(3.231.29.122) 您好!臺灣時間:2021/02/25 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳玠霖
研究生(外文):Chieh-Lin Chen
論文名稱:以過氧化氫為氧化劑進行苯乙烯環氧化反應研究
論文名稱(外文):Study on Epoxidation of Styrene with Hydrogen Peroxide as an Oxidizer
指導教授:萬本儒
口試委員:李國禎鄭淑芬吳紀聖
口試日期:2015-01-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:苯乙烯環氧化反應氧化苯乙烯TS-1對苯二酚
外文關鍵詞:styrene expoxidationstyrene oxideTS-1Mnhydroquinone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化苯乙烯為一具有高附加價值之化學品,本研究室過去以Mn-beta為觸媒,在-5oC下催化苯乙烯環氧化反應,氧化苯乙烯產率最高達64.6%。然而低溫反應較耗能,故在本研究第一部分以尋找室溫以上觸媒系統作為研究方向。在經過文獻搜尋後,選擇以TS-1觸媒系統於60 oC進行苯乙烯環氧化反應。然而本研究無法再現文獻結果,經檢驗各項可能原因後,將研究心得用於低溫錳觸媒系統,希望能提升氧化苯乙烯產率。
本研究第一部分以TS-1為觸媒於60 oC進行相關反應,結果顯示生成之大部分產物無法以GC分析,而且苯乙烯轉化率過低,致使氧化苯乙烯產率僅為6.6%,無法再現文獻44.9%產率。本研究歸納出該未知產物應是苯乙烯聚合產物,並發現降低苯乙烯濃度能有效減少未知產物,但是會減少氧化苯乙烯之產率。針對苯乙烯轉化率過低問題,發現增加觸媒用量能增加苯乙烯轉化率,氧化苯乙烯產率可提升至23.2%,但是也會增加未知產物;在反應中增加雙氧水用量能提升苯乙烯轉化率,不過會生成更多未知產物,因此氧化苯乙烯產率無法有效增加。聚合之產生可能受TS-1或H2O2之酸性影響,本研究曾嘗試添加鹼性物質尿素於反應系統中,結果顯示無法減少未知產物,但是能降低副產物苯甲醛生成,而使氧化苯乙烯產率稍微增加至26.9%。本研究中也曾嘗試添加聚合反應抑制劑對苯二酚,發現無法減少未知產物,僅能降低副產物苯甲醛之生成,無法提升氧化苯乙烯產率。
第二部分則應用前述經驗嘗試提升低溫錳觸媒系統中氧化苯乙烯產率。過去在-5 oC使用非均相觸媒Mn-beta可獲得64.6%氧化苯乙烯產率,並有16.0%苯甲醛及苯甲酸副產物產率。本研究檢驗在反應溶液中添加尿素或對苯二酚對相關反應之影響,發現添加尿素對反應並無明顯影響,而添加對苯二酚則能提升氧化苯乙烯產率,能使未知產物明顯減少,苯甲醛副產物略為減少。檢驗反應溫度影響可發現,隨溫度降低可使未知產物減少,氧化苯乙烯產率上升,在-15 oC時達最高氧化苯乙烯產率81.8% ( 氧化苯乙烯濃度0.52 mol/L )。本研究曾嘗試降低H2O2/styrene反應比例以利節約生產成本,但是發現比例降低會導致苯乙烯無法完全轉化甚至反應不進行。基於前述氧化苯乙烯產率最高之反應條件,比較非均相觸媒Mn-beta與均相觸媒MnSO4之催化活性,結果發現MnSO4能在較高濃度苯乙烯系統下維持高產率,生產較高濃度之氧化苯乙烯(0.66 mol/L)。
Styrene oxide is a high value-added chemical. In this study, H2O2 was used to oxidize styrene into styrene oxide. The first part of this work focused on styrene epoxidation with temperature higher than the room temperature. TS-1 was used as the catalyst, and H2O2 was used as the oxidizer in the system. Activity test showed that there were large amount of unknown products which could not be analyzed by GC. And styrene conversion was too low, which led to only 6.6% styrene oxide yield, so that 44.9% yield shown in the literature could not be reproduced. The unknown products might be from styrene polymerization. It was found that by decreasing the concentration of styrene, the yield of the unknown products could be reduced. By adding more TS-1, styrene conversion could be increased, accompanied with the rise of the yield of styrene oxide to 23.2%, but the yield of unknown products was also increased. By using more H2O2 in the reaction system, styrene conversion increased, but the yield of styrene oxide did not increase at all, and accompanied with an increase of the yield of unknown products. Adding urea in the reacton system reduced the yield of benzaldehyde, and increased the yield of styrene oxide to 26.9% (0.095 mol/L). Adding hydroquinone reduced the yield of benzaldehyde, but could not increase the yield of styrene oxide.
