跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 10:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李洋
研究生(外文):Yang Li
論文名稱:沸石咪唑酯骨架-8衍生氮掺雜孔洞碳材之改質在高效電容去離子化上的應用
論文名稱(外文):Modification of ZIF-8 Derived, N-doped Porous Carbon Electrodes for High Performance Capacitive Deionization
指導教授:吳嘉文吳嘉文引用關係
指導教授(外文):Chia-Wen Wu
口試委員:侯嘉洪謝發坤林嘉和劉守恆
口試委員(外文):Chia-Hung HouFa-Kuen ShiehChia-Her LinShou-Heng Liu
口試日期:2017-05-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:84
中文關鍵詞:電容去離子化沸石咪唑酯骨架-8氮掺雜Au@NC800NC800-PEDOT
外文關鍵詞:capacitive deionizationZIF-8nitrogen dopingAu@NC800NC800-PEDOT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
水作為生命之源,在人們的生活中扮演著必不可少的角色。然而,隨著人口數目的增長以及工農業活動的擴張,水資源短缺成為了21世紀最嚴峻的問題。由于地球上絕大部分的水都是鹽水,無法被人類生產生活直接使用,因此脫鹽技術作為生產淡水的方法具有非常廣闊的應用前景。電容去離子化,也被稱為電吸附,因其可以對低濃度的鹽水進行有效的脫鹽,並且成本很低而受到了廣泛的關注。
首先,我們採用在溫度分別為600,800以及900 °C的條件下,碳化沸石咪唑酯骨架-8來製備孔洞碳材料。在這三種樣品當中,NC800電極具有最大的比表面積(975.40 m2/g)以及最大的微孔體積(0.14 cm3/g)。我們並沒有否認以此方式製備的孔洞碳材作為CDI電極的效用,但是在此種氮摻雜孔洞碳材中仍然存在一些嚴重的問題(例如:導電度差,孔的尺寸狹小,孔體積比較小等),將會影響它們作為CDI電極的表現。
為了解決上述問題,我們想到兩種方法提升氮掺雜孔洞碳材的導電性。首先,我們將金奈米顆粒嵌入到沸石咪唑酯骨架-8當中,隨後再將此物質碳化。第二種方法當中,由於PEDOT是一種導電高分子,具有良好的導電性,因此我們將NC800顆粒與PEDOT奈米管結合在一起製備一種新的孔洞電極材料以提升CDI表現。NC800-PEDOT具有非常優異的電吸附表現,在濃度為1 mM的氯化鈉溶液中,其電吸附容量可以達到16.18 mg/g,高於NC800 (8.36 mg/g)和Au@NC800 (14.31 mg/g)。總的來說,由於NC800-PEDOT和Au@NC800能夠顯著提升NC800的導電性,NC800-PEDOT和Au@NC800作為CDI的電極材料使用具有非常好的應用前景。
Water is the source of life and the lifeblood of human survival and development. Nevertheless, the rapid population growth coupled with the expansion of industrial and agricultural activities, caused water shortages the most serious problem to humanity in the 21st century. The desalination of sea or brackish water is a promising approach to generate fresh water because most of earth’s water is saline water, which is not suitable for direct consumption. Capacitive deionization (CDI), also known as electrosorption, is emerging as a separation technology for removing salt ions and ionic species from aqueous solutions using an electrosorption process due to its less energy consumption and environmental friendliness compared to traditional desalination technologies.
We firstly prepared the nitrogen-doped porous carbon particles by carbonizing zeolitic imidazolate framework (ZIF-8) at 600, 800 and 900 °C. Among these three samples, NC800 electrode exhibits the largest specific surface area and micropore volume of 975.40 m2/g and 0.14 cm3/g. There is no denying the fact that such resultant porous carbon particles should be an ideal electrode material for CDI application. However, some serious issues (e.g. low electrical conductivity, narrow pore size, relatively low pore volume, etc.) still remain in the nitrogen-doped porous carbon particles, which harm their CDI performance. In order to solve the above-mentioned problems, we herein report the de novo synthesis of metal-nanoparticle-embedded zeolitic imidazolate frameworks (ZIF-8) with gold ions introduced inside ZIF-8 upon the formation of ZIF-8 in aqueous solutions. The gold-nanoparticle-embedded ZIF-8 (Au@ZIF-8) was then carbonized into a nitrogen-containing porous carbon (Au@NC).
