跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王馨右
研究生(外文):Hsing-Yu Wang
論文名稱:結晶程序之設計、控制、最適化與經濟分析
論文名稱(外文):Design, control, optimization, and economic analysis of crystallization processes
指導教授:吳哲夫吳哲夫引用關係
指導教授(外文):Jeffrey D. Ward
口試日期:2017-07-11
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:158
中文關鍵詞:結晶批次程序連續式程序最適化經濟分析
外文關鍵詞:crystallizationprocess designprocess controloptimizationeconomic analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討批式結晶程序之設計與最適化、連續式結晶程序之設計與控制、及各類結晶程序之經濟分析。
基於硫酸鋇與谷氨酸之案例,本論文描述批式反應結晶之操作策略與設計概念,並使用晶種與批式操作曲線對不同的目標函數進行最適化。結果顯示使用晶種能有效抑制谷氨酸之成核,而硫酸鋇則較無效果;早期的成長曲線能最小化硫酸鋇之成核,而晚期的成長曲線則能最小化谷氨酸之成核,其中的不同皆因兩案例之長晶速率與成核速率不同所致。
本文亦探討連續式反應結晶控制架構以及穩定操作區間之設計。結果顯示,以流量控制晶體產量,並以液位高度控制晶體粒徑分布而架設以IMC方法調整參數後之PI控制器,此控制架構能有效處理10%擾動變數及設定點之改變。而穩定操作區間之決定亦十分重要,對硫酸鋇而言,持續震盪的區間相對不明顯,但對谷氨酸來說其區間較明顯而需特別注意,穩定操作區間係由長晶速率對過飽和度之敏感度與成核速率對過飽和度之敏感度決定。
此外,本文呈現多孔性疏水膜結晶、逆滲透膜結晶、共熔冷凍結晶程序之設計,並與傳統蒸發結晶程序做比較。基於氯化鉀與己二酸之案例,分為小規模批式程序(產量2×105 kg/yr)及大規模連續式程序(產量2×107 kg/yr),並分別考慮是否有低成本之廢熱源做能量來源之情況。結果顯示,當無低成本熱源時,逆滲透膜結晶程序最為經濟,因其程序無須提供相變化所需潛熱。然若結晶系統在操作濃度下之逆滲透壓超出逆滲透膜可承受範圍,則一個先將進料用逆滲透膜濃縮過後再接續共熔冷凍結晶之程序將是最為經濟。當有低成本熱源可用時,傳統單效蒸發結晶程序則最具優勢。除了逆滲透壓之限制,此經濟分析與結晶產品之物理化學性質較無關聯,其成本幾乎只由質量平衡所算出之除水量有關,故本研究成果對大部分結晶系統皆適用。
This thesis is concerned with the design and optimization of batch crystallization processes, the design and control of continuous crystallization processes, and the economic analysis of several types of crystallization processes.
Conceptual methods are illustrated for the development of operating policies for batch reactive crystallization processes using barium sulfate and L-glutamic acid production process as case studies. The method of optimizing several objective functions by seeding policy and operation trajectory of batch crystallization process is presented. The control structure and stable operation region of continuous reactive crystallization process is determined, which provides good performance under 10% disturbance and set point changes and guidelines for designing operating zone of continuous crystallization processes.
Several types of crystallization have attracted researcher’s attention as alternatives to conventional evaporative crystallization. The processes for hydrophobic membrane, reverse osmosis membrane, and eutectic freeze crystallization are designed and costs are compared with those of conventional multiple-effect vacuum evaporative crystallization processes. Two process scales, a small-scale batch process (2×105 kg/yr) and a large-scale continuous process (2×107 kg/yr), and two chemical products, potassium chloride and adipic acid, are considered. Finally, the situation where free or low-cost waste heat is available is also considered. When waste heat is not available, reverse-osmosis processes are shown to be the least expensive because the pumping costs, while significant, are more than offset by the fact that it is not necessary to provide the enthalpy of vaporization or enthalpy of crystallization of the solvent. If the osmotic pressure of a saturated solution of the solute exceeds the feasible operating pressure of a RO membrane, then the least expensive process alternative is to concentrate the feed up to the osmotic pressure limit using RO membranes and then remove the remaining water by a eutectic freeze crystallization process. When waste heat is available, a single-stage conventional evaporation process is favorable because it can also be powered by the waste heat and does not require the capital cost for the membranes.