The second part of this research work focused on reactions under temperature lower than the room temperature. Mn catalysts were used, and H2O2 was the oxidizer. 64.6% yield of styrene oxide was achieved in Hung’s research in the past, accompanied with 16.0% yield of benzaldehyde and benzoic acid of by-products. In order to reduce the by-products in this research, urea or hydroquinone was added in the reaction system. It was found that adding urea make little difference from the results in the past. However, adding hydroquinone could increase the yield of styrene oxide by decreasing the amount of the unknown products. In addition, by lowering the reaction temperatures, the yield of styrene oxide could be increased and that of the unknown products were decreased. At -15oC, the maximum yield of styrene oxide of 81.8% (0.52 mol/L) was obtained. On the other hand, the study of lowering the ratio of H2O2/styrene in reaction system was made, in order to save the production cost, which is important in industry. Nevertheless, it was not successful, because the reaction became much slower.
The catalytic activities of heterogeneous catalyst Mn-beta and homogeneous catalyst MnSO4 were compared in this research. It was found that only MnSO4 could produce high yield of styrene oxide in the solution with higher concentrations of styrene; therefore, styrene oxide with higher concentration (0.66 mol/L) was obtained.
誌謝 - ii -
摘要 - iii -
Abstract - iv -
目錄 - vi -
圖目錄 - ix -
表目錄 - xi -
第一章 緒論 - 1 -
1.1 研究緣起及目的 - 1 -
第二章 文獻回顧與實驗設計 - 2 -
2.1 室溫以上文獻回顧 - 2 -
2.1.1 使用O2做為氧化劑之文獻 - 2 -
2.1.2 使用TBHP做為氧化劑之文獻 - 3 -
2.1.3 使用H2O2做為氧化劑之文獻 - 3 -
2.2 室溫以下文獻回顧 - 5 -
2.2.1 使用iodosobenzene做為氧化劑之文獻 - 5 -
2.2.2 使用H2O2做為氧化劑之文獻 - 6 -
2.3 本研究室過去在低溫下之錳觸媒研究 - 7 -
第三章 實驗與鑑定方法 - 8 -
3.1 實驗藥品與器材 - 8 -
3.1.1 實驗藥品 - 8 -
3.1.2 實驗器材 - 9 -
3.2 觸媒製備程序 - 10 -
3.2.1 TS-1觸媒製備 - 10 -
3.2.1.1 水熱法製備TS-1觸媒 - 10 -
3.2.1.2 熱硝酸處理… - 11 -
3.2.1.3 銫處理程序… - 12 -
3.2.2 錳沸石觸媒製備程序 - 13 -
3.2.2.1 沸石擔體的煆燒前處理 - 13 -
3.2.2.2 離子交換程序 - 13 -
3.3 觸媒鑑定 - 14 -
3.3.1 感應耦合電漿質譜分析 (Inductively Coupled Plasma-Mass Spectrometer, ICP) - 14 -
3.3.2 X光粉末繞射分析 (X-ray Powder Diffraction, XRD) - 14 -
3.3.3 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) - 15 -
