|
1.Wu, C.-S., Influence of post-curing and temperature effects on bulk density, glass transition and stress-strain behaviour of imidazole-cured epoxy network. Journal of Materials Science, 1992. 27(11): p. 2952-2959. 2.Rajagopalan, N.; Khanna, A.S., Effect of Methyltrimethoxy Silane Modification on Yellowing of Epoxy Coating on UV (B) Exposure. Journal of Coatings, 2014. 2014: p. 1-7. 3.Mailhot, B.; Morlat-Thérias, S.; Ouahioune, M.; Gardette, J.-L., Study of the Degradation of an Epoxy/Amine Resin, 1. Macromolecular Chemistry and Physics, 2005. 206(5): p. 575-584. 4.Down, J.L., The Yellowing of Epoxy Resin Adhesives: Report on High-Intensity Light Aging. Studies in Conservation, 1986. 31(4): p. 159. 5.Rivaton, A.; Moreau, L.; Gardette, J.-L., Photo-oxidation of phenoxy resins at long and short wavelengths—II. Mechanisms of formation of photoproducts. Polymer Degradation and Stability, 1997. 58(3): p. 333-339. 6.Zhang, G.; Pitt, W.G.; Goates, S.R.; Owen, N.L., Studies on oxidative photodegradation of epoxy resins by IR-ATR spectroscopy. Journal of Applied Polymer Science, 1994. 54(4): p. 419-427. 7.Lowrey, K.W., The use of epoxy resins in civil engineering. Pigment & Resin Technology, 1974. 3(6): p. 4-5. 8.Hristov, V.; Vasileva, S., Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 2003. 288(10): p. 798-806. 9.Bard, A.J.; Faulkner, L.R.; Leddy, J.; Zoski, C.G., Electrochemical methods: fundamentals and applications (Wiley New York, Vol. 2. 1980). 10.Huang, W.-S.; Humphrey, B.D.; MacDiarmid, A.G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986. 82(8): p. 2385. 11.Chiang, J.-C.; MacDiarmid, A.G., ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 1986. 13(1-3): p. 193-205. 12.MacDiarmid, A.G.; Epstein, A.J., Secondary doping in polyaniline. Synthetic Metals, 1995. 69(1-3): p. 85-92. 13.Tzou, K.; Gregory, R.V., Kinetic study of the chemical polymerization of aniline in aqueous solutions. Synthetic Metals, 1992. 47(3): p. 267-277. 14.Geng, Y.; Li, J.; Sun, Z.; Jing, X.; Wang, F., Polymerization of aniline in an aqueous system containing organic solvents. Synthetic Metals, 1998. 96(1): p. 1-6. 15.Wei, Y.; Tang, X.; Sun, Y.; Focke, W.W., A study of the mechanism of aniline polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1989. 27(7): p. 2385-2396. 16.Geniès, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C., Polyaniline: A historical survey. Synthetic Metals, 1990. 36(2): p. 139-182. 17.Tan, S.X.; Zhai, J.; Wan, M.X.; Jiang, L.; Zhu, D.B., Polyaniline as Hole Transport Material to Prepare Solid Solar Cells. Synthetic Metals, 2003. 137(1-3): p. 1511-1512. 18.Tang, Q.; Cai, H.; Yuan, S.; Wang, X., Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J. Mater. Chem. A, 2013. 1(2): p. 317-323. 19.Zhang, K.; Zhang, L.L.; Zhao, X.S.; Wu, J.S., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 2010. 22(4): p. 1392-1401. 20.Kobayashi, T.; Yoneyama, H.; Tamura, H., Polyaniline film-coated electrodes as electrochromic display devices. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984. 161(2): p. 419-423. 21.Wei, H.; Zhu, J.; Wu, S.; Wei, S.; Guo, Z., Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer, 2013. 54(7): p. 1820-1831. 22.Mengoli, G.; Munari, M.T.; Bianco, P.; Musiani, M.M., Anodic synthesis of polyaniline coatings onto fe sheets. Journal of Applied Polymer Science, 1981. 26(12): p. 4247-4257. 23.DeBerry, D.W., Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating. Journal of The Electrochemical Society, 1985. 132(5): p. 1022. 24.Wessling, B.; Posdorfer, J., Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochimica Acta, 1999. 44(12): p. 2139-2147. 25.Wessling, B., Corrosion prevention with an organic metal (polyaniline): Surface ennobling, passivation, corrosion test results. Materials and Corrosion/Werkstoffe und Korrosion, 1996. 47(8): p. 439-445. 26.Lu, W.-K.; Elsenbaumer, R.L.; Wessling, B., Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals, 1995. 71(1-3): p. 2163-2166. 27.Wessling, B., Passivation of metals by coating with polyaniline: Corrosion potential shift and morphological changes. Advanced Materials, 1994. 6(3): p. 226-228. 