跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林聖昌
研究生(外文):Sheng-Chang Lin
論文名稱:圓錐形奈米孔道:角度對離子整流效應的影響與離子擴散方向對濃鹽差發電的影響
論文名稱(外文):Conical Nanopore : Influences of Cone Angle on the Ion Current Rectification Behavior and Influences of Diffusion Direction on Salinity Gradient Power
指導教授:徐治平徐治平引用關係
指導教授(外文):Jyh-Ping Hsu
口試日期:2017-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:圓錐形奈米孔道離子整流效應海水鹽差能形狀效應
外文關鍵詞:Conical nanoporeIon current rectificationreverse electrodialysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
圓錐形奈米孔道在生物科技上有著高潛力的應用,它能夠產生特殊的電動力學現象,如離子濃度極化(ICP)和離子整流效應(ICR)。在第一章節中,我們利用數值模擬的方式,研究圓錐形奈米孔道的開口角度對離子整流效應所造成的影響。改變角度時有兩種方式,第一種方式是固定孔道尖端的開口尺寸,改變末端的開口尺寸;而第二種則是固定末端的開口尺寸,改變尖端的開口尺寸。我們發現,第一種改變角度的方式,對孔道的離子整流效應影響較顯著,而且隨著角度加大時,奈米孔道的整流效應係數會出現先增加後減低的結果。第二章節,我們則是討論運用圓錐形奈米孔道的逆電析法來進行海水鹽差能發電,透過這種方式能取得乾淨的能源,是一種具有前景的再生能源。由於圓錐形奈米孔道有著不對稱形狀的特性,因此我們考慮兩種相反的離子擴散方向對海水鹽差能的影響,一種是離子從孔道的尖端往末端擴散,另一種是離子從孔道末端往尖端擴散。結果顯示第二種擴散方向能產生較好的海水鹽差能發電效果。
Due to its potential applications in biotechnology, ion current rectification (ICR) arising from the asymmetric nature of ion transport in a nanochannel has drawn the attention of researchers in various fields. In the former, the influences of the cone angle, surface charge density, and bulk salt concentration on this behavior are investigated, and mechanisms proposed to explain the results obtained. We show that if the cone angle is enlarged by fixing the nanopore tip radius and raising its base radius, the ICR ratio has a local maximum. This behavior may not present if the cone angle is enlarged by fixing the nanopore base radius and raising its tip radius. This ratio also has a local maximum as the surface charge density varies and the larger the cone angle the higher the surface charge density at which the local maximum in the ICR ratio occurs. In the latter, to assess the possibility of energy harvesting through reverse electrodialysis (RED), we consider the electrokinetic behavior of the ion transport in a pH-regulated conical nanopore connecting two large reservoirs having different bulk salt concentrations. In particular, the influences of the ion diffusion direction, the solution pH, and the bulk concentration ratio on that behavior are examined in detail, and the underlying mechanisms discussed. We show that the geometrically asymmetric nature of the nanopore yields profound and interesting phenomena arising mainly from the distribution of ions in its interior. We show that a power of 18.3 pW can be generated, and the maximum power efficiency of 0.53 achieved from a PET nanopore
中文摘要 I
English Abstract II
Contents IV
List of Figures V
Chapter 1 Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore 1
Reference 18
Chapter 2 Power Generation by a pH-regulated Conical Nanopore through Reverse Electrodialysis 51
Reference 67
Conclusion 85
Chapter 1
1.Comera, J.; Aksimentiev, A., DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores. Nanoscale 2016, 8, 9600-9613.
2.Choi, E.; Kwon, K.; Kim, D.; Park, J., An Electrokinetic Study on Tunable 3d Nanochannel Networks Constructed by Spatially Controlled Nanoparticle Assembly. Lab Chip 2015, 15, 512-523.
