|
1.Boanini E., Torricelli P., Gazzano M., Della Bella E., Fini M., and Bigi A., Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses. Biomaterials, 2014. 35(21): p. 5619-5626. 2.Aina V., Bergandi L., Lusvardi G., Malavasi G., Imrie F.E., Gibson I.R., Cerrato G., and Ghigo D., Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Mater Sci Eng C Mater Biol Appl, 2013. 33(3): p. 1132-1142. 3.Robert W.B., Ann C., and Ralph H., Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res, 1989. 187(240): p. 53–62. 4.Hoogendoorn HA., Renooij W., Visser W., and Wittebol P., Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora. Clin Orthop Relat Res, 1984. 187: p. 281–288. 5.Evis Z. and Webster T.J., Nanosize hydroxyapatite: doping with various ions. Advances in Applied Ceramics, 2013. 110(5): p. 311-321. 6.Bruice T.C., BlaskoÄ A., and Petyak A.M.E., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. J. Am. Chem. Soc.,, 1996. 118(12): p. 3071. 7.Curran D.J., Fleming T.J., Towler M.R., and Hampshire S., Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. J Mech Behav Biomed Mater, 2011. 4(8): p. 2063-2073. 8.Takahashi N., Sasaki T., Tsouderos Y., and Suda T., S 12911-2 Inhibits Osteoclastic Bone Resorption In Vitro. Journal of Bone and Mineral Research, 2003. 18(6): p. 1082-1087. 9.Canalis E., Hott M., Deloffre P., Y. Tsouderos, and Marie P.J., The Divalent Strontium Salt S12911 Enhances Bone Cell Replication and Bone Formation In Vitro. Bone, 1996. 18(6): p. 517-523. 10.Onder S., Calikoglu-Koyuncu A.C., Kazmanli K., Urgen M., Torun Kose G., and Kok F.N., Behavior of mammalian cells on magnesium substituted bare and hydroxyapatite deposited (Ti,Mg)N coatings. N Biotechnol, 2015. 32(6): p. 747-755. 11.Stipniece L., Salma-Ancane K., Borodajenko N., Sokolova M., Jakovlevs D., and Berzina-Cimdina L., Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceramics International, 2014. 40(2): p. 3261-3267. 12.Chen W., Liu Y., Courtney H.S., Bettenga M., Agrawal C.M., Bumgardner J.D., and Ong J.L., In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 2006. 27(32): p. 5512-5517. 13.Li Z.Y., Lam W.M., Yang C., Xu B., Ni G.X., Abbah S.A., Cheung K.M., Luk K.D., and Lu W.W., Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials, 2007. 28(7): p. 1452-1460. 14.Gross K.A. and Berndt C.C., Thermal processing of hydroxyapatite for coating production. J Biomed Mater Res, 1997. 39(4): p. 580-587. 15.Lang S.B., Tofail S.A., Kholkin A.L., Wojtas M., Gregor M., Gandhi A.A., Wang Y., Bauer S., Krause M., and Plecenik A., Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci Rep, 2013. 3: p. 2215. 16.Raina D.B., Isaksson H., Hettwer W., Kumar A., Lidgren L., and Tagil M., A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone. Sci Rep, 2016. 6: p. 26033. 17.Sun D., Chen Y., Tran R.T., Xu S., Xie D., Jia C., Wang Y., Guo Y., Zhang Z., Guo J., Yang J., Jin D., and Bai X., Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration. Sci Rep, 2014. 4: p. 6912. 18.Zhang Y., Deng X., Jiang D., Luo X., Tang K., Zhao Z., Zhong W., Lei T., and Quan Z., Long-term results of anterior cervical corpectomy and fusion with nano-hydroxyapatite/polyamide 66 strut for cervical spondylotic myelopathy. Sci Rep, 2016. 6: p. 26751. 19.Zhang Y., Liu W., Banks C.E., Liu F., Li M., Xia F., and Yang X., A fluorescence-quenching platform based on biomineralized hydroxyapatite from natural seashell and applied to cancer cell detection. Sci Rep, 2014. 4: p. 7556. 20.Zhao M., Li H., Liu X., Wei J., Ji J., Yang S., Hu Z., and Wei S., Response of Human Osteoblast to n-HA/PEEK--Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite. Sci Rep, 2016. 6: p. 22832. 21.Laurencin C.T., Khan Y., and Veronick J., Bone Graft Substitutes: Past, Present, and Future. Bone Graft Substitutes and Bone Regenerative Engineering: p. 1-9. 22.Lan J.M., Tomin E., and Bostrom M.P.G., Biosynthetic Bone Grafting. Clin. Orthop Relat. R., 1999. 