|
Chapter 1 1.Comera, J.; Aksimentiev, A., DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores. Nanoscale 2016, 8, 9600-9613. 2.Choi, E.; Kwon, K.; Kim, D.; Park, J., An Electrokinetic Study on Tunable 3d Nanochannel Networks Constructed by Spatially Controlled Nanoparticle Assembly. Lab Chip 2015, 15, 512-523. 3.Yeh, L. H.; Hughes, C.; Zeng, Z. P.; Qian, S. Z., Tuning Ion Transport and Selectivity by a Salt Gradient in a Charged Nanopore. Anal. Chem. 2014, 86, 2681-2686. 4.Zhang, H. C.; Tian, Y.; Jiang, L., Fundamental Studies and Practical Applications of Bio-Inspired Smart Solid-State Nanopores and Nanochannels. Nano Today 2016, 11, 61-81. 5.Ali, M.; Yameen, B.; Cervera, J.; Ramirez, P.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. J. Am. Chem. Soc. 2010, 132, 8338-8348. 6.Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-2357. 7.Ma, Y.; Yeh, L. H.; Lin, C. Y.; Mei, L. J.; Qian, S. Z., pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Anal. Chem. 2015, 87, 4508-4514. 8.Mei, L. J.; Chou, T. H.; Cheng, Y. S.; Huang, M. J.; Yeh, L. H.; Qian, S. Z., Electrophoresis of pH-Regulated Nanoparticles: Impact of the Stern Layer. Phys. Chem. Chem. Phys. 2016, 18, 9927-9934. 9.Mei, L. J.; Yeh, L. H.; Qian, S. Z., Gate Modulation of Proton Transport in a Nanopore. Phys. Chem. Chem. Phys. 2016, 18, 7449-7458. 10.Kim, S. J.; Wang, Y. C.; Lee, J. H.; Jang, H.; Han, J., Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel. Phys. Rev. Lett. 2007, 99. 11.Lin, C. Y.; Yeh, L. H.; Hsu, J. P.; Tseng, S., Regulating Current Rectification and Nanoparticle Transport through a Salt Gradient in Bipolar Nanopores. Small 2015, 11, 4594-4602. 12.Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H., Single-Molecule DNA Detection with an Engineered Mspa Protein Nanopore. P. Natl. Acad. Sci. U.S.A. 2008, 105, 20647-20652. 13.Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H., Nanopore DNA Sequencing with Mspa. P. Natl. Acad. Sci. U.S.A. 2010, 107, 16060-16065. 14.Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-Layer Mos2 Nanopores as Nanopower Generators. Nature 2016, 536, 197-200. 15.Qiu, Y.; Lin, C. Y.; Hinkle, P.; Plett, T. S.; Yang, C.; Chacko, J. V.; Digman, M. A.; Yeh, L. H.; Hsu, J. P.; Siwy, Z. S., Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles ACS Nano 2016, 10, 8413-8422. 16.Ying, Y. L.; Zhang, J. J.; Gao, R.; Long, Y. T., Nanopore-Based Sequencing and Detection of Nucleic Acids. Angew. Chem. Int. Edit. 2013, 52, 13154-13161. 17.Zhang, H. C.; Hou, X.; Yang, Z.; Yan, D. D.; Li, L.; Tian, Y.; Wang, H. T.; Jiang, L., Bio-Inspired Smart Single Asymmetric Hourglass Nanochannels for Continuous Shape and Ion Transport Control. Small 2015, 11, 786-791. 18.Morris, C. A.; Friedman, A. K.; Baker, L. A., Applications of Nanopipettes in the Analytical Sciences. Analyst 2010, 135, 2190-2202. 19.Perera, R. T.; Johnson, R. P.; Edwards, M. A.; White, H. S., Effect of the Electric Double Layer on the Activation Energy of Ion Transport in Conical Nanopores. J. Phys. Chem. C 2015, 119, 24299-24306. 