|
[1] Y. Liu, X.T. Xu, M. Wang, T. Lu, Z. Sun, L.K. Pan, Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization, Chemical Communications, 51 (2015) 12020-12023. [2] T. Humplik, J. Lee, S.C. O''Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanostructured materials for water desalination, Nanotechnology, 22 (2011). [3] R. Semiat, Energy issues in desalination processes, Environmental Science & Technology, 42 (2008) 8193-8201. [4] Y.H. Liu, H.C. Hsi, K.C. Li, C.H. Hou, Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization, Acs Sustainable Chemistry & Engineering, 4 (2016) 4762-4770. [5] Z. Wang, T.T. Yan, J.H. Fang, L.Y. Shi, D.S. Zhang, Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors, J. Mater. Chem. A, 4 (2016) 10858-10868. [6] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, 58 (2013) 1388-1442. [7] H.J. Pan, J.M. Yang, S.P. Wang, Z.B. Xiong, W.S. Cai, J.Y. Liu, Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization, J. Mater. Chem. A, 3 (2015) 13827-13834. [8] J.Y. Liu, S.P. Wang, J.M. Yang, J.J. Liao, M. Lu, H.J. Pan, L. An, ZnCl2 activated electrospun carbon nanofiber for capacitive desalination, Desalination, 344 (2014) 446-453. [9] R. Niu, H.B. Li, Y.L. Ma, L.J. He, J. Li, An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid, Electrochim. Acta, 176 (2015) 755-762. [10] X. Gao, A. Omosebi, J. Landon, K.L. Liu, Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes, Environmental Science & Technology, 49 (2015) 10920-10926. [11] X. Gao, A. Omosebi, J. Landon, K.L. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior, Energy & Environmental Science, 8 (2015) 897-909. [12] L.M. Chao, Z.Y. Liu, G.X. Zhang, X.N. Song, X.D. Lei, M. Noyong, U. Simon, Z. Chang, X.M. Sun, Enhancement of capacitive deionization capacity of hierarchical porous carbon, J. Mater. Chem. A, 3 (2015) 12730-12737. [13] X. Duan, W. Liu, L. Chang, Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization, Journal of the Taiwan Institute of Chemical Engineers, 62 (2016) 132-139. [14] M.C. Zafra, P. Lavela, G. Rasines, C. Macias, J.L. Tirado, C.O. Ania, A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water, Electrochim. Acta, 135 (2014) 208-216. [15] L.C. Han, K.G. Karthikeyan, M.A. Anderson, K.B. Gregory, Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization, J. Colloid Interface Sci., 430 (2014) 93-99. [16] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, Journal of the American Chemical Society, 130 (2008) 5390-5391. [17] N.L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals, Chemical Communications, 49 (2013) 2521-2523. [18] N.L. Torad, Y.Q. Li, S. Ishihara, K. Ariga, Y. Kamachi, H.Y. Lian, H. Hamoudi, Y. Sakka, W. Chaikittisilp, K.C.W. Wu, Y. Yamauchi, MOF-derived nanoporous carbon as intracellular drug delivery carriers, Chemistry Letters, 43 (2014) 717-719. [19] W. Chaikittisilp, M. Hu, H.J. Wang, H.S. Huang, T. Fujita, K.C.W. Wu, L.C. Chen, Y. Yamauchi, K. Ariga, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chemical Communications, 48 (2012) 7259-7261. [20] A.J. Amali, J.K. Sun, Q. Xu, From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage, Chemical Communications, 50 (2014) 1519-1522. [21] N.L. Torad, R.R. Salunkhe, Y.Q. Li, H. Hamoudi, M. Imura, Y. Sakka, C.C. Hu, Y. Yamauchi, Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67, Chemistry-a European Journal, 20 (2014) 7895-7900. [22] L.J. Zhang, Z.X. Su, F.L. Jiang, L.L. Yang, J.J. Qian, Y.F. Zhou, W.M. Li, M.C. Hong, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions, Nanoscale, 6 (2014) 6590-6602. [23] X.T. Xu, M. Wang, Y. Liu, T. Lu, L.K. Pan, Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization, J. Mater. Chem. A, 4 (2016) 5467-5473. [24] http://www.un.org/News/Press/docs/2010/ga10967.doc.htm. [25] M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochim. Acta, 55 (2010) 3845-3856. [26] V.A. Shaposhnik, K. Kesore, An early history of electrodialysis with permselective membranes, Journal of Membrane Science, 136 (1997) 35-39. [27] H. Wang, L.Y. Shi, T.T. Yan, J.P. Zhang, Q.D. Zhong, D.S. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, J. Mater. Chem. A, 2 (2014) 4739-4750. [28] S.-Y. Huang, Hierarchical ordered porous carbons with macro/mesopores and micropores as high performance electrodes in capacitive deionization, M.S. thesis, National Taiwan University, Taiwan (2015). [29] C.J. Gabelich, T.D. Tran, I.H. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environmental Science & Technology, 36 (2002) 3010-3019. [30] S.I. Jeon, H.R. Park, J.G. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy & Environmental Science, 6 (2013) 1471-1475. [31] J.B. Lee, K.K. Park, H.M. Eum, C.W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196 (2006) 125-134. [32] S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Research, 44 (2010) 2267-2275. [33] P.M. Biesheuvel, Y.Q. Fu, M.Z. Bazant, Diffuse charge and Faradaic reactions in porous electrodes, Physical Review E, 83 (2011). [34] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Applied Materials & Interfaces, 4 (2012) 1194-1199. [35] R. Zhao, P.M. Biesheuvel, A. Van Der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy & Environmental Science, 5 (2012) 9520-9527. [36] X. Gao, A. Omosebi, J. Landon, K.L. Liu, Enhancement of charge efficiency for a capacitive deionization cell using carbon xerogel with modified potential of zero charge, Electrochemistry Communications, 39 (2014) 22-25. [37] S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J.S. Atchison, K.J. Keesman, S. Kaskel, P.M. Biesheuvel, V. Presser, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy & Environmental Science, 6 (2013) 3700-3712. [38] O.N. Demirer, R.M. Naylor, C.A.R. Perez, E. Wilkes, C. Hidrovo, Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water, Desalination, 314 (2013) 130-138. [39] P. Dlugolecki, A. Van Der Wal, Energy recovery in membrane capacitive deionization, Environmental Science & Technology, 47 (2013) 4904-4910. [40] M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy & Environmental Science, 8 (2015) 2296-2319. [41] R. Zhao, S. Porada, P.M. Biesheuvel, A. Van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 330 (2013) 35-41. [42] F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Advanced Materials, 26 (2014) 2219-2251. [43] J.W. Blair, G.W. Murphy, Electrochemical demineralization of water with porous electrodes of large surface area, in, University of Oklahoma, 1960. [44] B.B. Arnold, G.W. Murphy, Studies on electrochemistry of carbon and chemically modified carbon surfaces, Journal of Physical Chemistry, 65 (1961) 135. [45] G.W. Murphy, D.D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12 (1967) 1655. [46] G.W. Murphy, Activated carbon used as electrodes in electrochemical demineralization of saline water, (1969). [47] S. Evans, W. Hamilton, The mechanism of demineralization at carbon electrodes, Journal of the Electrochemical Society, 113 (1966) 1314-1319. [48] S. Evans, M.A. Accomazzo, J.E. Accomazzo, Electrochemically controlled ion exchange.1. mechanism, Journal of the Electrochemical Society, 116 (1969) 307-+. [49] G.W. Reid, A. Stevens, J. Abichandani, F. Townsend, M. Al-Awady, Field operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water, (1968). [50] A.M. Johnson, W. Venolia, The electrosorb process for desalting water, (1970). [51] A.M. Johnson, J. Newman, Desalting by means of porous carbon electrodes, Journal of the Electrochemical Society, 118 (1971) 510. [52] Y. Oren, A. Soffer, Electrochemical parametric pumping, Journal of the Electrochemical Society, 125 (1978) 869-875. [53] A. Soffer, M. Folman, The electrical double layer of high surface porous carbon electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 38 (1972) 25-43. [54] Y. Oren, A. Soffer, Water desalting by means of electrochemical parametric pumping. 1. the equilibrium properties of a batch unit-cell, Journal of Applied Electrochemistry, 13 (1983) 473-487. [55] Y. Oren, A. Soffer, Water desalting by means of electrochemical parametric pumping. 2. separation properties of a multistage column, Journal of Applied Electrochemistry, 13 (1983) 489-505. [56] Y. Oren, Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 228 (2008) 10-29. [57] E. Avraham, M. Noked, Y. Bouhadana, A. Soffer, D. Aurbach, Limitations of charge efficiency in capacitive deionization II. on the behavior of CDI cells comprising two activated carbon electrodes, Journal of the Electrochemical Society, 156 (2009) P157-P162. [58] J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, in: Low level waste conference, Orlando, 1995. [59] J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes, Journal of the Electrochemical Society, 143 (1996) 