367: p. 107-117. 23.LeGeros R.Z., Properties of Osteoconductive Biomaterials: Calcium Phosphates. Clinical Orthopaedics and Related Research, 2002. 395: p. 81-98. 24.Bucholz R.W., Carlton A., and Holmes R., Interporous Hydroxyapatite as a Bone Graft Substitute in Tibia1 Plateau Fractures. Clin Orthop Relat Res, 1998. 240: p. 53-62. 25.Kumta P.N., Sfeir C., Lee D.H., Olton D., and Choi D., Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater, 2005. 1(1): p. 65-83. 26.Habibovic P. and de Groot K., Osteoinductive biomaterials--properties and relevance in bone repair. J Tissue Eng Regen Med, 2007. 1(1): p. 25-32. 27.Oryan A., Alidadi S., Moshiri A., and Maffulli N., Bone regenerative medicine: classic options, novel strategies, and future directions. journal of orthopaedic surgery and research, 2014. 9: p. 18. 28.West A.R., Wiley, and Sons, Solid State Chemistry and its Applications. 2005. 29.Pramanik S., Agarwal A.K., Rai K.N., and Garg A., Development of high strength hydroxyapatite by solid-state-sintering process. Ceramics International, 2007. 33(3): p. 419-426. 30.Adler A.D., Longo F.R., Kampas F., and Kim J., On the preparation of metalloporphyrins. Journal of Inorganic and Nuclear Chemistry, 1970. 32(7): p. 2443. 31.Landi E., Tampieri A., and G. Celotti S.S., Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society, 2000. 20(14-15): p. 2377-2387. 32.Lin K., Liu P., Wei L., Zou Z., Zhang W., Qian Y., Shen Y., and Chang J., Strontium substituted hydroxyapatite porous microspheres: Surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chemical Engineering Journal, 2013. 222: p. 49-59. 33.Elliott J.C., Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier Science Inc., 1994. 118(12): p. 3071-3072. 34.Zeglinski J., Nolan M., Bredol M., Schatte A., and Tofail S.A., Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses. Phys Chem Chem Phys, 2012. 14(10): p. 3435-3443. 35.Chung C.J. and Long H.Y., Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses. Acta Biomater, 2011. 7(11): p. 4081-7. 36.Boyd A.R., Rutledge L., Randolph L.D., and Meenan B.J., Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater Sci Eng C Mater Biol Appl, 2015. 46: p. 290-300. 37.Gopi D., Ramya S., Rajeswari D., Karthikeyan P., and Kavitha L., Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 451: p. 172-180. 38.Li Y., Feng G., Gao Y., Luo E., Liu X., and Hu J., Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res, 2010. 28(5): p. 578-82. 39.Schumacher M. and Gelinsky M., Strontium modified calcium phosphate cements – approaches towards targeted stimulation of bone turnover. J. Mater. Chem. B, 2015. 3(23): p. 4626-4640. 40.Wang X., Wang Y., Li L., Gu Z., Xie H., and Yu X., Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro. Ceramics International, 2014. 40(5): p. 6999-7005. 41.Kavitha M., Subramanian R., Narayanan R., and Udhayabanu V., Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals. Powder Technology, 2014. 253: p. 129-137. 42.Xue W., Hosick H.L., Bandyopadhyay A., Bose S., Ding C., Luk K.D.K., Cheung K.M.C., and Lu W.W., Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surface and Coatings Technology, 2007. 201(8): p. 4685-4693. 43.Vahabzadeh S., Roy M., Bandyopadhyay A., and Bose S., Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater, 2015. 17: p. 47-55. 44.Ni G.X., Lu W.W., Xu B., Chiu K.Y., Yang C., Li Z.Y., Lam W.M., and Luk K.D., Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials, 2006. 27(29): p. 5127-33. 45.Tavares D.d.S., Resende C.X., Quitan M.P., Castro L.d.O., Granjeiro J.M., and Soares G.d.A., Incorporation of strontium up to 5 Mol. (%) to hydroxyapatite did not affect its cytocompatibility. Materials Research, 2011. 14(4): p. 456-460. 46.Xu J., Yang Y., Wan R., Shen Y., and Zhang W., Hydrothermal preparation and characterization of ultralong strontium-substituted hydroxyapatite whiskers using acetamide as homogeneous precipitation reagent. ScientificWorldJournal, 2014. 