3.Yeh, L. H.; Hughes, C.; Zeng, Z. P.; Qian, S. Z., Tuning Ion Transport and Selectivity by a Salt Gradient in a Charged Nanopore. Anal. Chem. 2014, 86, 2681-2686.
4.Zhang, H. C.; Tian, Y.; Jiang, L., Fundamental Studies and Practical Applications of Bio-Inspired Smart Solid-State Nanopores and Nanochannels. Nano Today 2016, 11, 61-81.
5.Ali, M.; Yameen, B.; Cervera, J.; Ramirez, P.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. J. Am. Chem. Soc. 2010, 132, 8338-8348.
6.Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-2357.
7.Ma, Y.; Yeh, L. H.; Lin, C. Y.; Mei, L. J.; Qian, S. Z., pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Anal. Chem. 2015, 87, 4508-4514.
8.Mei, L. J.; Chou, T. H.; Cheng, Y. S.; Huang, M. J.; Yeh, L. H.; Qian, S. Z., Electrophoresis of pH-Regulated Nanoparticles: Impact of the Stern Layer. Phys. Chem. Chem. Phys. 2016, 18, 9927-9934.
9.Mei, L. J.; Yeh, L. H.; Qian, S. Z., Gate Modulation of Proton Transport in a Nanopore. Phys. Chem. Chem. Phys. 2016, 18, 7449-7458.
10.Kim, S. J.; Wang, Y. C.; Lee, J. H.; Jang, H.; Han, J., Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel. Phys. Rev. Lett. 2007, 99.
11.Lin, C. Y.; Yeh, L. H.; Hsu, J. P.; Tseng, S., Regulating Current Rectification and Nanoparticle Transport through a Salt Gradient in Bipolar Nanopores. Small 2015, 11, 4594-4602.
12.Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H., Single-Molecule DNA Detection with an Engineered Mspa Protein Nanopore. P. Natl. Acad. Sci. U.S.A. 2008, 105, 20647-20652.
13.Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H., Nanopore DNA Sequencing with Mspa. P. Natl. Acad. Sci. U.S.A. 2010, 107, 16060-16065.
14.Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-Layer Mos2 Nanopores as Nanopower Generators. Nature 2016, 536, 197-200.
15.Qiu, Y.; Lin, C. Y.; Hinkle, P.; Plett, T. S.; Yang, C.; Chacko, J. V.; Digman, M. A.; Yeh, L. H.; Hsu, J. P.; Siwy, Z. S., Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles ACS Nano 2016, 10, 8413-8422.
16.Ying, Y. L.; Zhang, J. J.; Gao, R.; Long, Y. T., Nanopore-Based Sequencing and Detection of Nucleic Acids. Angew. Chem. Int. Edit. 2013, 52, 13154-13161.
17.Zhang, H. C.; Hou, X.; Yang, Z.; Yan, D. D.; Li, L.; Tian, Y.; Wang, H. T.; Jiang, L., Bio-Inspired Smart Single Asymmetric Hourglass Nanochannels for Continuous Shape and Ion Transport Control. Small 2015, 11, 786-791.
18.Morris, C. A.; Friedman, A. K.; Baker, L. A., Applications of Nanopipettes in the Analytical Sciences. Analyst 2010, 135, 2190-2202.
19.Perera, R. T.; Johnson, R. P.; Edwards, M. A.; White, H. S., Effect of the Electric Double Layer on the Activation Energy of Ion Transport in Conical Nanopores. J. Phys. Chem. C 2015, 119, 24299-24306.
20.Zeng, Z. P.; Yeh, L. H.; Zhang, M. K.; Qian, S. Z., Ion Transport and Selectivity in Biomimetic Nanopores with pH-Tunable Zwitterionic Polyelectrolyte Brushes. Nanoscale 2015, 7, 17020-17029.
21.Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8, 1978-1985.
22.Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
23.Yin, X. H.; Zhang, S. D.; Dong, Y. T.; Liu, S. J.; Gu, J.; Chen, Y.; Zhang, X.; Zhang, X. H.; Shao, Y. H., Ionic Current Rectification in Organic Solutions with Quartz Nanopipettes. Anal. Chem. 2015, 87, 9070-9077.