20.Zeng, Z. P.; Yeh, L. H.; Zhang, M. K.; Qian, S. Z., Ion Transport and Selectivity in Biomimetic Nanopores with pH-Tunable Zwitterionic Polyelectrolyte Brushes. Nanoscale 2015, 7, 17020-17029. 21.Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8, 1978-1985. 22.Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746. 23.Yin, X. H.; Zhang, S. D.; Dong, Y. T.; Liu, S. J.; Gu, J.; Chen, Y.; Zhang, X.; Zhang, X. H.; Shao, Y. H., Ionic Current Rectification in Organic Solutions with Quartz Nanopipettes. Anal. Chem. 2015, 87, 9070-9077. 24.Momotenko, D.; Girault, H. H., Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. J. Am. Chem. Soc. 2011, 133, 14496-14499. 25.Lin, D. H.; Lin, C. Y.; Tseng, S.; Hsu, J. P., Influence of Electroosmotic Flow on the Ionic Current Rectification in a pH-Regulated, Conical Nanopore. Nanoscale 2015, 7, 14023-14031. 26.Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Anal. Chem. 2015, 87, 172-187. 27.Sa, N. Y.; Lan, W. J.; Shi, W. Q.; Baker, L. A., Rectification of Ion Current in Nanopipettes by External Substrates. ACS Nano 2013, 7, 11272-11282. 28.Cervera, J.; Schiedt, B.; Neumann, R.; Mafe, S.; Ramirez, P., Ionic Conduction, Rectification, and Selectivity in Single Conical Nanopores. J. Chem. Phys. 2006, 124. 29.Steinbock, L. J.; Lucas, A.; Otto, O.; Keyser, U. F., Voltage-Driven Transport of Ions and DNA through Nanocapillaries. Electrophoresis 2012, 33, 3480-3487. 30.Bell, N. A. W.; Keyser, U. F., Specific Protein Detection Using Designed DNA Carriers and Nanopores. J. Am. Chem. Soc. 2015, 137, 2035-2041. 31.Gibb, T. R.; Ivanov, A. P.; Edel, J. B.; Albrecht, T., Single Molecule Ionic Current Sensing in Segmented Flow Microfluidics. Anal. Chem. 2014, 86, 1864-1871. 32.Fraccari, R. L.; Ciccarella, P.; Bahrami, A.; Carminati, M.; Ferrari, G.; Albrecht, T., High-Speed Detection of DNA Translocation in Nanopipettes. Nanoscale 2016, 8, 7604-7611. 33.Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S., Biosensing with Nanofluidic Diodes. J. Am. Chem. Soc. 2009, 131, 8211-8220. 34.Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W., Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano 2012, 6, 9247-9257. 35.Liu, Q.; Xiao, K.; Wen, L. P.; Dong, Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nano Channel. ACS Nano 2014, 8, 12292-12299. 36.Gao, R.; Ying, Y. L.; Yan, B. Y.; Iqbal, P.; Preece, J. A.; Wu, X. Y., Ultrasensitive Determination of Mercury(Ii) Using Glass Nanopores Functionalized with Macrocyclic Dioxotetraamines. Microchim. Acta 2016, 183, 491-495. 37.Vogel, R.; Willmott, G.; Kozak, D.; Roberts, G. S.; Anderson, W.; Groenewegen, L.; Glossop, B.; Barnett, A.; Turner, A.; Trau, M., Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor. Anal. Chem. 2011, 83, 3499-3506. 38.Lan, W. J.; White, H. S., Diffusional Motion of a Particle Translocating through a Nanopore. ACS Nano 2012, 6, 1757-1765. 39.German, S. R.; Luo, L.; White, H. S.; Mega, T. L., Controlling Nanoparticle Dynamics in Conical Nanopores. J. Phys. Chem. C 2013, 117, 703-711. 40.Qiu, Y. H.; Vlassiouk, I.; Chen, Y. F.; Siwy, Z. S., Direction Dependence of Resistive-Pulse Amplitude in Conically Shaped Mesopores. Anal. Chem. 2016, 88, 4917-4925. 