With the exception of the osmotic pressure limitation, the economics of the design alternatives do not depend strongly on the physical and chemical properties of the substance to be crystallized. The capital and operating costs depend almost entirely on the amount of water that must be removed, which is determined completely by an overall material balance. Therefore the results developed in this work are likely to be applicable to most crystallization processes. Although porous hydrophobic membranes were never found to be the lowest-cost alternative, they may offer advantages such as reduced equipment size.
口試委員會審定書 i
誌謝 iii
摘要 v
Abstract vii
Table of Contents xi
List of Figures xv
List of Tables xxiii
1 Introduction 1
1.1 Overview 1
1.2 Seeding policy and operation trajectory for batch crystallization 5
1.3 Design and control of continuous crystallization processes 8
1.4 Economic analysis of crystallization processes 11
1.5 Thesis Organization 12
2 Design and optimization of batch reactive crystallization processes 13
2.1 Introduction 13
2.2 Model Development and Optimization 15
2.2.1 Model equations for batch reactive crystallization 15
2.2.2 Case study systems 16
2.2.3 Supersaturation and feeding trajectories 25
2.2.4 Optimization 27
2.2.5 Critical seed loading 28
2.2.6 Short cut method 29
2.3 Results and discussions 31
2.3.1 Seeding policy 31
2.3.2 Determination of optimal trajectories and comparison of trajectories 37
2.4 Conclusions 44
3 Design and control of continuous reactive crystallization processes 45
3.1 Introduction 45
3.2 Model development 47
3.2.1 Model equations for continuous reactive crystallization 47
3.2.2 Case study systems 49
3.2.3 Control strategy 58
3.2.4 Stability analysis 62
3.3 Results and discussions 68
3.3.1 Control of barium sulfate system 68
3.3.2 Control of L-glutamic acid system 78
3.4 Conclusions 87
4 Design and economic analysis of crystallization processes 88
4.1 Introduction 88
4.2 Model development 91
4.2.1 Cost equations for economic analysis 91
4.2.2 Membranes 97
4.2.3 Eutectic freeze crystallization 100
4.2.4 Chemical systems 103
4.3 Results and discussions 122
4.3.1 Economic analysis of adipic acid processes 122
4.3.2 Economic analysis of potassium chloride processes 127
4.3.3 Sensitivity analysis 132
4.4 Conclusions 136
5 Summary 138
6 References 141
[1] C. Wibowo, W.C. Chang, K.M. Ng, Design of integrated crystallization systems, Aiche J, 47 (2001) 2474-2492.
[2] D. Jagadesh, N. Kubota, M. Yokota, A. Sato, N.S. Tavare, Large and mono-sized product crystals from natural cooling mode batch crystallizer, J Chem Eng Jpn, 29 (1996) 865-873.
[3] N. Doki, N. Kubota, A. Sato, M. Yokota, O. Hamada, F. Masumi, Scaleup experiments on seeded batch cooling crystallization of potassium alum, Aiche J, 45 (1999) 2527-2533.
[4] N. Doki, N. Kubota, A. Sato, M. Yokota, Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum, Chem Eng J, 81 (2001) 313-316.
[5] N. Kubota, N. Doki, M. Yokota, A. Sato, Seeding policy in batch cooling crystallization, Powder Technol, 121 (2001) 31-38.
[6] N. Doki, N. Kubota, M. Yokota, A. Chianese, Determination of critical seed loading ratio for the production of crystals of uni-modal size distribution in batch cooling crystallization of potassium alum, J Chem Eng Jpn, 35 (2002) 670-676.
[7] N. Doki, N. Kubota, M. Yokota, S. Kimura, S. Sasaki, Production of sodium chloride crystals of uni-modal size distribution by batch dilution crystallization, J Chem Eng Jpn, 35 (2002) 1099-1104.
[8] N. Doki, M. Yokota, H. Nakamura, S. Sasaki, N. Kubota, Seeded batch cooling crystallization of adipic acid from ethanol solution, J Chem Eng Jpn, 36 (2003) 1001-1004.
