps with polymer-reinforced sidewalls via chemically selective vapor deposition polymerization of poly (p-xylylene). Applied physics letters, 2003. 83(20): p. 4250-4252.
35.Wu, C.-Y., et al., Electrically charged selectivity of poly-para-xylylene deposition. Chemical Communications, 2016. 52(14): p. 3022-3025.
36.Gilch, H. and W. Wheelwright, Polymerization of α‐halogenated p‐xylenes with base. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1966. 4(6): p. 1337-1349.
37.Lahann, J. and R. Langer, Novel poly (p-xylylenes): thin films with tailored chemical and optical properties. Macromolecules, 2002. 35(11): p. 4380-4386.
38.Kramer, P., et al., Polymerization of para‐xylylene derivatives (parylene polymerization). I. Deposition kinetics for parylene N and parylene C. Journal of Polymer Science: Polymer Chemistry Edition, 1984. 22(2): p. 475-491.
39.Wu, P., et al., Deposition of high purity parylene-F using low pressure low temperature chemical vapor deposition. Journal of electronic materials, 1997. 26(8): p. 949-953.
40.Duffy, D.C., et al., Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical chemistry, 1998. 70(23): p. 4974-4984.
41.Lahann, J., H. Höcker, and R. Langer, Synthesis of Amino [2.2] paracyclophanes—beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie International Edition, 2001. 40(4): p. 726-728.
42.Lahann, J., D. Klee, and H. Höcker, Chemical vapour deposition polymerization of substituted [2.2] paracyclophanes. Macromolecular Rapid Communications, 1998. 19(9): p. 441-444.
43.Lahann, J. and R. Langer, Surface‐Initiated Ring‐Opening Polymerization of ϵ‐Caprolactone from a Patterned Poly (hydroxymethyl‐p‐xylylene). Macromolecular rapid communications, 2001. 22(12): p. 968-971.
44.Nandivada, H., H.Y. Chen, and J. Lahann, Vapor‐Based Synthesis of Poly [(4‐formyl‐p‐xylylene)‐co‐(p‐xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular rapid communications, 2005. 26(22): p. 1794-1799.
45.Lahann, J., et al., Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Analytical chemistry, 2003. 75(9): p. 2117-2122.
46.Lahann, J., et al., A new method toward microengineered surfaces based on reactive coating. Angewandte Chemie International Edition, 2001. 40(17): p. 3166-3169.
47.Nandivada, H., et al., Reactive polymer coatings that “click”. Angewandte Chemie International Edition, 2006. 45(20): p. 3360-3363.
48.Chen, H.-Y. and J. Lahann, Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings. Analytical chemistry, 2005. 77(21): p. 6909-6914.
49.Tenhaeff, W.E. and K.K. Gleason, Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Advanced Functional Materials, 2008. 18(7): p. 979-992.
50.Suh, K.Y., R. Langer, and J. Lahann, A novel photodefinable reactive polymer coating and its use for microfabrication of hydrogel elements. Advanced Materials, 2004. 16(16): p. 1401-1405.
51.Qu, Z., et al., A biologically active surface enzyme assembly that attenuates thrombus formation. Advanced functional materials, 2011. 21(24): p. 4736-4743.
52.Elkasabi, Y. and J. Lahann, Vapor‐Based Polymer Gradients. Macromolecular rapid communications, 2009. 30(1): p. 57-63.
53.Hlavacek, V., J. Thiart, and D. Orlicki. Morphology and Film Growth in CVD Reactions. in Journal de Physique IV Colloque. 1995.
54.Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
55.Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
56.Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012. 2: p. 591.
57.Yang, W.S., et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348(6240): p. 1234-1237.
第一頁 上一頁 下一頁 最後一頁 top