41.Gamble, T.; Decker, K.; Plett, T. S.; Pevarnik, M.; Pietschmann, J. F.; Vlassiouk, I.; Aksimentiev, A.; Siwy, Z. S., Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling. J. Phys. Chem. C 2014, 118, 9809-9819. 42.Cao, L. X.; Guo, W.; Wang, Y. G.; Jiang, L., Concentration-Gradient-Dependent Ion Current Rectification in Charged Conical Nanopores. Langmuir 2012, 28, 2194-2199. 43.Deng, X. L.; Takami, T.; Son, J. W.; Kang, E. J.; Kawai, T.; Park, B. H., Effect of Concentration Gradient on Ionic Current Rectification in Polyethyleneimine Modified Glass Nano-Pipettes. Sci. Rep.-Uk 2014, 4, 4005. 44.Wang, J. T.; Zhang, M. H.; Zhai, J.; Jiang, L., Theoretical Simulation of the Ion Current Rectification (ICR) in Nano-Pores Based on the Poisson-Nernst-Planck (PNP) Model. Phys. Chem. Chem. Phys. 2014, 16, 23-32. 45.Lan, W. J.; Holden, D. A.; White, H. S., Pressure-Dependent Ion Current Rectification in Conical-Shaped Glass Nanopores. J. Am. Chem. Soc. 2011, 133, 13300-13303. 46.Liu, J.; Kvetny, M.; Feng, J.; Wang, D.; Wu, B.; Brown, W.; Wang, G., Surface Charge Density Determination of Single Conical Nanopores Based on Normalized Ion Current Rectification. Langmuir 2012, 28, 1588-95. 47.Pietschmann, J. F.; Wolfram, M. T.; Burger, M.; Trautmann, C.; Nguyen, G.; Pevarnik, M.; Bayer, V.; Siwy, Z., Rectification Properties of Conically Shaped Nanopores: Consequences of Miniaturization. Phys. Chem. Chem. Phys. 2013, 15, 16917-16926. 48.Kovarik, M. L.; Zhou, K. M.; Jacobson, S. C., Effect of Conical Nanopore Diameter on Ion Current Rectification. J. Phys. Chem. B 2009, 113, 15960-15966. 49.Kubeil, C.; Bund, A., The Role of Nanopore Geometry for the Rectification of Ionic Currents. J. Phys. Chem. C 2011, 115, 7866-7873. 50.Apel, P. Y.; Blonskaya, I. V.; Orelovitch, O. L.; Ramirez, P.; Sartowska, B. A., Effect of Nanopore Geometry on Ion Current Rectification. Nanotechnology 2011, 22, 175302. 51.Wang, X. W.; Xue, J. M.; Wang, L.; Guo, W.; Zhang, W. M.; Wang, Y. G.; Liu, Q.; Ji, H.; Ouyang, Q. Y., How the Geometric Configuration and the Surface Charge Distribution Influence the Ionic Current Rectification in Nanopores. J. Phys. D. Appl. Phys. 2007, 40, 7077-7084. 52.Cervera, J.; Schiedt, B.; Ramirez, P., A Poisson/Nernst-Planck Model for Ionic Transport through Synthetic Conical Nanopores. Europhys. Lett. 2005, 71, 35-41. 53.White, H. S.; Bund, A., Ion Current Rectification at Nanopores in Glass Membranes. Langmuir 2008, 24, 2212-2218. 54.Constantin, D.; Siwy, Z. S., Poisson-Nernst -Planck Model of Ion Current Rectification through a Nanofluidic Diode. Phys. Rev. E 2007, 76, 041202. 55.Ai, Y.; Zhang, M. K.; Joo, S. W.; Cheney, M. A.; Qian, S. Z., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. J. Phys. Chem. C 2010, 114, 3883-3890. 56.Laohakunakorn, N.; Thacker, V. V.; Muthukumar, M.; Keyser, U. F., Electroosmotic Flow Reversal Outside Glass Nanopores. Nano Lett. 2015, 15, 695-702. 57.Albrecht, T.; Edel, J. B., Engineered Nanopores for Bioanalytical Applications; Elsevier Science: Amsterdam, 2013; pp 1-30.. 58.Siwy, Z. S.; Howorka, S., Engineered Voltage-Responsive Nanopores. Chem. Soc. Rev. 2010, 39, 1115-1132.