[9] N. Doki, M. Yokota, S. Sasaki, N. Kubota, Size distribution of needle-shape crystals of monosodium L-glutamate obtained by seeded batch cooling crystallization, J Chem Eng Jpn, 37 (2004) 436-442.
[10] D. Jagadesh, M.R. Chivate, N.S. Tavare, Batch Crystallization of Potassium-Chloride by an Ammoniation Process, Ind Eng Chem Res, 31 (1992) 561-568.
[11] S.H. Chung, D.L. Ma, R.D. Braatz, Optimal seeding in batch crystallization, Can J Chem Eng, 77 (1999) 590-596.
[12] B.L.M. Lung-Somarriba, M. Moscosa-Santillan, C. Porte, A. Delacroix, Effect of seeded surface area on crystal size distribution in glycine batch cooling crystallization: a seeding methodology, J Cryst Growth, 270 (2004) 624-632.
[13] H. Hojjati, S. Rohani, Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer, Chem Eng Process, 44 (2005) 949-957.
[14] E. Aamir, Z.K. Nagy, C.D. Rielly, Optimal seed recipe design for crystal size distribution control for batch cooling crystallisation processes, Chem Eng Sci, 65 (2010) 3602-3614.
[15] R. Misumi, T. Toyoda, R. Katayama, K. Nishi, M. Kaminoyama, Optimal Seeding Conditions for Semi-Batch Type Evaporative Crystallization of a High Suspension Density Sodium Chloride Slurry in a Draft-Tube Stirred Vessel, J Chem Eng Jpn, 44 (2011) 233-239.
[16] H.Y. Wang, J.D. Ward, Seeding and Optimization of Batch Reactive Crystallization, Ind Eng Chem Res, 54 (2015) 9360-9368.
[17] J.D. Ward, D.A. Mellichamp, M.F. Doherty, Choosing an operating policy for seeded batch crystallization, Aiche J, 52 (2006) 2046-2054.
[18] J.W. Mullin, J. Nyvlt, Programmed Cooling of Batch Crystallizers, Chem Eng Sci, 26 (1971) 369-&.
[19] A.G. Jones, S.R.G. Akers, J. Budz, Microcomputer Programming of Temperature in a Batch Cooling Crystallizer, Cryst Res Technol, 21 (1986) 1383-1390.
[20] B. Mayrhofer, J. Nyvlt, Programmed Cooling of Batch Crystallizers, Chem Eng Process, 24 (1988) 217-220.
[21] A. Vega, F. Diez, J.M. Alvarez, Programmed Cooling Control of a Batch Crystallizer, Comput Chem Eng, 19 (1995) S471-S476.
[22] Z.K. Nagy, R.D. Braatz, Robust nonlinear model predictive control of batch processes, Aiche J, 49 (2003) 1776-1786.
[23] K.L. Choong, R. Smith, Optimization of batch cooling crystallization, Chem Eng Sci, 59 (2004) 313-327.
[24] L.D. Shiau, T.S. Lu, Programmed cooling of a batch crystallizer in the presence of growth rate dispersion, J Chin Inst Chem Eng, 35 (2004) 677-682.
[25] Z.K. Nagy, R.D. Braatz, Advances and New Directions in Crystallization Control, Annu Rev Chem Biomol, 3 (2012) 55-75.
[26] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, Process Dynamics and Control, John Wiley & Sons, Inc, United States, 2004.
[27] J.D. Ward, C.C. Yu, M.F. Doherty, A New Framework and a Simpler Method for the Development of Batch Crystallization Recipes, Aiche J, 57 (2011) 606-617.
[28] Y.T. Tseng, J.D. Ward, Critical seed loading from nucleation kinetics, Aiche J, 60 (2014) 1645-1653.
[29] H. Alatalo, H. Hatakka, J. Kohonen, S.P. Reinikainen, M. Louhi-kultanen, Process Control and Monitoring of Reactive Crystallization of L-Glutamic Acid, Aiche J, 56 (2010) 2063-2076.
[30] A. Borissova, S. Khan, T. Mahmud, K.J. Roberts, J. Andrews, P. Dallin, Z.P. Chen, J. Morris, In Situ Measurement of Solution Concentration during the Batch Cooling Crystallization of L-Glutamic Acid using ATR-FTIR Spectroscopy Coupled with Chemometrics, Cryst Growth Des, 9 (2009) 692-706.
