|
1.Chen, Y. and A. Pepin, Nanofabrication: Conventional and nonconventional methods. Electrophoresis, 2001. 22(2): p. 187-207. 2.Beccalli, A., et al. Demonstration of production readiness of an immersion lithography cell. in SPIE Advanced Lithography. 2008. International Society for Optics and Photonics. 3.Cole, M.A., et al., Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials, 2009. 30(9): p. 1827-1850. 4.Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-1138. 5.Sun, T., et al., Functional biointerface materials inspired from nature. Chemical Society Reviews, 2011. 40(5): p. 2909-2921. 6.Dalby, M.J., et al., Use of nanotopography to study mechanotransduction in fibroblasts–methods and perspectives. European journal of cell biology, 2004. 83(4): p. 159-169. 7.Geiger, B., J.P. Spatz, and A.D. Bershadsky, Environmental sensing through focal adhesions. Nature reviews Molecular cell biology, 2009. 10(1): p. 21-33. 8.Sniadecki, N.J., et al., Magnetic microposts as an approach to apply forces to living cells. Proceedings of the National Academy of Sciences, 2007. 104(37): p. 14553-14558. 9.Nie, Z. and E. Kumacheva, Patterning surfaces with functional polymers. Nature materials, 2008. 7(4): p. 277-290. 10.Hauser, C.A. and S. Zhang, Designer self-assembling peptide nanofiber biological materials. Chemical Society Reviews, 2010. 39(8): p. 2780-2790. 11.Lu, W. and C.M. Lieber, Nanoelectronics from the bottom up. Nature materials, 2007. 6(11): p. 841-850. 12.Hu, S., et al., Surface-directed, graft polymerization within microfluidic channels. Analytical chemistry, 2004. 76(7): p. 1865-1870. 13.Hu, S., et al., Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical chemistry, 2002. 74(16): p. 4117-4123. 14.Loh, F., et al., Near-uv radiation induced surface graft copolymerization of some O3-pretreated conventional polymer films. European polymer journal, 1995. 31(5): p. 481-488. 15.Genzer, J., D.A. Fischer, and K. Efimenko, Fabricating Two‐Dimensional Molecular Gradients via Asymmetric Deformation of Uniformly‐Coated Elastomer Sheets. Advanced Materials, 2003. 15(18): p. 1545-1547. 16.Corelli, J., et al., Ultralow dose effects in ion-beam induced grafting of polymethylmethacrylate (PMMA). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1987. 19: p. 1009-1012. 17.Xiao, D. and M.J. Wirth, Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules, 2002. 35(8): p. 2919-2925. 18.Bergbreiter, D.E., G.F. Xu, and C. Zapata Jr, Heterogeneous grafting chemistry using residual unsaturation as a graft site precursor. Macromolecules, 1994. 27(6): p. 1597-1602. 19.Chen, H. and G. Belfort, Surface modification of poly (ether sulfone) ultrafiltration membranes by low‐temperature plasma‐induced graft polymerization. Journal of Applied Polymer Science, 1999. 72(13): p. 1699-1711. 20.Dreyer, D.R., et al., Perspectives on poly (dopamine). Chemical Science, 2013. 4(10): p. 3796-3802. 21.Sheng, W., et al., Brushing up from “anywhere” under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science, 2015. 6(3): p. 2068-2073. 22.Chen, H.-Y., et al., Colloids with high-definition surface structures. Proceedings of the National Academy of Sciences, 2007. 104(27): p. 11173-11178. 23.贤文, 表面與薄膜處理技術. 2005: 全華科技圖書股份有限公司. 24.Cao, G., Nanostructures and nanomaterials: synthesis, properties and applications. 2004: World Scientific. 25.Sze, S.M., Semiconductor devices: physics and technology. 2008: John Wiley & Sons. 26.Smith, K.H., et al., Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials. Chemical Society Reviews, 2011. 40(9): p. 4563-4577. 27.Yang, S.M., et al., Nanomachining by colloidal lithography. small, 2006. 2(4): p. 458-475. 28.Plettl, A., et al., Non‐Close‐Packed Crystals from Self‐Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography. Advanced Functional Materials, 2009. 19(20): p. 3279-3284. 29.Hsu, C.-M., et al., Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Applied Physics Letters, 2008. 93(13): p. 133109. 30.Huang, Z., et al., Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanes as templates. Langmuir, 1997. 13(24): p. 6480-6484. 