PEDOT is a transparent conducting polymer based on 3,4-ethylenedioxythiophene or EDOT monomer. We also combine NC800 powder and PEDOT NTs together to create a new generation of porous electrode for highly efficient capacitive deionization. NC800-PEDOT achieves an excellent electrosorption performance with a high electrosorption capacity of 16.18 mg/g when the initial NaCl concentration is 1 mM, higher than those of NC800 (8.36 mg/g) and Au@NC800 (14.31 mg/g). All in all, NC800-PEDOT and Au@NC800 should be promisingly applicable as highly efficient CDI electrode materials since they have notably increased the conductivity of parent NC800.
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Traditional Desalination Technology 4
2.2 Capacitive Deionization Technology 5
2.2.1 Basic Concepts of Capacitive Deionization 5
2.2.2 Historical Developments of CDI 7
2.2.3 CDI Cell Architectures 13
2.3 Introduction to CDI Electrode Materials 15
2.3.1 Carbon Materials 15
2.3.2 Ideal Electrode for CDI 18
2.4 Metal-organic framework derived porous carbon particles for CDI 22
2.4.1 Metal-organic Framework materials 22
2.4.2 MOF-derived porous carbons 26
2.4.3 MOF-derived porous carbon materials for CDI 28
Chapter 3 Experimental 31
3.1 Materials and Chemicals 31
3.2 Synthesis of CDI Electrode Materials 31
3.2.1 Preparation of the N-doped porous carbon particles 31
3.2.2 De novo synthesis of Au-nanoparticles-embedded porous carbon particles 33
3.2.3 Preparation of NC800-PEDOT 34
3.3 Material characterizations and analyses 35
3.4 Electrochemical characterizations 36
3.4.1 Preparation of electrodes 36
3.4.2 Cyclic voltammetry 36
3.4.3 Galvanostatic charge-discharge 37
3.4.4 Electrochemical impedance spectroscopy 38
3.5 Electrosorption test 39
Chapter 4 Results and Discussion 40
4.1 Material Characterizations 40
4.2 Electrochemical Performance 56
4.3 Electrosorption Performance 64
Chapter 5 Conclusion 68
Reference... 70
[1] Y. Liu, X.T. Xu, M. Wang, T. Lu, Z. Sun, L.K. Pan, Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization, Chemical Communications, 51 (2015) 12020-12023.
[2] T. Humplik, J. Lee, S.C. O''Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanostructured materials for water desalination, Nanotechnology, 22 (2011).
[3] R. Semiat, Energy issues in desalination processes, Environmental Science & Technology, 42 (2008) 8193-8201.
[4] Y.H. Liu, H.C. Hsi, K.C. Li, C.H. Hou, Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization, Acs Sustainable Chemistry & Engineering, 4 (2016) 4762-4770.
[5] Z. Wang, T.T. Yan, J.H. Fang, L.Y. Shi, D.S. Zhang, Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors, J. Mater. Chem. A, 4 (2016) 10858-10868.
[6] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, 58 (2013) 1388-1442.
[7] H.J. Pan, J.M. Yang, S.P. Wang, Z.B. Xiong, W.S. Cai, J.Y. Liu, Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization, J. Mater. Chem. A, 3 (2015) 13827-13834.
[8] J.Y. Liu, S.P. Wang, J.M. Yang, J.J. Liao, M. Lu, H.J. Pan, L. An, ZnCl2 activated electrospun carbon nanofiber for capacitive desalination, Desalination, 344 (2014) 446-453.
[9] R. Niu, H.B. Li, Y.L. Ma, L.J. He, J. Li, An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid, Electrochim. Acta, 176 (2015) 755-762.
[10] X. Gao, A. Omosebi, J. Landon, K.L. Liu, Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes, Environmental Science & Technology, 49 (2015) 10920-10926.
[11] X. Gao, A. Omosebi, J. Landon, K.L. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior, Energy & Environmental Science, 8 (2015) 897-909.
