|
[1] C. Wibowo, W.C. Chang, K.M. Ng, Design of integrated crystallization systems, Aiche J, 47 (2001) 2474-2492. [2] D. Jagadesh, N. Kubota, M. Yokota, A. Sato, N.S. Tavare, Large and mono-sized product crystals from natural cooling mode batch crystallizer, J Chem Eng Jpn, 29 (1996) 865-873. [3] N. Doki, N. Kubota, A. Sato, M. Yokota, O. Hamada, F. Masumi, Scaleup experiments on seeded batch cooling crystallization of potassium alum, Aiche J, 45 (1999) 2527-2533. [4] N. Doki, N. Kubota, A. Sato, M. Yokota, Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum, Chem Eng J, 81 (2001) 313-316. [5] N. Kubota, N. Doki, M. Yokota, A. Sato, Seeding policy in batch cooling crystallization, Powder Technol, 121 (2001) 31-38. [6] N. Doki, N. Kubota, M. Yokota, A. Chianese, Determination of critical seed loading ratio for the production of crystals of uni-modal size distribution in batch cooling crystallization of potassium alum, J Chem Eng Jpn, 35 (2002) 670-676. [7] N. Doki, N. Kubota, M. Yokota, S. Kimura, S. Sasaki, Production of sodium chloride crystals of uni-modal size distribution by batch dilution crystallization, J Chem Eng Jpn, 35 (2002) 1099-1104. [8] N. Doki, M. Yokota, H. Nakamura, S. Sasaki, N. Kubota, Seeded batch cooling crystallization of adipic acid from ethanol solution, J Chem Eng Jpn, 36 (2003) 1001-1004. [9] N. Doki, M. Yokota, S. Sasaki, N. Kubota, Size distribution of needle-shape crystals of monosodium L-glutamate obtained by seeded batch cooling crystallization, J Chem Eng Jpn, 37 (2004) 436-442. [10] D. Jagadesh, M.R. Chivate, N.S. Tavare, Batch Crystallization of Potassium-Chloride by an Ammoniation Process, Ind Eng Chem Res, 31 (1992) 561-568. [11] S.H. Chung, D.L. Ma, R.D. Braatz, Optimal seeding in batch crystallization, Can J Chem Eng, 77 (1999) 590-596. [12] B.L.M. Lung-Somarriba, M. Moscosa-Santillan, C. Porte, A. Delacroix, Effect of seeded surface area on crystal size distribution in glycine batch cooling crystallization: a seeding methodology, J Cryst Growth, 270 (2004) 624-632. [13] H. Hojjati, S. Rohani, Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer, Chem Eng Process, 44 (2005) 949-957. [14] E. Aamir, Z.K. Nagy, C.D. Rielly, Optimal seed recipe design for crystal size distribution control for batch cooling crystallisation processes, Chem Eng Sci, 65 (2010) 3602-3614. [15] R. Misumi, T. Toyoda, R. Katayama, K. Nishi, M. Kaminoyama, Optimal Seeding Conditions for Semi-Batch Type Evaporative Crystallization of a High Suspension Density Sodium Chloride Slurry in a Draft-Tube Stirred Vessel, J Chem Eng Jpn, 44 (2011) 233-239. [16] H.Y. Wang, J.D. Ward, Seeding and Optimization of Batch Reactive Crystallization, Ind Eng Chem Res, 54 (2015) 9360-9368. [17] J.D. Ward, D.A. Mellichamp, M.F. Doherty, Choosing an operating policy for seeded batch crystallization, Aiche J, 52 (2006) 2046-2054. [18] J.W. Mullin, J. Nyvlt, Programmed Cooling of Batch Crystallizers, Chem Eng Sci, 26 (1971) 369-&. [19] A.G. Jones, S.R.G. Akers, J. Budz, Microcomputer Programming of Temperature in a Batch Cooling Crystallizer, Cryst Res Technol, 21 (1986) 1383-1390. [20] B. Mayrhofer, J. Nyvlt, Programmed Cooling of Batch Crystallizers, Chem Eng Process, 24 (1988) 217-220. [21] A. Vega, F. Diez, J.M. Alvarez, Programmed Cooling Control of a Batch Crystallizer, Comput Chem Eng, 19 (1995) S471-S476. [22] Z.K. Nagy, R.D. Braatz, Robust nonlinear model predictive control of batch processes, Aiche J, 49 (2003) 1776-1786. [23] K.L. Choong, R. Smith, Optimization of batch cooling crystallization, Chem Eng Sci, 59 (2004) 313-327. [24] L.D. Shiau, T.S. Lu, Programmed cooling of a batch crystallizer in the presence of growth rate dispersion, J Chin Inst Chem Eng, 35 (2004) 677-682. [25] Z.K. Nagy, R.D. Braatz, Advances and New Directions in