159-169. [60] J.C. Farmer, S.M. Bahowick, J.E. Harrar, D.V. Fix, R.E. Martinelli, A.K. Vu, K.L. Carroll, Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water, Energy & Fuels, 11 (1997) 337-347. [61] Y. Bouhadana, E. Avraham, A. Soffer, D. Aurbach, Several basic and practical aspects related to electrochemical deionization of water, Aiche Journal, 56 (2010) 779-789. [62] M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini, K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes, Energy & Environmental Science, 5 (2012) 9511-9519. [63] V. Presser, C.R. Dennison, J. Campos, K.W. Knehr, E.C. Kumbur, Y. Gogotsi, The electrochemical flow capacitor: a new concept for rapid energy storage and recovery, Advanced Energy Materials, 2 (2012) 895-902. [64] M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, Y.M. Chiang, Semi-solid lithium rechargeable flow battery, Advanced Energy Materials, 1 (2011) 511-516. [65] V.E. Brunini, Y.M. Chiang, W.C. Carter, Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries, Electrochim. Acta, 69 (2012) 301-307. [66] J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques, Energy & Environmental Science, 7 (2014) 3683-3689. [67] M. Pasta, C.D. Wessells, Y. Cui, F. La Mantia, A desalination battery, Nano Letters, 12 (2012) 839-843. [68] S. Porada, P.M. Biesheuvel, V. Presser, Comment on sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance, Advanced Functional Materials, 25 (2015) 179-181. [69] H. Marsh, F.R. Reinoso, Activated carbon, Elsevier, 2006. [70] G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, J.S. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 22 (2012) 21819-21823. [71] G. Wang, B.Q. Qian, Q. Dong, J.Y. Yang, Z.B. Zhao, J.S. Qiu, Highly mesoporous activated carbon electrode for capacitive deionization, Sep. Purif. Technol., 103 (2013) 216-221. [72] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Advanced Materials, 23 (2011) 4828-4850. [73] R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, Aerogels derived from multifunctional organic monomers, Journal of Non-Crystalline Solids, 145 (1992) 90-98. [74] C.-M. Yang, W.-H. Choi, B.-K. Na, B.W. Cho, W.I. Cho, Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes, Desalination, 174 (2005) 125-133. [75] C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview, Carbon, 43 (2005) 455-465. [76] C.J. Gabelich, P. Xu, Y. Cohen, Concentrate treatment for inland desalting, Sustainability Science and Engineering, 2 (2010) 295-326. [77] L.D. Zou, L.X. Li, H.H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Research, 42 (2008) 2340-2348. [78] L.X. Li, L.D. Zou, H.H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2009) 775-781. [79] F. Stoeckli, A. Guillot, A.M. Slasli, D. Hugi-Cleary, Microporosity in carbon blacks, Carbon, 40 (2002) 211-215. [80] K.K. Park, J.B. Lee, P.Y. Park, S.W. Yoon, J.S. Moon, H.M. Eum, C.W. Lee, Development of a carbon sheet electrode for electrosorption desalination, Desalination, 206 (2007) 86-91. [81] S. Nadakatti, M. Tendulkar, M. Kadam, Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 268 (2011) 182-188. [82] J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids, Pure and Applied Chemistry, 66 (1994) 1739-1758. [83] K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57 (1985) 603-619. [84] J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors, Science, 328 (2010) 480-483. [85] K.S. Hung, C. Masarapu, T.H. Ko, B.Q. Wei, Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric, Journal of Power Sources, 193 (2009) 944-949. [86] K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Carbon coated textiles for flexible energy storage, Energy & Environmental Science, 4 (2011) 5060-5067. [87] V. Presser, L.F. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability, Advanced Energy Materials, 1 (2011) 423-430. [88] O.M. Yaghi, H.L. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society, 117 (1995) 10401-10402. [89] W.G. Lu, Z.W. Wei, Z.Y. Gu, T.F. Liu, J. Park, J. Park, J. Tian, M.W. Zhang, Q. Zhang, T. Gentle, M. Bosch, H.C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design, Chemical Society Reviews, 43 (2014) 5561-5593. [90] Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Metal organic frameworks for energy storage and conversion, Energy Storage Materials, 2 (2016) 35-62. [91] O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R.A. Fischer, C. Woll, Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy, Nature Materials, 8 (2009) 481-484. [92] W. Xia, A. Mahmood, R.Q. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy & Environmental Science, 8 (2015) 1837-1866. [93] Z.Q. Wang, S.M. Cohen, Postsynthetic modification of metal-organic frameworks, Chemical Society Reviews, 38 (2009) 1315-1329. [94] S.Z. Li, F.W. Huo, Metal-organic framework composites: from fundamentals to applications, Nanoscale, 7 (2015) 7482-7501. [95] H.L. Jiang, Q. Xu, Porous metal-organic frameworks as platforms for functional applications, Chemical Communications, 47 (2011) 3351-3370. [96] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O''Keeffe, O.M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, Journal of the American Chemical Society, 131 (2009) 3875-3877. [97] D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy & Environmental Science, 5 (2012) 6465-6473. [98] B.L. Chen, C.D. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.B. Lobkovsky, O.M. Yaghi, S. Dai, A microporous metal-organic framework for gas-chromatographic separation of alkanes, Angewandte Chemie-International Edition, 45 (2006) 1390-1393. [99] S.H. Cho, B.Q. Ma, S.T. Nguyen, J.T. Hupp, T.E. Albrecht-Schmitt, A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation, Chemical Communications, (2006) 2563-2565. [100] S. Dang, E. Ma, Z.M. Sun, H.J. Zhang, A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach, J. Mater. Chem., 22 (2012) 16920-16926. [101] J. Aguilera-Sigalat, D. Bradshaw, A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification, Chemical Communications, 50 (2014) 4711-4713. [102] L.G. Qiu, Z.Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines, Chemical Communications, (2008) 3642-3644. [103] R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework, ACS Nano, 9 (2015) 6288-6296. [104] W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications, J. Mater. Chem. A, 1 (2013) 14-19. [105] S. Gadipelli, Z.X. Guo, Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield - a case for superior CO2 capture, Chemsuschem, 8 (2015) 2123-2132. [106] H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F.Q. Zong, Q. Xu, From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake, Journal of the American Chemical Society, 133 (2011) 11854-11857. [107] Q.F. Wang, W. Xia, W.H. Guo, L. An, D.G. Xia, R.Q. Zou, Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors, Chemistry-an Asian Journal, 8 (2013) 1879-1885. [108] G. Huang, L. Yang, X. Ma, J. Jiang, S.H. Yu, H.L. Jiang, Metal-organic framework-templated porous carbon for highly efficient catalysis: the critical role of pyrrolic nitrogen species, Chemistry-a European Journal, 22 (2016) 3470-3477. [109] S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity, Chemistry of Materials, 24 (2012) 464-470. [110] M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q.M. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon, Journal of the American Chemical Society, 134 (2012) 2864-2867. [111] Y.H. Shih, C.P. Fu, W.L. Liu, C.H. Lin, H.Y. Huang, S. Ma, Nanoporous carbons derived from metal-organic frameworks as novel matrices for surface-assisted laser desorption/ionization mass spectrometry, Small, 12 (2016) 2057-2066. [112] S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chemical Communications, 48 (2012) 7447-7449. [113] S.H. Hsu, C.T. Li, H.T. Chien, R.R. Salunkhe, N. Suzuki, Y. Yamauchi, K.C. Ho, K.C.W. Wu, Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs), Sci Rep, 4 (2014). [114] J.W. Jeon, R. Sharma, P. Meduri, B.W. Arey, H.T. Schaef, J.L. Lutkenhaus, J.P. Lemmon, P.K. Thallapally, M.I. Nandasiri, B.P. McGrail, S.K. Nune, In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors, ACS Applied Materials & Interfaces, 6 (2014) 7214-7222. [115] F.C. Zheng, Y. Yang, Q.W. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework, Nature Communications, 5 (2014). [116] G. Wang, C. Pan, L.P. Wang, Q. Dong, C. Yu, Z.B. Zhao, J.S. Qiu, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta, 69 (2012) 65-70. [117] Z. Wang, B. Dou, L. Zheng, G. Zhang, Z. Liu, Z. Hao, Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination, 299 (2012) 96-102. [118] N.L. Liu, S. Dutta, R.R. Salunkhe, T. Ahamad, S.M. Alshehri, Y. Yamauchi, C.H. Hou, K.C.W. Wu, ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions, Sci Rep, 6 (2016) 7. [119] Y. Liu, J.Q. Ma, T. Lu, L.K. Pan, Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization, Sci Rep, 6 (2016).
|