[12] L.M. Chao, Z.Y. Liu, G.X. Zhang, X.N. Song, X.D. Lei, M. Noyong, U. Simon, Z. Chang, X.M. Sun, Enhancement of capacitive deionization capacity of hierarchical porous carbon, J. Mater. Chem. A, 3 (2015) 12730-12737.
[13] X. Duan, W. Liu, L. Chang, Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization, Journal of the Taiwan Institute of Chemical Engineers, 62 (2016) 132-139.
[14] M.C. Zafra, P. Lavela, G. Rasines, C. Macias, J.L. Tirado, C.O. Ania, A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water, Electrochim. Acta, 135 (2014) 208-216.
[15] L.C. Han, K.G. Karthikeyan, M.A. Anderson, K.B. Gregory, Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization, J. Colloid Interface Sci., 430 (2014) 93-99.
[16] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, Journal of the American Chemical Society, 130 (2008) 5390-5391.
[17] N.L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, Y. Yamauchi, Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals, Chemical Communications, 49 (2013) 2521-2523.
[18] N.L. Torad, Y.Q. Li, S. Ishihara, K. Ariga, Y. Kamachi, H.Y. Lian, H. Hamoudi, Y. Sakka, W. Chaikittisilp, K.C.W. Wu, Y. Yamauchi, MOF-derived nanoporous carbon as intracellular drug delivery carriers, Chemistry Letters, 43 (2014) 717-719.
[19] W. Chaikittisilp, M. Hu, H.J. Wang, H.S. Huang, T. Fujita, K.C.W. Wu, L.C. Chen, Y. Yamauchi, K. Ariga, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chemical Communications, 48 (2012) 7259-7261.
[20] A.J. Amali, J.K. Sun, Q. Xu, From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage, Chemical Communications, 50 (2014) 1519-1522.
[21] N.L. Torad, R.R. Salunkhe, Y.Q. Li, H. Hamoudi, M. Imura, Y. Sakka, C.C. Hu, Y. Yamauchi, Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67, Chemistry-a European Journal, 20 (2014) 7895-7900.
[22] L.J. Zhang, Z.X. Su, F.L. Jiang, L.L. Yang, J.J. Qian, Y.F. Zhou, W.M. Li, M.C. Hong, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions, Nanoscale, 6 (2014) 6590-6602.
[23] X.T. Xu, M. Wang, Y. Liu, T. Lu, L.K. Pan, Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization, J. Mater. Chem. A, 4 (2016) 5467-5473.
[24] http://www.un.org/News/Press/docs/2010/ga10967.doc.htm.
[25] M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochim. Acta, 55 (2010) 3845-3856.
[26] V.A. Shaposhnik, K. Kesore, An early history of electrodialysis with permselective membranes, Journal of Membrane Science, 136 (1997) 35-39.
[27] H. Wang, L.Y. Shi, T.T. Yan, J.P. Zhang, Q.D. Zhong, D.S. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, J. Mater. Chem. A, 2 (2014) 4739-4750.
[28] S.-Y. Huang, Hierarchical ordered porous carbons with macro/mesopores and micropores as high performance electrodes in capacitive deionization, M.S. thesis, National Taiwan University, Taiwan (2015).
[29] C.J. Gabelich, T.D. Tran, I.H. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environmental Science & Technology, 36 (2002) 3010-3019.
[30] S.I. Jeon, H.R. Park, J.G. Yeo, S. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy & Environmental Science, 6 (2013) 1471-1475.
[31] J.B. Lee, K.K. Park, H.M. Eum, C.W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196 (2006) 125-134.
[32] S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Research, 44 (2010) 2267-2275.
[33] P.M. Biesheuvel, Y.Q. Fu, M.Z. Bazant, Diffuse charge and Faradaic reactions in porous electrodes, Physical Review E, 83 (2011).
[34] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Applied Materials & Interfaces, 4 (2012) 1194-1199.
[35] R. Zhao, P.M. Biesheuvel, A. Van Der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy & Environmental Science, 5 (2012) 9520-9527.
[36] X. Gao, A. Omosebi, J. Landon, K.L. Liu, Enhancement of charge efficiency for a capacitive deionization cell using carbon xerogel with modified potential of zero charge, Electrochemistry Communications, 39 (2014) 22-25.