[31] K.L. Choong, R. Smith, Optimization of semi-batch reactive crystallization processes, Chem Eng Sci, 59 (2004) 1529-1540.
[32] B. Harjo, K.M. Ng, C. Wibowo, Development of amino acid crystallization processes: L-glutamic acid, Ind Eng Chem Res, 46 (2007) 2814-2822.
[33] S. Khan, C.Y. Ma, T. Mahmud, R.L.Y. Penchev, K.J. Roberts, J. Morris, L. Ozkan, G. White, B. Grieve, A. Hall, P. Buser, N. Gibson, P. Keller, P. Shuttleworth, C.J. Price, In-Process Monitoring and Control of Supersaturation in Seeded Batch Cooling Crystallisation of L-Glutamic Acid: From Laboratory to Industrial Pilot Plant, Org Process Res Dev, 15 (2011) 540-555.
[34] J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia, Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation, Braz J Chem Eng, 25 (2008) 375-387.
[35] C.Y. Ma, X.Z. Wang, Model identification of crystal facet growth kinetics in morphological population balance modeling of L-glutamic acid crystallization and experimental validation, Chem Eng Sci, 70 (2012) 22-30.
[36] A. Matynia, K. Piotrowski, J. Koralewska, Barium sulphate crystallization kinetics in the process of barium ions precipitation by means of crystalline ammonium sulphate addition, Chem Eng Process, 44 (2005) 485-495.
[37] A. Matynia, K. Piotrowski, J. Koralewska, B. Wierzbowska, Barium sulfate crystallization kinetics in the used quenching salts treatment process, Chem Eng Technol, 27 (2004) 559-568.
[38] X.W. Ni, A.T. Liao, Effects of cooling rate and solution concentration on solution crystallization of L-glutamic acid in an oscillatory baffled crystallizer, Cryst Growth Des, 8 (2008) 2875-2881.
[39] X.W. Ni, A.T. Liao, Effects of mixing, seeding, material of baffles and final temperature on solution crystallization of L-glutamic acid in an oscillatory baffled crystallizer, Chem Eng J, 156 (2010) 226-233.
[40] A.A. Oncul, K. Sundmacher, A. Seidel-Morgenstern, D. Thevenin, Numerical and analytical investigation of barium sulphate crystallization, Chem Eng Sci, 61 (2006) 652-664.
[41] A.A. Oncul, K. Sundmacher, D. Thevenin, Numerical investigation of the influence of the activity coefficient on barium sulphate crystallization, Chem Eng Sci, 60 (2005) 5395-5405.
[42] M.A. vanDrunen, H.G. Merkus, G.M. vanRosmalen, B. Scarlett, Barium sulfate precipitation: Crystallization kinetics and the role of the additive PMA-PVS, Part Part Syst Char, 13 (1996) 313-321.
[43] J. Scholl, C. Lindenberg, L. Vicum, J. Brozio, M. Mazzotti, Precipitation of alpha L-glutamic acid: determination of growth kinetics, Faraday Discuss, 136 (2007) 247-264.
[44] J. Scholl, L. Vicum, M. Muller, M. Mazzotti, Precipitation of L-glutamic acid: Determination of nucleation kinetics, Chem Eng Technol, 29 (2006) 257-264.
[45] D. Sarkar, S. Rohani, A. Jutan, Multiobjective optimization of semibatch reactive crystallization processes, Aiche J, 53 (2007) 1164-1177.
[46] H. Wei, J. Garside, Application of CFD modelling to precipitation systems, Chem Eng Res Des, 75 (1997) 219-227.
[47] A. Borissova, Y. Jammoal, K.H. Javed, X. Lai, T. Mahmud, R. Penchev, K.J. Roberts, W. Wood, Modeling the precipitation of L-glutamic acid via acidification of monosodium glutantate, Cryst Growth Des, 5 (2005) 845-854.
[48] C. Lindenberg, M. Mazzotti, Effect of temperature on the nucleation kinetics of alpha L-glutamic acid, J Cryst Growth, 311 (2009) 1178-1184.
[49] L.D. Shiau, H.P. Wang, Simultaneous determination of interfacial energy and growth activation energy from induction time measurements, J Cryst Growth, 442 (2016) 47-51.