3.3.1 紫外光/可見光光譜分析 (UV/VIS Spectrophotometer, UV) - 15 -
3.4 觸媒活性測試 - 16 -
3.4.1 室溫以上( > 25 oC)活性測試反應器 - 16 -
3.4.2 室溫以下( < 25 oC)活性測試反應器 - 17 -
3.4.3 以氣相層析儀(Gas Chromatography, GC)分析各物質濃度 - 17 -
3.4.4 數據處理 - 18 -
第四章 結果與討論 - 19 -
4.1 TS-1催化苯乙烯環氧化反應(室溫以上) - 19 -
4.1.1 TS-1觸媒鑑定 - 19 -
4.1.2 文獻研究的再現性測試 - 22 -
4.1.3 空白實驗 - 22 -
4.1.4 觸媒活性測試結果 - 24 -
4.1.4.1 增加溶劑使用量討論 - 25 -
4.1.4.2 反應溫度探討 - 25 -
4.1.4.3 增加觸媒用量 - 26 -
4.1.4.4 增加氧化劑用量 - 28 -
4.1.5 未知產物探討 - 28 -
4.1.5.1 添加無機鹼性物質或觸媒後處理程序 - 29 -
4.1.5.2 有機與無機鹼性物質對反應影響 - 30 -
4.1.5.3 聚合抑制劑之影響 - 31 -
4.1.5.4 隔絕O2反應測試 - 33 -
4.1.6 總結 - 34 -
4.2 錳觸媒催化苯乙烯環氧化反應(室溫以下) - 35 -
4.2.1 Mn-beta觸媒鑑定 - 36 -
4.2.2 添加尿素於反應系統中討論 - 38 -
4.2.3 添加對苯二酚於反應系統中討論 - 39 -
4.2.3.1 對苯二酚添加量影響 - 39 -
4.2.3.2 顏色變化及UV-Vis鑑定分析 - 41 -
4.2.3.3 Mn-beta與MnSO4作為觸媒之比較 - 43 -
4.2.3.4 降低氧化劑H2O2用量討論 - 45 -
4.2.3.5 增加反應物styrene用量討論 - 47 -
4.2.3.6 觸媒使用量討論 - 51 -
4.2.3.7 反應溫度討論 - 52 -
4.2.4 總結 - 53 -
第五章 結論 - 54 -
第六章 參考文獻 - 56 -
[1]白向向, 关秀华,沈健, "苯乙烯环氧化研究进展," 化工科技, vol. 18, pp. 78-84, 2010.
[2]Q. Tang, Y. Wang, J. Liang, P. Wang, Q. Zhang, and H. Wan, "Co2+-exchanged faujasite zeolites as efficient heterogeneous catalysts for epoxidation of styrene with molecular oxygen," Chemical Communications, pp. 440-441, 2004.
[3]C. V. Rode, U. N. Nehete, and M. K. Dongare, "Alkali promoted selective epoxidation of styrene to styrene oxide using TS-1 catalyst," Catalysis Communications, vol. 4, pp. 365-369, 2003.
[4]C. Liu, J. L. Huang, D. H. Sun, Y. Zhou, X. L. Jing, M. M. Du, et al., "Anatase type extra-framework titanium in TS-1: A vital factor influencing the catalytic activity toward styrene epoxidation," Applied Catalysis A-General, vol. 459, pp. 1-7, 2013.
[5]洪睿文。2014。錳觸媒於低溫下之苯乙烯環氧化反應。碩士論文。台北。台灣大學化學工程研究所。
[6]N. S. Patil, R. Jha, B. S. Uphade, S. K. Bhargava, and V. R. Choudhary, "Epoxidation of styrene by anhydrous t-butyl hydroperoxide over gold supported on Al2O3, Ga2O3, In2O3 and Tl2O3," Applied Catalysis A-General, vol. 275, pp. 87-93, 2004.
[7]V. R. Choudhary and D. K. Dumbre, "Supported nano-gold catalysts for epoxidation of styrene and oxidation of benzyl alcohol to benzaldehyde," Topics in Catalysis, vol. 52, pp. 1677-1687, 2009.