[37] S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J.S. Atchison, K.J. Keesman, S. Kaskel, P.M. Biesheuvel, V. Presser, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy & Environmental Science, 6 (2013) 3700-3712.
[38] O.N. Demirer, R.M. Naylor, C.A.R. Perez, E. Wilkes, C. Hidrovo, Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water, Desalination, 314 (2013) 130-138.
[39] P. Dlugolecki, A. Van Der Wal, Energy recovery in membrane capacitive deionization, Environmental Science & Technology, 47 (2013) 4904-4910.
[40] M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy & Environmental Science, 8 (2015) 2296-2319.
[41] R. Zhao, S. Porada, P.M. Biesheuvel, A. Van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 330 (2013) 35-41.
[42] F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Advanced Materials, 26 (2014) 2219-2251.
[43] J.W. Blair, G.W. Murphy, Electrochemical demineralization of water with porous electrodes of large surface area, in, University of Oklahoma, 1960.
[44] B.B. Arnold, G.W. Murphy, Studies on electrochemistry of carbon and chemically modified carbon surfaces, Journal of Physical Chemistry, 65 (1961) 135.
[45] G.W. Murphy, D.D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12 (1967) 1655.
[46] G.W. Murphy, Activated carbon used as electrodes in electrochemical demineralization of saline water, (1969).
[47] S. Evans, W. Hamilton, The mechanism of demineralization at carbon electrodes, Journal of the Electrochemical Society, 113 (1966) 1314-1319.
[48] S. Evans, M.A. Accomazzo, J.E. Accomazzo, Electrochemically controlled ion exchange.1. mechanism, Journal of the Electrochemical Society, 116 (1969) 307-+.
[49] G.W. Reid, A. Stevens, J. Abichandani, F. Townsend, M. Al-Awady, Field operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water, (1968).
[50] A.M. Johnson, W. Venolia, The electrosorb process for desalting water, (1970).
[51] A.M. Johnson, J. Newman, Desalting by means of porous carbon electrodes, Journal of the Electrochemical Society, 118 (1971) 510.
[52] Y. Oren, A. Soffer, Electrochemical parametric pumping, Journal of the Electrochemical Society, 125 (1978) 869-875.
[53] A. Soffer, M. Folman, The electrical double layer of high surface porous carbon electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 38 (1972) 25-43.
[54] Y. Oren, A. Soffer, Water desalting by means of electrochemical parametric pumping. 1. the equilibrium properties of a batch unit-cell, Journal of Applied Electrochemistry, 13 (1983) 473-487.
[55] Y. Oren, A. Soffer, Water desalting by means of electrochemical parametric pumping. 2. separation properties of a multistage column, Journal of Applied Electrochemistry, 13 (1983) 489-505.
[56] Y. Oren, Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 228 (2008) 10-29.
[57] E. Avraham, M. Noked, Y. Bouhadana, A. Soffer, D. Aurbach, Limitations of charge efficiency in capacitive deionization II. on the behavior of CDI cells comprising two activated carbon electrodes, Journal of the Electrochemical Society, 156 (2009) P157-P162.
[58] J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, in: Low level waste conference, Orlando, 1995.
[59] J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes, Journal of the Electrochemical Society, 143 (1996) 159-169.
[60] J.C. Farmer, S.M. Bahowick, J.E. Harrar, D.V. Fix, R.E. Martinelli, A.K. Vu, K.L. Carroll, Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water, Energy & Fuels, 11 (1997) 337-347.
[61] Y. Bouhadana, E. Avraham, A. Soffer, D. Aurbach, Several basic and practical aspects related to electrochemical deionization of water, Aiche Journal, 56 (2010) 779-789.
[62] M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini, K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes, Energy & Environmental Science, 5 (2012) 9511-9519.
[63] V. Presser, C.R. Dennison, J. Campos, K.W. Knehr, E.C. Kumbur, Y. Gogotsi, The electrochemical flow capacitor: a new concept for rapid energy storage and recovery, Advanced Energy Materials, 2 (2012) 895-902.
[64] M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V.E. Brunini, W.C. Carter, Y.M. Chiang, Semi-solid lithium rechargeable flow battery, Advanced Energy Materials, 1 (2011) 511-516.