2014: p. 863137. 47.Verberckmoes S.C., Behets G.J., Oste L., Bervoets A.R., Lamberts L.V., Drakopoulos M., Somogyi A., Cool P., Dorrine W., De Broe M.E., and D''Haese P.C., Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int, 2004. 75(5): p. 405-415. 48.Brook I., Freeman C., Grubb S., Cummins N., Curran D., Reidy C., Hampshire S., and Towler M., Biological evaluation of nano-hydroxyapatite-zirconia (HA-ZrO2) composites and strontium-hydroxyapatite (Sr-HA) for load-bearing applications. J Biomater Appl, 2012. 27(3): p. 291-298. 49.Wong K.L., Wong C.T., Liu W.C., Pan H.B., Fong M.K., Lam W.M., Cheung W.L., Tang W.M., Chiu K.Y., Luk K.D., and Lu W.W., Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Biomaterials, 2009. 30(23-24): p. 3810-3817. 50.Su Y., Li D., Su Y., Lu C., Niu L., Lian J., and Li G., Improvement of the Biodegradation Property and Biomineralization Ability of Magnesium–Hydroxyapatite Composites with Dicalcium Phosphate Dihydrate and Hydroxyapatite Coatings. ACS Biomaterials Science & Engineering, 2016. 2(5): p. 818-828. 51.Huang B., Yuan Y., Li T., Ding S., Zhang W., Gu Y., and Liu C., Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface. Sci Rep, 2016. 6: p. 24323. 52.Kheradmandfard M. and Fathi M.H., Preparation and characterization of Mg-doped fluorapatite nanopowders by sol–gel method. Journal of Alloys and Compounds, 2010. 504(1): p. 141-145. 53.Mroz W., Budner B., Syroka R., Niedzielski K., Golanski G., Slosarczyk A., Schwarze D., and Douglas T.E., In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion. J Biomed Mater Res B Appl Biomater, 2015. 103(1): p. 151-158. 54.Li X., Li Y., Liao Y., Li J., Zhang L., and Hu J., The effect of magnesium-incorporated hydroxyapatite coating on titanium implant fixation in ovariectomized rats. Int J Oral Maxillofac Implants, 2014. 29(1): p. 196-202. 55.Aina V., Lusvardi G., Annaz B., Gibson I.R., Imrie F.E., Malavasi G., Menabue L., Cerrato G., and Martra G., Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med, 2012. 23(12): p. 2867-2879. 56.O''Donnell M.D., Fredholm Y., de Rouffignac A., and Hill R.G., Structural analysis of a series of strontium-substituted apatites. Acta Biomater, 2008. 4(5): p. 1455-1464. 57.Aminzadeh A., Fluorescence bands in the FT-Raman spectra of some calcium minerals. Spectrochimica Acta Part A, 1997. 53(5): p. 693-697. 58.Dallari D., Savarino L., Albisinni U., Fornasari P., Ferruzzi A., Baldini N., and Giannini S., A prospective, randomised, controlled trial using a Mg-hydroxyapatite - demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials, 2012. 33(1): p. 72-79. 59.Fung Y.C., Biomechanics. Mechanical Properties of Living Tissues. Springer-Verlag Inc., New York, 1993: p. 500. 60.J. D. Currey e.b.A.K.a.S.T.M., Handbook of Composites. Elsevier Science Publishers B. V., 1983. 4: p. 501. 61.Park J.B., Biomaterials Science and Engineering. Plenum Press, New York, 1987. 62.Suchanek W. and Yoshimura M., Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 2011. 13(01): p. 94-117. 63.Barralet J., Knowles J.C., and Bonifield S.B.W., Thermal decomposition of synthesised carbonate hydroxyapatite. Journal of maTERIALS SCIENCE IN MEDICINE, 2002. 13: p. 529-533. 64.Weng J., Liu X., Zhang X., and JI X., Thermal decomposition of hydroxyapatite structure induced by titanium and its dioxide. JOURNAL OF MATERIALS SCIENCE LETTERS, 1994. 13: p. 159-161. 65.Hobbs M.K. and Reiter H., RESIDUAL STRESSES IN Zr02-8%Y203 PLASMA-SPRAYED THERMAL BARRIER COATINGS. Surface and Coatings Technology, 1988. 34: p. 33-34. 66.Brown S.R., Turner I.G., and Reiter H., Residual stress measurement in thermal sprayed hydroxyapatite coatings. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE, 1994. 5: p. 756-759. 67.Eto S., Kawano S., Someya S., Miyamoto H., Sonohata M., and Mawatari M., First Clinical Experience With Thermal-Sprayed Silver Oxide-Containing Hydroxyapatite Coating Implant. J Arthroplasty, 2016. 