24.Momotenko, D.; Girault, H. H., Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. J. Am. Chem. Soc. 2011, 133, 14496-14499.
25.Lin, D. H.; Lin, C. Y.; Tseng, S.; Hsu, J. P., Influence of Electroosmotic Flow on the Ionic Current Rectification in a pH-Regulated, Conical Nanopore. Nanoscale 2015, 7, 14023-14031.
26.Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Anal. Chem. 2015, 87, 172-187.
27.Sa, N. Y.; Lan, W. J.; Shi, W. Q.; Baker, L. A., Rectification of Ion Current in Nanopipettes by External Substrates. ACS Nano 2013, 7, 11272-11282.
28.Cervera, J.; Schiedt, B.; Neumann, R.; Mafe, S.; Ramirez, P., Ionic Conduction, Rectification, and Selectivity in Single Conical Nanopores. J. Chem. Phys. 2006, 124.
29.Steinbock, L. J.; Lucas, A.; Otto, O.; Keyser, U. F., Voltage-Driven Transport of Ions and DNA through Nanocapillaries. Electrophoresis 2012, 33, 3480-3487.
30.Bell, N. A. W.; Keyser, U. F., Specific Protein Detection Using Designed DNA Carriers and Nanopores. J. Am. Chem. Soc. 2015, 137, 2035-2041.
31.Gibb, T. R.; Ivanov, A. P.; Edel, J. B.; Albrecht, T., Single Molecule Ionic Current Sensing in Segmented Flow Microfluidics. Anal. Chem. 2014, 86, 1864-1871.
32.Fraccari, R. L.; Ciccarella, P.; Bahrami, A.; Carminati, M.; Ferrari, G.; Albrecht, T., High-Speed Detection of DNA Translocation in Nanopipettes. Nanoscale 2016, 8, 7604-7611.
33.Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S., Biosensing with Nanofluidic Diodes. J. Am. Chem. Soc. 2009, 131, 8211-8220.
34.Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W., Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano 2012, 6, 9247-9257.
35.Liu, Q.; Xiao, K.; Wen, L. P.; Dong, Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nano Channel. ACS Nano 2014, 8, 12292-12299.
36.Gao, R.; Ying, Y. L.; Yan, B. Y.; Iqbal, P.; Preece, J. A.; Wu, X. Y., Ultrasensitive Determination of Mercury(Ii) Using Glass Nanopores Functionalized with Macrocyclic Dioxotetraamines. Microchim. Acta 2016, 183, 491-495.
37.Vogel, R.; Willmott, G.; Kozak, D.; Roberts, G. S.; Anderson, W.; Groenewegen, L.; Glossop, B.; Barnett, A.; Turner, A.; Trau, M., Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor. Anal. Chem. 2011, 83, 3499-3506.
38.Lan, W. J.; White, H. S., Diffusional Motion of a Particle Translocating through a Nanopore. ACS Nano 2012, 6, 1757-1765.
39.German, S. R.; Luo, L.; White, H. S.; Mega, T. L., Controlling Nanoparticle Dynamics in Conical Nanopores. J. Phys. Chem. C 2013, 117, 703-711.
40.Qiu, Y. H.; Vlassiouk, I.; Chen, Y. F.; Siwy, Z. S., Direction Dependence of Resistive-Pulse Amplitude in Conically Shaped Mesopores. Anal. Chem. 2016, 88, 4917-4925.
41.Gamble, T.; Decker, K.; Plett, T. S.; Pevarnik, M.; Pietschmann, J. F.; Vlassiouk, I.; Aksimentiev, A.; Siwy, Z. S., Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling. J. Phys. Chem. C 2014, 118, 9809-9819.