Crystallization Control, Annu Rev Chem Biomol, 3 (2012) 55-75. [26] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, Process Dynamics and Control, John Wiley & Sons, Inc, United States, 2004. [27] J.D. Ward, C.C. Yu, M.F. Doherty, A New Framework and a Simpler Method for the Development of Batch Crystallization Recipes, Aiche J, 57 (2011) 606-617. [28] Y.T. Tseng, J.D. Ward, Critical seed loading from nucleation kinetics, Aiche J, 60 (2014) 1645-1653. [29] H. Alatalo, H. Hatakka, J. Kohonen, S.P. Reinikainen, M. Louhi-kultanen, Process Control and Monitoring of Reactive Crystallization of L-Glutamic Acid, Aiche J, 56 (2010) 2063-2076. [30] A. Borissova, S. Khan, T. Mahmud, K.J. Roberts, J. Andrews, P. Dallin, Z.P. Chen, J. Morris, In Situ Measurement of Solution Concentration during the Batch Cooling Crystallization of L-Glutamic Acid using ATR-FTIR Spectroscopy Coupled with Chemometrics, Cryst Growth Des, 9 (2009) 692-706. [31] K.L. Choong, R. Smith, Optimization of semi-batch reactive crystallization processes, Chem Eng Sci, 59 (2004) 1529-1540. [32] B. Harjo, K.M. Ng, C. Wibowo, Development of amino acid crystallization processes: L-glutamic acid, Ind Eng Chem Res, 46 (2007) 2814-2822. [33] S. Khan, C.Y. Ma, T. Mahmud, R.L.Y. Penchev, K.J. Roberts, J. Morris, L. Ozkan, G. White, B. Grieve, A. Hall, P. Buser, N. Gibson, P. Keller, P. Shuttleworth, C.J. Price, In-Process Monitoring and Control of Supersaturation in Seeded Batch Cooling Crystallisation of L-Glutamic Acid: From Laboratory to Industrial Pilot Plant, Org Process Res Dev, 15 (2011) 540-555. [34] J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia, Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation, Braz J Chem Eng, 25 (2008) 375-387. [35] C.Y. Ma, X.Z. Wang, Model identification of crystal facet growth kinetics in morphological population balance modeling of L-glutamic acid crystallization and experimental validation, Chem Eng Sci, 70 (2012) 22-30. [36] A. Matynia, K. Piotrowski, J. Koralewska, Barium sulphate crystallization kinetics in the process of barium ions precipitation by means of crystalline ammonium sulphate addition, Chem Eng Process, 44 (2005) 485-495. [37] A. Matynia, K. Piotrowski, J. Koralewska, B. Wierzbowska, Barium sulfate crystallization kinetics in the used quenching salts treatment process, Chem Eng Technol, 27 (2004) 559-568. [38] X.W. Ni, A.T. Liao, Effects of cooling rate and solution concentration on solution crystallization of L-glutamic acid in an oscillatory baffled crystallizer, Cryst Growth Des, 8 (2008) 2875-2881. [39] X.W. Ni, A.T. Liao, Effects of mixing, seeding, material of baffles and final temperature on solution crystallization of L-glutamic acid in an oscillatory baffled crystallizer, Chem Eng J, 156 (2010) 226-233. [40] A.A. Oncul, K. Sundmacher, A. Seidel-Morgenstern, D. Thevenin, Numerical and analytical investigation of barium sulphate crystallization, Chem Eng Sci, 61 (2006) 652-664. [41] A.A. Oncul, K. Sundmacher, D. Thevenin, Numerical investigation of the influence of the activity coefficient on barium sulphate crystallization, Chem Eng Sci, 60 (2005) 5395-5405. [42] M.A. vanDrunen, H.G. Merkus, G.M. vanRosmalen, B. Scarlett, Barium sulfate precipitation: Crystallization kinetics and the role of the additive PMA-PVS, Part Part Syst Char, 13 (1996) 313-321. [43] J. Scholl, C. Lindenberg, L. Vicum, J. Brozio, M. Mazzotti, Precipitation of alpha L-glutamic acid: determination of growth kinetics, Faraday Discuss, 136 (2007) 247-264. [44] J. Scholl, L. Vicum, M. Muller, M. Mazzotti, Precipitation of L-glutamic acid: Determination of nucleation kinetics, Chem Eng Technol, 29 (2006) 257-264. [45] D. Sarkar, S. Rohani, A. Jutan, Multiobjective optimization of semibatch reactive crystallization processes, Aiche J, 53 (2007) 