[50] C.W. Hsu, J.D. Ward, The Best Objective Function for Seeded Batch Crystallization, Aiche J, 59 (2013) 390-398.
[51] Q.L. Su, Z.K. Nagy, C.D. Rielly, Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: Modelling, design, and control, Chem Eng Process, 89 (2015) 41-53.
[52] M. Fujiwara, Z.K. Nagy, J.W. Chew, R.D. Braatz, First-principles and direct design approaches for the control of pharmaceutical crystallization, J Process Contr, 15 (2005) 493-504.
[53] J.B. Rawlings, S.M. Miller, W.R. Witkowski, Model Identification and Control of Solution Crystallization Processes - a Review, Ind Eng Chem Res, 32 (1993) 1275-1296.
[54] N. Rodriguez-Hornedo, D. Murphy, Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems, J Pharm Sci, 88 (1999) 651-660.
[55] A.D.L. Randolph, M. A., Theory of Particulate Process, Academic Press, New York, 1971.
[56] G.R. Jerauld, Y. Vasatis, M.F. Doherty, Simple Conditions for the Appearance of Sustained Oscillations in Continuous Crystallizers, Chem Eng Sci, 38 (1983) 1675-1681.
[57] P.K. Pathath, A. Kienle, A numerical bifurcation analysis of nonlinear oscillations in crystallization processes, Chem Eng Sci, 57 (2002) 4391-4399.
[58] C. Charcosset, R. Kieffer, D. Mangin, F. Puel, Coupling between Membrane Processes and Crystallization Operations, Ind Eng Chem Res, 49 (2010) 5489-5495.
[59] M.C. Cuellar, S.N. Herreilers, A.J.J. Straathof, J.J. Heijnen, L.A.M. van der Wielen, Limits of Operation for the Integration of Water Removal by Membranes and Crystallization of L-Phenylalanine, Ind Eng Chem Res, 48 (2009) 1566-1573.
[60] E. Curcio, A. Criscuoli, E. Drioli, Membrane crystallizers, Ind Eng Chem Res, 40 (2001) 2679-2684.
[61] E. Curcio, G. Di Profio, E. Drioli, A new membrane-based crystallization technique: tests on lysozyme, J Cryst Growth, 247 (2003) 166-176.
[62] E. Curcio, G. Di Profio, E. Drioli, Recovery of fumaric acid by membrane crystallization in the production of L-malic acid, Sep Purif Technol, 33 (2003) 63-73.
[63] J. Kuhn, R. Lakerveld, H.J.M. Kramer, J. Grievink, P.J. Jansens, Characterization and Dynamic Optimization of Membrane-Assisted Crystallization of Adipic Acid, Ind Eng Chem Res, 48 (2009) 5360-5369.
[64] R. Lakerveld, J. Kuhn, H.J.M. Kramer, P.J. Jansens, J. Grievink, Membrane assisted crystallization using reverse osmosis: Influence of solubility characteristics on experimental application and energy saving potential, Chem Eng Sci, 65 (2010) 2689-2699.
[65] S. Bey, A. Criscuoli, A. Figoli, A. Leopold, S. Simone, M. Benamor, E. Drioli, Removal of As(V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant, Desalination, 264 (2010) 193-200.
[66] S.F.E. Boerlage, M.D. Kennedy, M.P. Aniye, E.M. Abogrean, D.E.Y. El-Hodali, Z.S. Tarawneh, J.C. Schippers, Modified Fouling Index(ultrafiltration) to compare pretreatment processes of reverse osmosis feedwater, Desalination, 131 (2000) 201-214.
[67] S. Bonyadi, T.S. Chung, R. Rajagopalan, A Novel Approach to Fabricate Macrovoid-Free and Highly Permeable PVDF Hollow Fiber Membranes for Membrane Distillation, Aiche J, 55 (2009) 828-833.
[68] J. Borden, J. Gilron, D. Hasson, Analysis of Ro Flux Decline Due to Membrane-Surface Blockage, Desalination, 66 (1987) 257-269.
[69] M.C. Carnevale, E. Gnisci, J. Hilal, A. Criscuoli, Direct Contact and Vacuum Membrane Distillation application for the olive mill wastewater treatment, Sep Purif Technol, 169 (2016) 121-127.