42.Cao, L. X.; Guo, W.; Wang, Y. G.; Jiang, L., Concentration-Gradient-Dependent Ion Current Rectification in Charged Conical Nanopores. Langmuir 2012, 28, 2194-2199.
43.Deng, X. L.; Takami, T.; Son, J. W.; Kang, E. J.; Kawai, T.; Park, B. H., Effect of Concentration Gradient on Ionic Current Rectification in Polyethyleneimine Modified Glass Nano-Pipettes. Sci. Rep.-Uk 2014, 4, 4005.
44.Wang, J. T.; Zhang, M. H.; Zhai, J.; Jiang, L., Theoretical Simulation of the Ion Current Rectification (ICR) in Nano-Pores Based on the Poisson-Nernst-Planck (PNP) Model. Phys. Chem. Chem. Phys. 2014, 16, 23-32.
45.Lan, W. J.; Holden, D. A.; White, H. S., Pressure-Dependent Ion Current Rectification in Conical-Shaped Glass Nanopores. J. Am. Chem. Soc. 2011, 133, 13300-13303.
46.Liu, J.; Kvetny, M.; Feng, J.; Wang, D.; Wu, B.; Brown, W.; Wang, G., Surface Charge Density Determination of Single Conical Nanopores Based on Normalized Ion Current Rectification. Langmuir 2012, 28, 1588-95.
47.Pietschmann, J. F.; Wolfram, M. T.; Burger, M.; Trautmann, C.; Nguyen, G.; Pevarnik, M.; Bayer, V.; Siwy, Z., Rectification Properties of Conically Shaped Nanopores: Consequences of Miniaturization. Phys. Chem. Chem. Phys. 2013, 15, 16917-16926.
48.Kovarik, M. L.; Zhou, K. M.; Jacobson, S. C., Effect of Conical Nanopore Diameter on Ion Current Rectification. J. Phys. Chem. B 2009, 113, 15960-15966.
49.Kubeil, C.; Bund, A., The Role of Nanopore Geometry for the Rectification of Ionic Currents. J. Phys. Chem. C 2011, 115, 7866-7873.
50.Apel, P. Y.; Blonskaya, I. V.; Orelovitch, O. L.; Ramirez, P.; Sartowska, B. A., Effect of Nanopore Geometry on Ion Current Rectification. Nanotechnology 2011, 22, 175302.
51.Wang, X. W.; Xue, J. M.; Wang, L.; Guo, W.; Zhang, W. M.; Wang, Y. G.; Liu, Q.; Ji, H.; Ouyang, Q. Y., How the Geometric Configuration and the Surface Charge Distribution Influence the Ionic Current Rectification in Nanopores. J. Phys. D. Appl. Phys. 2007, 40, 7077-7084.
52.Cervera, J.; Schiedt, B.; Ramirez, P., A Poisson/Nernst-Planck Model for Ionic Transport through Synthetic Conical Nanopores. Europhys. Lett. 2005, 71, 35-41.
53.White, H. S.; Bund, A., Ion Current Rectification at Nanopores in Glass Membranes. Langmuir 2008, 24, 2212-2218.
54.Constantin, D.; Siwy, Z. S., Poisson-Nernst -Planck Model of Ion Current Rectification through a Nanofluidic Diode. Phys. Rev. E 2007, 76, 041202.
55.Ai, Y.; Zhang, M. K.; Joo, S. W.; Cheney, M. A.; Qian, S. Z., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. J. Phys. Chem. C 2010, 114, 3883-3890.
56.Laohakunakorn, N.; Thacker, V. V.; Muthukumar, M.; Keyser, U. F., Electroosmotic Flow Reversal Outside Glass Nanopores. Nano Lett. 2015, 15, 695-702.
57.Albrecht, T.; Edel, J. B., Engineered Nanopores for Bioanalytical Applications; Elsevier Science: Amsterdam, 2013; pp 1-30..