1164-1177. [46] H. Wei, J. Garside, Application of CFD modelling to precipitation systems, Chem Eng Res Des, 75 (1997) 219-227. [47] A. Borissova, Y. Jammoal, K.H. Javed, X. Lai, T. Mahmud, R. Penchev, K.J. Roberts, W. Wood, Modeling the precipitation of L-glutamic acid via acidification of monosodium glutantate, Cryst Growth Des, 5 (2005) 845-854. [48] C. Lindenberg, M. Mazzotti, Effect of temperature on the nucleation kinetics of alpha L-glutamic acid, J Cryst Growth, 311 (2009) 1178-1184. [49] L.D. Shiau, H.P. Wang, Simultaneous determination of interfacial energy and growth activation energy from induction time measurements, J Cryst Growth, 442 (2016) 47-51. [50] C.W. Hsu, J.D. Ward, The Best Objective Function for Seeded Batch Crystallization, Aiche J, 59 (2013) 390-398. [51] Q.L. Su, Z.K. Nagy, C.D. Rielly, Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: Modelling, design, and control, Chem Eng Process, 89 (2015) 41-53. [52] M. Fujiwara, Z.K. Nagy, J.W. Chew, R.D. Braatz, First-principles and direct design approaches for the control of pharmaceutical crystallization, J Process Contr, 15 (2005) 493-504. [53] J.B. Rawlings, S.M. Miller, W.R. Witkowski, Model Identification and Control of Solution Crystallization Processes - a Review, Ind Eng Chem Res, 32 (1993) 1275-1296. [54] N. Rodriguez-Hornedo, D. Murphy, Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems, J Pharm Sci, 88 (1999) 651-660. [55] A.D.L. Randolph, M. A., Theory of Particulate Process, Academic Press, New York, 1971. [56] G.R. Jerauld, Y. Vasatis, M.F. Doherty, Simple Conditions for the Appearance of Sustained Oscillations in Continuous Crystallizers, Chem Eng Sci, 38 (1983) 1675-1681. [57] P.K. Pathath, A. Kienle, A numerical bifurcation analysis of nonlinear oscillations in crystallization processes, Chem Eng Sci, 57 (2002) 4391-4399. [58] C. Charcosset, R. Kieffer, D. Mangin, F. Puel, Coupling between Membrane Processes and Crystallization Operations, Ind Eng Chem Res, 49 (2010) 5489-5495. [59] M.C. Cuellar, S.N. Herreilers, A.J.J. Straathof, J.J. Heijnen, L.A.M. van der Wielen, Limits of Operation for the Integration of Water Removal by Membranes and Crystallization of L-Phenylalanine, Ind Eng Chem Res, 48 (2009) 1566-1573. [60] E. Curcio, A. Criscuoli, E. Drioli, Membrane crystallizers, Ind Eng Chem Res, 40 (2001) 2679-2684. [61] E. Curcio, G. Di Profio, E. Drioli, A new membrane-based crystallization technique: tests on lysozyme, J Cryst Growth, 247 (2003) 166-176. [62] E. Curcio, G. Di Profio, E. Drioli, Recovery of fumaric acid by membrane crystallization in the production of L-malic acid, Sep Purif Technol, 33 (2003) 63-73. [63] J. Kuhn, R. Lakerveld, H.J.M. Kramer, J. Grievink, P.J. Jansens, Characterization and Dynamic Optimization of Membrane-Assisted Crystallization of Adipic Acid, Ind Eng Chem Res, 48 (2009) 5360-5369. [64] R. Lakerveld, J. Kuhn, H.J.M. Kramer, P.J. Jansens, J. Grievink, Membrane assisted crystallization using reverse osmosis: Influence of solubility characteristics on experimental application and energy saving potential, Chem Eng Sci, 65 (2010) 2689-2699. [65] S. Bey, A. Criscuoli, A. Figoli, A. Leopold, S. Simone, M. Benamor, E. Drioli, Removal of As(V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant, Desalination, 264 (2010) 193-200. [66] S.F.E. Boerlage, M.D. Kennedy, M.P. Aniye, E.M. Abogrean, D.E.Y. El-Hodali, Z.S. Tarawneh, J.C. Schippers, Modified Fouling Index(ultrafiltration) to compare pretreatment processes of reverse osmosis feedwater, Desalination, 131 (2000) 201-214. [67] S. Bonyadi, T.S. Chung, R. Rajagopalan, A Novel Approach to Fabricate Macrovoid-Free and Highly Permeable PVDF Hollow Fiber Membranes for Membrane Distillation, Aiche J, 55 (2009) 828-833. [68] J. Borden, J. Gilron, D. Hasson, Analysis of Ro Flux