28.Zhong, L.; Zhu, H.; Hu, J.; Xiao, S.H.; Gan, F.X., A passivation mechanism of doped polyaniline on 410 stainless steel in deaerated H2SO4 solution. Electrochimica Acta, 2006. 51(25): p. 5494-5501. 29.Kinlen, P.J.; Ding, Y.; Silverman, D.C., Corrosion Protection of Mild Steel Using Sulfonic and Phosphonic Acid-Doped Polyanilines. Corrosion, 2002. 58(6): p. 490-497. 30.Torresi, R.M.; de Souza, S.; da Silvaa, J.E.P.; de Torresi, S.I.C., Galvanic coupling between metal substrate and polyaniline acrylic blends: corrosion protection mechanism. Electrochimica Acta, 2005. 50(11): p. 2213-2218. 31.Kinlen, P.J., A Mechanistic Investigation of Polyaniline Corrosion Protection Using the Scanning Reference Electrode Technique. Journal of The Electrochemical Society, 1999. 146(10): p. 3690. 32.Alvi, F., Corrosion Inhibition Study of Zinc Oxide-Polyaniline Nanocomposite for Aluminum and Steel. American Journal of Applied Chemistry, 2015. 3(2): p. 57. 33.Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Weng, C.J.; Yang, T.I.; Yeh, J.M., Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon, 2012. 50(14): p. 5044-5051. 34.Jang, B.Z.; Huang, W.C., Nano-scaled graphene plates. 2006, Google Patents. 35.Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9. 36.Geim, A.K.; Novoselov, K.S., The rise of graphene. Nat Mater, 2007. 6(3): p. 183-91. 37.Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200. 38.Lee, C.; Wei, X.; Kysar, J.W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-8. 39.Jang, B.Z.; Zhamu, A., Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. Journal of Materials Science, 2008. 43(15): p. 5092-5101. 40.Hummers, W.S.; Offeman, R.E., Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339. 41.Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565. 42.Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J., The Chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 2013. 53: p. 38-49. 43.Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K., Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006. 97(18): p. 187401. 44.Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun''Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008. 3(9): p. 563-8. 45.Nuvoli, D.; Valentini, L.; Alzari, V.; Scognamillo, S.; Bon, S.B.; Piccinini, M.; Illescas, J.; Mariani, A., High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 2011. 21(10): p. 3428-3431. 46.Fan, S., Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science, 1999. 283(5401): p. 512-514. 47.Tasca, F.; Harreither, W.; Ludwig, R.; Gooding, J.J.; Gorton, L., Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface. Anal Chem, 2011. 83(8): p. 3042-9. 48.Chatterjee, S.; Layek, R.K.; Nandi, A.K., Changing the morphology of polyaniline from a nanotube to a flat rectangular nanopipe by polymerizing in the presence of amino-functionalized reduced graphene oxide and its resulting increase in photocurrent. Carbon, 2013. 52: p. 509-519. 49.Kotal, M.; Bhowmick, A.K., Multifunctional Hybrid Materials Based on Carbon Nanotube Chemically Bonded to Reduced Graphene Oxide. The Journal of Physical Chemistry C, 2013. 117(48): p. 25865-25875. 50.Gao, Z.; Wang, F.; Chang, J.; Wu, D.; Wang, X.; Wang, X.; Xu, F.; Gao, S.; Jiang, K., Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochimica Acta, 2014. 133: p. 325-334. 51.Wang, G.; Wang, B.; Park, J.; Wang, Y.; Sun, B.; Yao, J., Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 2009. 47(14): p. 3242-3246. 52.Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J., Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon, 2009. 47(5): p. 1359-1364. 53.Dobbins, T.; Chevious, R.; Lvov, Y., Behavior of Na+-Polystyrene Sulfonate at the Interface with Single-Walled Carbon Nanotubes (SWNTs) and Its Implication to SWNT Suspension Stability. Polymers, 2011. 3(4): p. 942-954. 54.Liu, S.; Liu, X.; Li, Z.; Yang, S.; Wang, J., Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J. Chem., 2011. 35(2): p. 369-374. 55.Yoo, D.; Kim, J.; Kim, J.H., Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Research, 2014. 7(5): p. 717-730. 56.Liang, Q.; Yao, X.; Wang, W.; Liu, Y.; Wong, C.P., A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano, 2011. 