[70] E. Drioli, A. Criscuoli, E. Curcio, Integrated membrane operations for seawater desalination, Desalination, 147 (2002) 77-81.
[71] H. Fang, J.F. Gao, H.T. Wang, C.S. Chen, Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process, J Membrane Sci, 403 (2012) 41-46.
[72] Z.D. Hendren, J. Brant, M.R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J Membrane Sci, 331 (2009) 1-10.
[73] D.Y. Hou, J. Wang, D. Qu, Z.K. Luan, C.W. Zhao, X.J. Ren, Preparation of hydrophobic PVDF hollow fiber membranes for desalination through membrane distillation, Water Sci Technol, 59 (2009) 1219-1226.
[74] M. Khayet, P. Godino, J.I. Mengual, Theory and experiments on sweeping gas membrane distillation, J Membrane Sci, 165 (2000) 261-272.
[75] S.R. Krajewski, W. Kujawski, M. Bukowska, C. Picard, A. Larbot, Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions, J Membrane Sci, 281 (2006) 253-259.
[76] A. Larbot, L. Gazagnes, S. Krajewski, M. Bukowska, W. Kujawski, Water desalination using ceramic membrane distillation, Desalination, 168 (2004) 367-372.
[77] M.M. Teoh, T.S. Chung, Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes, Sep Purif Technol, 66 (2009) 229-236.
[78] G.Z. Chen, Y.H. Lu, W.B. Krantz, R. Wang, A.G. Fane, Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge, J Membrane Sci, 450 (2014) 1-11.
[79] G.Z. Chen, X. Yang, R. Wang, A.G. Fane, Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation, Desalination, 308 (2013) 47-55.
[80] Y.B. Yun, R.Y. Ma, W.Z. Zhang, A.G. Fane, J.D. Li, Direct contact membrane distillation mechanism for high concentration NaCl solutions, Desalination, 188 (2006) 251-262.
[81] G.Z. Zuo, R. Wang, R. Field, A.G. Fane, Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus, Desalination, 283 (2011) 237-244.
[82] A. Criscuoli, E. Drioli, Energetic and exergetic analysis of an integrated membrane desalination system, Desalination, 124 (1999) 243-249.
[83] S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Ai-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation, J Membrane Sci, 323 (2008) 85-98.
[84] E. Drioli, A. Ali, S. Simone, F. Macedonio, S.A. Al-Jlil, F.S. Al Shabonah, H.S. Al-Romaih, O. Al-Harbi, A. Figoli, A. Criscuoli, Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications, Sep Purif Technol, 115 (2013) 27-38.
[85] W.D. Seider, Product and process design principles, John Wiley & Sons Inc., Asia, 2010.
[86] http://www.matche.com/equipcost/Crystallizer.html, in.
[87] A. Chauvel, G. Fournier, C. Raimbault, Manual of Process Economic Evaluation, TECHNIP, 2003.
[88] A. Myerson, Handbook of Industrial Crystallization, 2002.
[89] A. Abejon, A. Garea, A. Irabien, Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption, Sep Purif Technol, 144 (2015) 46-53.
[90] E. Drioli, E. Curcio, G. Di Profio, F. Macedonio, A. Criscuoli, Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination - Energy, exergy and costs analysis, Chem Eng Res Des, 84 (2006) 209-220.
[91] M.K. da Silva, A. Ambrosi, G.M. dos Ramos, I.C. Tessaro, Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment, Sep Purif Technol, 100 (2012) 1-8.
[92] J.M. Douglas, Conceptual design of chemical processes, McGrawHill, New York, 1988.
[93] M. Gryta, Direct contact membrane distillation with crystallization applied to NaCl solutions, Chem Pap-Chem Zvesti, 56 (2002) 14-19.
[94] F. Edwie, T.S. Chung, Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization, J Membrane Sci, 421 (2012) 111-123.
[95] L.M. Song, B. Li, K.K. Sirkar, J.L. Gilron, Direct contact membrane distillation-based desalination: Novel membranes, devices, larger-scale studies, and a model, Ind Eng Chem Res, 46 (2007) 2307-2323.
[96] K.Y. Wang, T.S. Chung, M. Gryta, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation, Chem Eng Sci, 63 (2008) 2587-2594.