Decline Due to Membrane-Surface Blockage, Desalination, 66 (1987) 257-269. [69] M.C. Carnevale, E. Gnisci, J. Hilal, A. Criscuoli, Direct Contact and Vacuum Membrane Distillation application for the olive mill wastewater treatment, Sep Purif Technol, 169 (2016) 121-127. [70] E. Drioli, A. Criscuoli, E. Curcio, Integrated membrane operations for seawater desalination, Desalination, 147 (2002) 77-81. [71] H. Fang, J.F. Gao, H.T. Wang, C.S. Chen, Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process, J Membrane Sci, 403 (2012) 41-46. [72] Z.D. Hendren, J. Brant, M.R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J Membrane Sci, 331 (2009) 1-10. [73] D.Y. Hou, J. Wang, D. Qu, Z.K. Luan, C.W. Zhao, X.J. Ren, Preparation of hydrophobic PVDF hollow fiber membranes for desalination through membrane distillation, Water Sci Technol, 59 (2009) 1219-1226. [74] M. Khayet, P. Godino, J.I. Mengual, Theory and experiments on sweeping gas membrane distillation, J Membrane Sci, 165 (2000) 261-272. [75] S.R. Krajewski, W. Kujawski, M. Bukowska, C. Picard, A. Larbot, Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions, J Membrane Sci, 281 (2006) 253-259. [76] A. Larbot, L. Gazagnes, S. Krajewski, M. Bukowska, W. Kujawski, Water desalination using ceramic membrane distillation, Desalination, 168 (2004) 367-372. [77] M.M. Teoh, T.S. Chung, Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes, Sep Purif Technol, 66 (2009) 229-236. [78] G.Z. Chen, Y.H. Lu, W.B. Krantz, R. Wang, A.G. Fane, Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge, J Membrane Sci, 450 (2014) 1-11. [79] G.Z. Chen, X. Yang, R. Wang, A.G. Fane, Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation, Desalination, 308 (2013) 47-55. [80] Y.B. Yun, R.Y. Ma, W.Z. Zhang, A.G. Fane, J.D. Li, Direct contact membrane distillation mechanism for high concentration NaCl solutions, Desalination, 188 (2006) 251-262. [81] G.Z. Zuo, R. Wang, R. Field, A.G. Fane, Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus, Desalination, 283 (2011) 237-244. [82] A. Criscuoli, E. Drioli, Energetic and exergetic analysis of an integrated membrane desalination system, Desalination, 124 (1999) 243-249. [83] S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Ai-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation, J Membrane Sci, 323 (2008) 85-98. [84] E. Drioli, A. Ali, S. Simone, F. Macedonio, S.A. Al-Jlil, F.S. Al Shabonah, H.S. Al-Romaih, O. Al-Harbi, A. Figoli, A. Criscuoli, Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications, Sep Purif Technol, 115 (2013) 27-38. [85] W.D. Seider, Product and process design principles, John Wiley & Sons Inc., Asia, 2010. [86] http://www.matche.com/equipcost/Crystallizer.html, in. [87] A. Chauvel, G. Fournier, C. Raimbault, Manual of Process Economic Evaluation, TECHNIP, 2003. [88] A. Myerson, Handbook of Industrial Crystallization, 2002. [89] A. Abejon, A. Garea, A. Irabien, Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption, Sep Purif Technol, 144 (2015) 46-53. [90] E. Drioli, E. Curcio, G. Di Profio, F. Macedonio, A. Criscuoli, Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination - Energy, exergy and costs analysis, Chem Eng Res Des, 84 (2006) 209-220. [91] M.K. da Silva, A. Ambrosi, G.M. dos Ramos, I.C. Tessaro, Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment, Sep Purif Technol, 100 (2012) 1-8. [92] J.M. Douglas, Conceptual design of chemical processes, McGrawHill, New York, 1988. [93] M. Gryta, Direct contact membrane distillation with crystallization applied to NaCl solutions, Chem Pap-Chem Zvesti, 56 (2002) 14-19. [94] F. Edwie, T.S. Chung, Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization, J Membrane Sci, 421 (2012) 111-123. [95] L.M. Song, B. Li, K.K. Sirkar, J.L. Gilron, Direct contact membrane