[65] V.E. Brunini, Y.M. Chiang, W.C. Carter, Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries, Electrochim. Acta, 69 (2012) 301-307.
[66] J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques, Energy & Environmental Science, 7 (2014) 3683-3689.
[67] M. Pasta, C.D. Wessells, Y. Cui, F. La Mantia, A desalination battery, Nano Letters, 12 (2012) 839-843.
[68] S. Porada, P.M. Biesheuvel, V. Presser, Comment on sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance, Advanced Functional Materials, 25 (2015) 179-181.
[69] H. Marsh, F.R. Reinoso, Activated carbon, Elsevier, 2006.
[70] G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, J.S. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 22 (2012) 21819-21823.
[71] G. Wang, B.Q. Qian, Q. Dong, J.Y. Yang, Z.B. Zhao, J.S. Qiu, Highly mesoporous activated carbon electrode for capacitive deionization, Sep. Purif. Technol., 103 (2013) 216-221.
[72] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Advanced Materials, 23 (2011) 4828-4850.
[73] R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, Aerogels derived from multifunctional organic monomers, Journal of Non-Crystalline Solids, 145 (1992) 90-98.
[74] C.-M. Yang, W.-H. Choi, B.-K. Na, B.W. Cho, W.I. Cho, Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes, Desalination, 174 (2005) 125-133.
[75] C. Moreno-Castilla, F.J. Maldonado-Hodar, Carbon aerogels for catalysis applications: an overview, Carbon, 43 (2005) 455-465.
[76] C.J. Gabelich, P. Xu, Y. Cohen, Concentrate treatment for inland desalting, Sustainability Science and Engineering, 2 (2010) 295-326.
[77] L.D. Zou, L.X. Li, H.H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Research, 42 (2008) 2340-2348.
[78] L.X. Li, L.D. Zou, H.H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2009) 775-781.
[79] F. Stoeckli, A. Guillot, A.M. Slasli, D. Hugi-Cleary, Microporosity in carbon blacks, Carbon, 40 (2002) 211-215.
[80] K.K. Park, J.B. Lee, P.Y. Park, S.W. Yoon, J.S. Moon, H.M. Eum, C.W. Lee, Development of a carbon sheet electrode for electrosorption desalination, Desalination, 206 (2007) 86-91.
[81] S. Nadakatti, M. Tendulkar, M. Kadam, Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 268 (2011) 182-188.
[82] J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids, Pure and Applied Chemistry, 66 (1994) 1739-1758.
[83] K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57 (1985) 603-619.
[84] J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors, Science, 328 (2010) 480-483.
[85] K.S. Hung, C. Masarapu, T.H. Ko, B.Q. Wei, Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric, Journal of Power Sources, 193 (2009) 944-949.
[86] K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Carbon coated textiles for flexible energy storage, Energy & Environmental Science, 4 (2011) 5060-5067.
[87] V. Presser, L.F. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability, Advanced Energy Materials, 1 (2011) 423-430.
[88] O.M. Yaghi, H.L. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society, 117 (1995) 10401-10402.
[89] W.G. Lu, Z.W. Wei, Z.Y. Gu, T.F. Liu, J. Park, J. Park, J. Tian, M.W. Zhang, Q. Zhang, T. Gentle, M. Bosch, H.C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design, Chemical Society Reviews, 43 (2014) 5561-5593.
[90] Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Metal organic frameworks for energy storage and conversion, Energy Storage Materials, 2 (2016) 35-62.
[91] O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R.A. Fischer, C. Woll, Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy, Nature Materials, 8 (2009) 481-484.
[92] W. Xia, A. Mahmood, R.Q. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy & Environmental Science, 8 (2015) 1837-1866.
[93] Z.Q. Wang, S.M. Cohen, Postsynthetic modification of metal-organic frameworks, Chemical Society Reviews, 38 (2009) 1315-1329.
[94] S.Z. Li, F.W. Huo, Metal-organic framework composites: from fundamentals to applications, Nanoscale, 7 (2015) 7482-7501.
[95] H.L. Jiang, Q. Xu, Porous metal-organic frameworks as platforms for functional applications, Chemical Communications, 47 (2011) 3351-3370.