58.Siwy, Z. S.; Howorka, S., Engineered Voltage-Responsive Nanopores. Chem. Soc. Rev. 2010, 39, 1115-1132.

Chapter 2
1.Kamat, P. V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J Phys Chem C 2007, 111, 2834-2860.
2.Majumdar, A., Thermoelectricity in Semiconductor Nanostructures. Science 2004, 303, 777-778.
3.Logan, B. E.; Elimelech, M., Membrane-Based Processes for Sustainable Power Generation Using Water. Nature 2012, 488, 313-319.
4.Loeb, S., Osmotic Power-Plants. Science 1975, 189, 654-655.
5.Post, J. W.; Hamelers, H. V. M.; Buisman, C. J. N., Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System. Environ Sci Technol 2008, 42, 5785-5790.
6.La Mantia, F.; Pasta, M.; Deshazer, H. D.; Logan, B. E.; Cui, Y., Batteries for Efficient Energy Extraction from a Water Salinity Difference. Nano Lett 2011, 11, 1810-1813.
7.Jeong, H. I.; Kim, H. J.; Kim, D. K., Numerical Analysis of Transport Phenomena in Reverse Electrodialysis for System Design and Optimization. Energy 2014, 68, 229-237.
8.Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature 2013, 494, 455-458.
9.Yip, N. Y.; Vermaas, D. A.; Nijmeijer, K.; Elimelech, M., Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients. Environ Sci Technol 2014, 48, 4925-36.
10.Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-7.
11.Kim, D. K.; Duan, C. H.; Chen, Y. F.; Majumdar, A., Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels. Microfluid Nanofluid 2010, 9, 1215-1224.
12.Cao, L. X.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S. T.; Wang, Y. G.; Jiang, L.; Zhu, D. B., Towards Understanding the Nanofluidic Reverse Electrodialysis System: Well Matched Charge Selectivity and Ionic Composition. Energ Environ Sci 2011, 4, 2259-2266.
13.Veerman, J.; de Jong, R. M.; Saakes, M.; Metz, S. J.; Harmsen, G. J., Reverse Electrodialysis: Comparison of Six Commercial Membrane Pairs on the Thermodynamic Efficiency and Power Density. J Membrane Sci 2009, 343, 7-15.
14.Kang, B. D.; Kim, H. J.; Lee, M. G.; Kim, D. K., Numerical Study on Energy Harvesting from Concentration Gradient by Reverse Electrodialysis in Anodic Alumina Nanopores. Energy 2015, 86, 525-538.
15.Kim, D. K., Numerical Study of Power Generation by Reverse Electrodialysis in Ion-Selective Nanochannels. J Mech Sci Technol 2011, 25, 5-10.
16.Yeh, H. C.; Chang, C. C.; Yang, R. J., Reverse Electrodialysis in Conical-Shaped Nanopores: Salinity Gradient-Driven Power Generation. Rsc Adv 2014, 4, 2705-2714.
17.Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R., Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge. J Am Chem Soc 2004, 126, 10850-10851.
18.Siwy, Z.; Gu, Y.; Spohr, H. A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. E., Rectification and Voltage Gating of Ion Currents in a Nanofabricated Pore. Europhys Lett 2002, 60, 349-355.
19.Apel, P. Y.; Korchev, Y. E.; Siwy, Z.; Spohr, R.; Yoshida, M., Diode-Like Single-Ion Track Membrane Prepared by Electro-Stopping. Nucl Instrum Meth B 2001, 184, 337-346.
20.Albrecht, T.; Edel, J. B., Engineered Nanopores for Bioanalytical Applications; Elsevier Science: Amsterdam, 2013.
21.Fair, J. C.; Osterle, J. F., Reverse Electrodialysis in Charged Capillary Membranes. J Chem Phys 1971, 54, 3307-&.
22.Wright, M. R., An Introduction to Aqueous Electrolyte Solutions; Wiley: New York, 2007.
23.Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd Edition; John Wiley & Sons: New Jersey, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top