distillation-based desalination: Novel membranes, devices, larger-scale studies, and a model, Ind Eng Chem Res, 46 (2007) 2307-2323. [96] K.Y. Wang, T.S. Chung, M. Gryta, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation, Chem Eng Sci, 63 (2008) 2587-2594. [97] H. Julian, S.W. Meng, H.Y. Li, Y. Ye, V. Chen, Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment, J Membrane Sci, 520 (2016) 679-692. [98] E. Curcio, G. Di Profio, E. Drioli, Probabilistic aspects of polymorph selection by heterogeneous nucleation on microporous hydrophobic membrane surfaces, J Cryst Growth, 310 (2008) 5364-5369. [99] G. Di Profio, E. Curcio, E. Drioli, Controlling protein crystallization kinetics in membrane crystallizers: effects on morphology and structure, Desalination, 200 (2006) 598-600. [100] G. Di Profio, S. Tucci, E. Curcio, E. Drioli, Controlling polymorphism with membrane-based crystallizers: Application to form I and II of paracetamol, Chem Mater, 19 (2007) 2386-2388. [101] E. Fountoukidis, Z.B. Maroulis, D. Marinoskouris, Crystallization of Calcium-Sulfate on Reverse-Osmosis Membranes, Desalination, 79 (1990) 47-63. [102] M. Gryta, Concentration of NaCl solution by membrane distillation integrated with crystallization, Separ Sci Technol, 37 (2002) 3535-3558. [103] C. Himawan, R.J.C. Vaessen, H.J.M. Kramer, M.M. Seckler, G.J. Witkamp, Dynamic modeling and simulation of eutectic freeze crystallization, J Cryst Growth, 237 (2002) 2257-2263. [104] Y. Shirai, K. Sakai, K. Nakanishi, R. Matsuno, Analysis of Ice Crystallization in Continuous Crystallizers Based on a Particle Size-Dependent Growth-Rate Model, Chem Eng Sci, 41 (1986) 2241-2246. [105] N.J.J. Huige, in, Eindhoven University of Technology, 1972. [106] M. LouhiKultanen, Concentration and purification by crystallization, Acta Polytech Sc Ch, (1996). [107] V.A. Postnikov, Nalivaik.As, Solubility and Heat of Crystallization of Adipic Acid, Russ J Phys Chem+, 45 (1971) 1356-+. [108] A. Meusser, The solubility of potassium chloride,- bromide,- iodide in water, Z Anorg Chem, 44 (1905) 79-80. [109] R.W. Shearman, A.W.C. Menzies, The solubilities of potassium chloride in deuterium water and in ordinary water from 0 to 180 degrees, J Am Chem Soc, 59 (1937) 185-186. [110] A.A. Sunier, J. Baumbach, Solubility of Potassium-Chloride in Ordinary and Heavy-Water, J Chem Eng Data, 21 (1976) 335-336. [111] R.W. Potter, M.A. Clynne, Solubility of Nacl and Kcl in Aqueous Hcl from 20 to 85-Degrees-C, J Chem Eng Data, 25 (1980) 50-51. [112] A. Konig, V. Vacek, Enthalpy of Crystallization of Potassium-Chloride from Aqueous-Solutions at Temperatures between 0-Degrees-C and 100-Degrees-C, Thermochim Acta, 89 (1985) 243-256. [113] A.R. Mansour, K.J. Takrouri, A new technology for the crystallization of Dead Sea potassium chloride, Chem Eng Commun, 194 (2007) 803-810. [114] J. Kodura, K. Gramlich, R. Karwoth, On the Determination of Kinetic Data for the Continuous Crystallization of Potassium-Chloride, Cryst Res Technol, 20 (1985) 889-897. [115] F. van der Ham, G.J. Witkamp, J. de Graauw, G.M. van Rosmalen, Eutectic freeze crystallization: Application to process streams and waste water purification, Chem Eng Process, 37 (1998) 207-213. [116] F. van der Ham, G.J. Witkamp, J. de Graauw, G.M. van Rosmalen, Eutectic freeze crystallization simultaneous formation and separation of two solid phases, J Cryst Growth, 198 (1999) 744-748. [117] F. van der Ham, M.M. Seckler, G.J. Witkamp, Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer, Chem Eng Process, 43 (2004) 161-167. [118] M.J. Fernandez-Torres, D.G. Randall, R. Melamu, H. von Blottnitz, A comparative life cycle assessment of eutectic freeze crystallisation and evaporative crystallisation for the treatment of saline wastewater, Desalination, 306 (2012) 17-23.
|