Chapter 2 1.Kamat, P. V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J Phys Chem C 2007, 111, 2834-2860. 2.Majumdar, A., Thermoelectricity in Semiconductor Nanostructures. Science 2004, 303, 777-778. 3.Logan, B. E.; Elimelech, M., Membrane-Based Processes for Sustainable Power Generation Using Water. Nature 2012, 488, 313-319. 4.Loeb, S., Osmotic Power-Plants. Science 1975, 189, 654-655. 5.Post, J. W.; Hamelers, H. V. M.; Buisman, C. J. N., Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System. Environ Sci Technol 2008, 42, 5785-5790. 6.La Mantia, F.; Pasta, M.; Deshazer, H. D.; Logan, B. E.; Cui, Y., Batteries for Efficient Energy Extraction from a Water Salinity Difference. Nano Lett 2011, 11, 1810-1813. 7.Jeong, H. I.; Kim, H. J.; Kim, D. K., Numerical Analysis of Transport Phenomena in Reverse Electrodialysis for System Design and Optimization. Energy 2014, 68, 229-237. 8.Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature 2013, 494, 455-458. 9.Yip, N. Y.; Vermaas, D. A.; Nijmeijer, K.; Elimelech, M., Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients. Environ Sci Technol 2014, 48, 4925-36. 10.Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-7. 11.Kim, D. K.; Duan, C. H.; Chen, Y. F.; Majumdar, A., Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels. Microfluid Nanofluid 2010, 9, 1215-1224. 12.Cao, L. X.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S. T.; Wang, Y. G.; Jiang, L.; Zhu, D. B., Towards Understanding the Nanofluidic Reverse Electrodialysis System: Well Matched Charge Selectivity and Ionic Composition. Energ Environ Sci 2011, 4, 2259-2266. 13.Veerman, J.; de Jong, R. M.; Saakes, M.; Metz, S. J.; Harmsen, G. J., Reverse Electrodialysis: Comparison of Six Commercial Membrane Pairs on the Thermodynamic Efficiency and Power Density. J Membrane Sci 2009, 343, 7-15. 14.Kang, B. D.; Kim, H. J.; Lee, M. G.; Kim, D. K., Numerical Study on Energy Harvesting from Concentration Gradient by Reverse Electrodialysis in Anodic Alumina Nanopores. Energy 2015, 86, 525-538. 15.Kim, D. K., Numerical Study of Power Generation by Reverse Electrodialysis in Ion-Selective Nanochannels. J Mech Sci Technol 2011, 25, 5-10. 16.Yeh, H. C.; Chang, C. C.; Yang, R. J., Reverse Electrodialysis in Conical-Shaped Nanopores: Salinity Gradient-Driven Power Generation. Rsc Adv 2014, 4, 2705-2714. 17.Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R., Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge. J Am Chem Soc 2004, 126, 10850-10851. 18.Siwy, Z.; Gu, Y.; Spohr, H. A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. E., Rectification and Voltage Gating of Ion Currents in a Nanofabricated Pore. Europhys Lett 2002, 60, 349-355. 19.Apel, P. Y.; Korchev, Y. E.; Siwy, Z.; Spohr, R.; Yoshida, M., Diode-Like Single-Ion Track Membrane Prepared by Electro-Stopping. Nucl Instrum Meth B 2001, 184, 337-346. 20.Albrecht, T.; Edel, J. B., Engineered Nanopores for Bioanalytical Applications; Elsevier Science: Amsterdam, 2013. 21.Fair, J. C.; Osterle, J. F., Reverse Electrodialysis in Charged Capillary Membranes. J Chem Phys 1971, 54, 3307-&. 22.Wright, M. R., An Introduction to Aqueous Electrolyte Solutions; Wiley: New York, 2007. 23.Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd Edition; John Wiley & Sons: New Jersey, 2000.
|