[8]Q. H. Zhang, Y. Wang, S. Itsuki, T. Shishido, and K. Takehira, "Manganese-containing MCM-41 for epoxidation of styrene and stilbene," Journal of Molecular Catalysis A-Chemical, vol. 188, pp. 189-200, 2002.
[9]B. Tang, X. H. Lu, D. Zhou, J. Lei, Z. H. Niu, J. Fan, et al., "Highly efficient epoxidation of styrene and alpha-pinene with air over Co2+-exchanged ZSM-5 and beta zeolites," Catalysis Communications, vol. 21, pp. 68-71, 2012.
[10]W. C. Zhan, Y. L. Guo, Y. Q. Wang, Y. Guo, X. H. Liu, Y. S. Wang, et al., "Study of higher selectivity to styrene oxide in the epoxidation of styrene with hydrogen peroxide over La-doped MCM-48 catalyst," Journal of Physical Chemistry C, vol. 113, pp. 7181-7185, 2009.
[11]S. B. Kumar, S. P. Mirajkar, G. C. G. Pais, P. Kumar, and R. Kumar,"Epoxidation of styrene over a titanium silicate molecular-sieve TS-1 using dilute H2O2 as oxidizing-agent," Journal of Catalysis, vol. 156, pp. 163-166, 1995.
[12]S. C. Laha and R. Kumar, "Selective epoxidation of styrene to styrene oxide over TS-1 using urea-hydrogen peroxide as oxidizing agent," Journal of Catalysis, vol. 204, pp. 64-70, 2001.
[13]V. R. Choudhary, N. S. Patil, and S. K. Bhargava, "Epoxidation of styrene by anhydrous H2O2 over TS-1 and gamma-Al2O3 catalysts: effect of reaction water, poisoning of acid sites and presence of base in the reaction mixture," Catalysis Letters, vol. 89, pp. 55-62, 2003.
[14]J. L. Huang, C. Liu, D. H. Sun, Y. L. Hong, M. M. Du, T. Odoom-Wubah, et al., "Biosynthesized gold nanoparticles supported over TS-1 toward efficient catalyst for epoxidation of styrene," Chemical Engineering Journal, vol. 235, pp. 215-223, 2014.
[15]R. I. Kureshy, N. H. Khan, S. H. R. Abdi, and A. K. Bhatt, "Asymmetric catalytic epoxidation of styrene by dissymmetric Mn(III) and Ru(III) chiral Schiff base complexes synthesis and physicochemical studies," Journal of Molecular Catalysis A-Chemical, vol. 110, pp. 33-40, 1996.
[16]J. P. Renaud, P. Battioni, J. F. Bartoli, and D. Mansuy, "A very efficient system for alkene epoxidation by hydrogen-peroxide - catalysis by manganese-porphyrins in the presence of imidazole," Journal of the Chemical Society-Chemical Communications, pp. 888-889, 1985.
[17]B. S. Lane and K. Burgess, "A cheap, catalytic, scalable, and environmentally benign method for alkene epoxidations," Journal of the American Chemical Society, vol. 123, pp. 2933-2934, 2001.
[18]B. Qi, X. H. Lu, D. Zhou, Q. H. Xia, Z. R. Tang, S. Y. Fang, et al., "Catalytic epoxidation of alkenes with 30% H2O2 over Mn2+-exchanged zeolites," Journal of Molecular Catalysis A-Chemical, vol. 322, pp. 73-79, 2010.
[19]J. E. Jee, O. Pestovsky, and A. Bakac, "Preparation and characterization of manganese(IV) in aqueous acetic acid," Dalton Transactions, vol. 39, pp. 11636-11642, 2010.
[20]S. Rothbart, E. E. Ember, and R. van Eldik, "Mechanistic studies on the oxidative degradation of Orange II by peracetic acid catalyzed by simple manganese(ii) salts. Tuning the lifetime of the catalyst," New Journal of Chemistry, vol. 36, pp. 732-748, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