31(7): p. 1498-503. 68.Sengstock C., Diendorf J., Epple M., Schildhauer T.A., and Koller M., Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J Nanotechnol, 2014. 5: p. 2058-2069. 69.Hardes J., von Eiff C., Streitbuerger A., Balke M., Budny T., Henrichs M.P., Hauschild G., and Ahrens H., Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol, 2010. 101(5): p. 389-395. 70.Hussmann B., Johann I., Kauther M.D., Landgraeber S., Jager M., and Lendemans S., Measurement of the silver ion concentration in wound fluids after implantation of silver-coated megaprostheses: correlation with the clinical outcome. Biomed Res Int, 2013. 2013: p. 763096. 71.Eto S., Miyamoto H., Shobuike T., Noda I., Akiyama T., Tsukamoto M., Ueno M., Someya S., Kawano S., Sonohata M., and Mawatari M., Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur. J Orthop Res, 2015. 33(9): p. 1391-1397. 72.Schmitt C.M., Koepple M., Moest T., Neumann K., Weisel T., and Schlegel K.A., In vivo evaluation of biofunctionalized implant surfaces with a synthetic peptide (P-15) and its impact on osseointegration. A preclinical animal study. Clin Oral Implants Res, 2016. 27(11): p. 1339-1348. 73.TE L., R Y., S S.M., and R. M., The Putative Collagen Binding Peptide Hastens Periodontal Ligament Cell Attachment to Bone Replacement Graft Materials. J Periodontol, 2001. 72(8): p. 990-997. 74.JJ Q. and RS B., Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen. J Biomed Mater Res., 1996. 31(4): p. 545-554. 75.R. S. Bhatnagar, Qian J.J., Wedrychowska A., Dixon E., Smith N., and Beirne O.R., Biomimetic Habitats for Cells: Ordered Matrix Deposition and Differentiation in Gingival Fibroblasts Cultured on Hydroxyapatite Coated with a Collagen Analogue. Cells and Materials, 1999. 9(2): p. 93-104. 76.Nguyen H., Qian J.J., Bhatnagar R.S., and Li S., Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochemical and Biophysical Research Communications, 2003. 311(1): p. 179-186. 77.Fan Y., Sun Z., and Moradian-Oldak J., Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials, 2009. 30(4): p. 478-483. 78.de Lima I.R., Alves G.G., Soriano C.A., Campaneli A.P., Gasparoto T.H., Ramos E.S., Jr., de Sena L.A., Rossi A.M., and Granjeiro J.M., Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A, 2011. 98(3): p. 351-358. 79.Kaygili O. and Keser S., Zr/Mg, Zr/Sr and Zr/Zn co-doped hydroxyapatites: Synthesis and characterization. Ceramics International, 2016. 42(7): p. 9270-9273. 80.Geng Z., Cui Z., Li Z., Zhu S., Liang Y., Lu W.W., and Yang X., Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite. J. Mater. Chem. B, 2015. 3(18): p. 3738-3746. 81.Roy M., Bandyopadhyay A., and Bose S., Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J Biomed Mater Res B Appl Biomater, 2011. 99(2): p. 258-65. 82.Silva C.C. and Sombra A.S.B., Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying. Journal of Physics and Chemistry of Solids, 2004. 65(5): p. 1031-1033. 83.Parker J.M.., Seddon A.B., fibres. I.-t.o., M C., and JM P., High-performance glasses. London : Blackie. 1992: p. 252-286. 84.Kannan S., Lemos A.F., Rocha J.H.G., and Ferreira J.M.F., Characterization and Mechanical Performance of the Mg-Stabilized beta-Ca3(PO4)2 Prepared from Mg-Substituted Ca-Deficient Apatite. Journal of the American Ceramic Society, 2006. 0(0): p. 2757-2761. 85.International Designation, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, C633 − 13. 86.Geng Z., Wang R., Li Z., Cui Z., Zhu S., Liang Y., Liu Y., Huijing B., Li X., Huo Q., Liu Z., and Yang X., Synthesis, characterization and biological evaluation of strontium/magnesium-co-substituted hydroxyapatite. J Biomater Appl, 2016. 31(1): p. 140-151. 87.Bodhak S., Bose S., and Bandyopadhyay A., Bone cell–material interactions on metal-ion doped polarized hydroxyapatite. Materials Science and Engineering: C, 2011. 31(4): p. 755-761.
|