[96] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O''Keeffe, O.M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, Journal of the American Chemical Society, 131 (2009) 3875-3877.
[97] D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy & Environmental Science, 5 (2012) 6465-6473.
[98] B.L. Chen, C.D. Liang, J. Yang, D.S. Contreras, Y.L. Clancy, E.B. Lobkovsky, O.M. Yaghi, S. Dai, A microporous metal-organic framework for gas-chromatographic separation of alkanes, Angewandte Chemie-International Edition, 45 (2006) 1390-1393.
[99] S.H. Cho, B.Q. Ma, S.T. Nguyen, J.T. Hupp, T.E. Albrecht-Schmitt, A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation, Chemical Communications, (2006) 2563-2565.
[100] S. Dang, E. Ma, Z.M. Sun, H.J. Zhang, A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach, J. Mater. Chem., 22 (2012) 16920-16926.
[101] J. Aguilera-Sigalat, D. Bradshaw, A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification, Chemical Communications, 50 (2014) 4711-4713.
[102] L.G. Qiu, Z.Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines, Chemical Communications, (2008) 3642-3644.
[103] R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework, ACS Nano, 9 (2015) 6288-6296.
[104] W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications, J. Mater. Chem. A, 1 (2013) 14-19.
[105] S. Gadipelli, Z.X. Guo, Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield - a case for superior CO2 capture, Chemsuschem, 8 (2015) 2123-2132.
[106] H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F.Q. Zong, Q. Xu, From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake, Journal of the American Chemical Society, 133 (2011) 11854-11857.
[107] Q.F. Wang, W. Xia, W.H. Guo, L. An, D.G. Xia, R.Q. Zou, Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors, Chemistry-an Asian Journal, 8 (2013) 1879-1885.
[108] G. Huang, L. Yang, X. Ma, J. Jiang, S.H. Yu, H.L. Jiang, Metal-organic framework-templated porous carbon for highly efficient catalysis: the critical role of pyrrolic nitrogen species, Chemistry-a European Journal, 22 (2016) 3470-3477.
[109] S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity, Chemistry of Materials, 24 (2012) 464-470.
[110] M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q.M. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon, Journal of the American Chemical Society, 134 (2012) 2864-2867.
[111] Y.H. Shih, C.P. Fu, W.L. Liu, C.H. Lin, H.Y. Huang, S. Ma, Nanoporous carbons derived from metal-organic frameworks as novel matrices for surface-assisted laser desorption/ionization mass spectrometry, Small, 12 (2016) 2057-2066.
[112] S. Lim, K. Suh, Y. Kim, M. Yoon, H. Park, D.N. Dybtsev, K. Kim, Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks, Chemical Communications, 48 (2012) 7447-7449.
[113] S.H. Hsu, C.T. Li, H.T. Chien, R.R. Salunkhe, N. Suzuki, Y. Yamauchi, K.C. Ho, K.C.W. Wu, Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs), Sci Rep, 4 (2014).
[114] J.W. Jeon, R. Sharma, P. Meduri, B.W. Arey, H.T. Schaef, J.L. Lutkenhaus, J.P. Lemmon, P.K. Thallapally, M.I. Nandasiri, B.P. McGrail, S.K. Nune, In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors, ACS Applied Materials & Interfaces, 6 (2014) 7214-7222.
[115] F.C. Zheng, Y. Yang, Q.W. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework, Nature Communications, 5 (2014).
[116] G. Wang, C. Pan, L.P. Wang, Q. Dong, C. Yu, Z.B. Zhao, J.S. Qiu, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta, 69 (2012) 65-70.
[117] Z. Wang, B. Dou, L. Zheng, G. Zhang, Z. Liu, Z. Hao, Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination, 299 (2012) 96-102.
[118] N.L. Liu, S. Dutta, R.R. Salunkhe, T. Ahamad, S.M. Alshehri, Y. Yamauchi, C.H. Hou, K.C.W. Wu, ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions, Sci Rep, 6 (2016) 7.
[119] Y. Liu, J.Q. Ma, T. Lu, L.K. Pan, Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization, Sci Rep, 6 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top