[97] H. Julian, S.W. Meng, H.Y. Li, Y. Ye, V. Chen, Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment, J Membrane Sci, 520 (2016) 679-692.
[98] E. Curcio, G. Di Profio, E. Drioli, Probabilistic aspects of polymorph selection by heterogeneous nucleation on microporous hydrophobic membrane surfaces, J Cryst Growth, 310 (2008) 5364-5369.
[99] G. Di Profio, E. Curcio, E. Drioli, Controlling protein crystallization kinetics in membrane crystallizers: effects on morphology and structure, Desalination, 200 (2006) 598-600.
[100] G. Di Profio, S. Tucci, E. Curcio, E. Drioli, Controlling polymorphism with membrane-based crystallizers: Application to form I and II of paracetamol, Chem Mater, 19 (2007) 2386-2388.
[101] E. Fountoukidis, Z.B. Maroulis, D. Marinoskouris, Crystallization of Calcium-Sulfate on Reverse-Osmosis Membranes, Desalination, 79 (1990) 47-63.
[102] M. Gryta, Concentration of NaCl solution by membrane distillation integrated with crystallization, Separ Sci Technol, 37 (2002) 3535-3558.
[103] C. Himawan, R.J.C. Vaessen, H.J.M. Kramer, M.M. Seckler, G.J. Witkamp, Dynamic modeling and simulation of eutectic freeze crystallization, J Cryst Growth, 237 (2002) 2257-2263.
[104] Y. Shirai, K. Sakai, K. Nakanishi, R. Matsuno, Analysis of Ice Crystallization in Continuous Crystallizers Based on a Particle Size-Dependent Growth-Rate Model, Chem Eng Sci, 41 (1986) 2241-2246.
[105] N.J.J. Huige, in, Eindhoven University of Technology, 1972.
[106] M. LouhiKultanen, Concentration and purification by crystallization, Acta Polytech Sc Ch, (1996).
[107] V.A. Postnikov, Nalivaik.As, Solubility and Heat of Crystallization of Adipic Acid, Russ J Phys Chem+, 45 (1971) 1356-+.
[108] A. Meusser, The solubility of potassium chloride,- bromide,- iodide in water, Z Anorg Chem, 44 (1905) 79-80.
[109] R.W. Shearman, A.W.C. Menzies, The solubilities of potassium chloride in deuterium water and in ordinary water from 0 to 180 degrees, J Am Chem Soc, 59 (1937) 185-186.
[110] A.A. Sunier, J. Baumbach, Solubility of Potassium-Chloride in Ordinary and Heavy-Water, J Chem Eng Data, 21 (1976) 335-336.
[111] R.W. Potter, M.A. Clynne, Solubility of Nacl and Kcl in Aqueous Hcl from 20 to 85-Degrees-C, J Chem Eng Data, 25 (1980) 50-51.
[112] A. Konig, V. Vacek, Enthalpy of Crystallization of Potassium-Chloride from Aqueous-Solutions at Temperatures between 0-Degrees-C and 100-Degrees-C, Thermochim Acta, 89 (1985) 243-256.
[113] A.R. Mansour, K.J. Takrouri, A new technology for the crystallization of Dead Sea potassium chloride, Chem Eng Commun, 194 (2007) 803-810.
[114] J. Kodura, K. Gramlich, R. Karwoth, On the Determination of Kinetic Data for the Continuous Crystallization of Potassium-Chloride, Cryst Res Technol, 20 (1985) 889-897.
[115] F. van der Ham, G.J. Witkamp, J. de Graauw, G.M. van Rosmalen, Eutectic freeze crystallization: Application to process streams and waste water purification, Chem Eng Process, 37 (1998) 207-213.
[116] F. van der Ham, G.J. Witkamp, J. de Graauw, G.M. van Rosmalen, Eutectic freeze crystallization simultaneous formation and separation of two solid phases, J Cryst Growth, 198 (1999) 744-748.
[117] F. van der Ham, M.M. Seckler, G.J. Witkamp, Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer, Chem Eng Process, 43 (2004) 161-167.
[118] M.J. Fernandez-Torres, D.G. Randall, R. Melamu, H. von Blottnitz, A comparative life cycle assessment of eutectic freeze crystallisation and evaporative crystallisation for the treatment of saline wastewater, Desalination, 306 (2012) 17-23.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