31.Chen, H.Y. and J. Lahann, Vapor‐Assisted Micropatterning in Replica Structures: A Solventless Approach towards Topologically and Chemically Designable Surfaces. Advanced Materials, 2007. 19(22): p. 3801-3808. 32.Vaeth, K.M. and K.F. Jensen, Selective Growth of Poly (p‐phenylene vinylene) Prepared by Chemical Vapor Deposition. Advanced Materials, 1999. 11(10): p. 814-820. 33.Vaeth, K.M. and K.F. Jensen, Transition metals for selective chemical vapor deposition of parylene-based polymers. Chemistry of materials, 2000. 12(5): p. 1305-1313. 34.Suh, K.Y., R. Langer, and J. Lahann, Fabrication of elastomeric stamps with polymer-reinforced sidewalls via chemically selective vapor deposition polymerization of poly (p-xylylene). Applied physics letters, 2003. 83(20): p. 4250-4252. 35.Wu, C.-Y., et al., Electrically charged selectivity of poly-para-xylylene deposition. Chemical Communications, 2016. 52(14): p. 3022-3025. 36.Gilch, H. and W. Wheelwright, Polymerization of α‐halogenated p‐xylenes with base. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1966. 4(6): p. 1337-1349. 37.Lahann, J. and R. Langer, Novel poly (p-xylylenes): thin films with tailored chemical and optical properties. Macromolecules, 2002. 35(11): p. 4380-4386. 38.Kramer, P., et al., Polymerization of para‐xylylene derivatives (parylene polymerization). I. Deposition kinetics for parylene N and parylene C. Journal of Polymer Science: Polymer Chemistry Edition, 1984. 22(2): p. 475-491. 39.Wu, P., et al., Deposition of high purity parylene-F using low pressure low temperature chemical vapor deposition. Journal of electronic materials, 1997. 26(8): p. 949-953. 40.Duffy, D.C., et al., Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical chemistry, 1998. 70(23): p. 4974-4984. 41.Lahann, J., H. Höcker, and R. Langer, Synthesis of Amino [2.2] paracyclophanes—beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie International Edition, 2001. 40(4): p. 726-728. 42.Lahann, J., D. Klee, and H. Höcker, Chemical vapour deposition polymerization of substituted [2.2] paracyclophanes. Macromolecular Rapid Communications, 1998. 19(9): p. 441-444. 43.Lahann, J. and R. Langer, Surface‐Initiated Ring‐Opening Polymerization of ϵ‐Caprolactone from a Patterned Poly (hydroxymethyl‐p‐xylylene). Macromolecular rapid communications, 2001. 22(12): p. 968-971. 44.Nandivada, H., H.Y. Chen, and J. Lahann, Vapor‐Based Synthesis of Poly [(4‐formyl‐p‐xylylene)‐co‐(p‐xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular rapid communications, 2005. 26(22): p. 1794-1799. 45.Lahann, J., et al., Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Analytical chemistry, 2003. 75(9): p. 2117-2122. 46.Lahann, J., et al., A new method toward microengineered surfaces based on reactive coating. Angewandte Chemie International Edition, 2001. 40(17): p. 3166-3169. 47.Nandivada, H., et al., Reactive polymer coatings that “click”. Angewandte Chemie International Edition, 2006. 45(20): p. 3360-3363. 48.Chen, H.-Y. and J. Lahann, Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings. Analytical chemistry, 2005. 77(21): p. 6909-6914. 49.Tenhaeff, W.E. and K.K. Gleason, Initiated and oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Advanced Functional Materials, 2008. 18(7): p. 979-992. 50.Suh, K.Y., R. Langer, and J. Lahann, A novel photodefinable reactive polymer coating and its use for microfabrication of hydrogel elements. Advanced Materials, 2004. 16(16): p. 1401-1405. 51.Qu, Z., et al., A biologically active surface enzyme assembly that attenuates thrombus formation. Advanced functional materials, 2011. 21(24): p. 4736-4743. 52.Elkasabi, Y. and J. Lahann, Vapor‐Based Polymer Gradients. Macromolecular rapid communications, 2009. 30(1): p. 57-63. 53.Hlavacek, V., J. Thiart, and D. Orlicki. Morphology and Film Growth in CVD Reactions. in Journal de Physique IV Colloque. 1995. 54.Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994. 55.Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051. 56.Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012. 2: p. 591. 57.Yang, W.S., et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348(6240): p. 1234-1237.
|