5(3): p. 2392-401. 57.Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; Sood, A.K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol, 2008. 3(4): p. 210-5. 58.Lin, Y.M.; Jenkins, K.A.; Valdes-Garcia, A.; Small, J.P.; Farmer, D.B.; Avouris, P., Operation of graphene transistors at gigahertz frequencies. Nano Lett, 2009. 9(1): p. 422-6. 59.Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y., Supercapacitor Devices Based on Graphene Materials. The Journal of Physical Chemistry C, 2009. 113(30): p. 13103-13107. 60.Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z., Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-8. 61.Li, Z.; Wang, R.; Young, R.J.; Deng, L.; Yang, F.; Hao, L.; Jiao, W.; Liu, W., Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer, 2013. 54(23): p. 6437-6446. 62.Tang, L.-C.; Wan, Y.-J.; Yan, D.; Pei, Y.-B.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 2013. 60: p. 16-27. 63.Hussein, A.; Sarkar, S.; Oh, D.; Lee, K.; Kim, B., Epoxy/p-phenylenediamine functionalized graphene oxide composites and evaluation of their fracture toughness and tensile properties. Journal of Applied Polymer Science, 2016. 133(34). 64.Bortz, D.R.; Heras, E.G.; Martin-Gullon, I., Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules, 2012. 45(1): p. 238-245. 65.Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G.H.; Vahid, S., Improving the fracture toughness and the strength of epoxy using nanomaterials--a review of the current status. Nanoscale, 2015. 7(23): p. 10294-329. 66.Wan, Y.-J.; Gong, L.-X.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X., Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Composites Part A: Applied Science and Manufacturing, 2014. 64: p. 79-89. 67.Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L.H.; Chen, Y.; Fox, B., Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep, 2014. 4: p. 4375. 68.Zaman, I.; Kuan, H.-C.; Meng, Q.; Michelmore, A.; Kawashima, N.; Pitt, T.; Zhang, L.; Gouda, S.; Luong, L.; Ma, J., A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites. Advanced Functional Materials, 2012. 22(13): p. 2735-2743. 69.Zhang, H.B.; Yan, Q.; Zheng, W.G.; He, Z.; Yu, Z.Z., Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces, 2011. 3(3): p. 918-24. 70.Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L., Impermeable atomic membranes from graphene sheets. Nano Lett, 2008. 8(8): p. 2458-62. 71.Sun, W.; Wang, L.D.; Wu, T.T.; Pan, Y.Q.; Liu, G.C., Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection. Carbon, 2014. 79: p. 605-614. 72.Chang, K.-C.; Hsu, M.-H.; Lu, H.-I.; Lai, M.-C.; Liu, P.-J.; Hsu, C.-H.; Ji, W.-F.; Chuang, T.-L.; Wei, Y.; Yeh, J.-M.; Liu, W.-R., Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon, 2014. 66: p. 144-153. 73.Schriver, M.; Regan, W.; Gannett, W.J.; Zaniewski, A.M.; Crommie, M.F.; Zettl, A., Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano, 2013. 7(7): p. 5763-8. 74.Si, W.; Wu, X.; Zhou, J.; Guo, F.; Zhuo, S.; Cui, H.; Xing, W., Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes. Nanoscale Res Lett, 2013. 8(1): p. 247. 75.Toupin, M.; Belanger, D., Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations. Langmuir, 2008. 24(5): p. 1910-7. 76.Huang, Y.L.; Tien, H.W.; Ma, C.C.M.; Yang, S.Y.; Wu, S.Y.; Liu, H.Y.; Mai, Y.W., Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. Journal of Materials Chemistry, 2011. 21(45): p. 18236-18241. 77.Li, Z.F.; Zhang, H.Y.; Liu, Q.; Liu, Y.D.; Stanciu, L.; Xie, J., Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon, 2014. 71: p. 257-267. 78.Yuan, B.H.; Bao, C.L.; Song, L.; Hong, N.N.; Liew, K.M.; Hu, Y., Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chemical Engineering Journal, 2014. 237: p. 411-420. 79.Galande, C.; Mohite, A.D.; Naumov, A.V.; Gao, W.; Ci, L.; Ajayan, A.; Gao, H.; Srivastava, A.; Weisman, R.B.; Ajayan, P.M., Quasi-molecular fluorescence from graphene oxide. Sci Rep, 2011. 1: p. 85. 80.Bocchini, S.; Chiolerio, A.; Porro, S.; Accardo, D.; Garino, N.; Bejtka, K.; Perrone, D.; Pirri, C.F., Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. Journal of Materials Chemistry C, 2013. 1(33): p. 5101. 81.Xu, J.; Wang, K.; Zu, S.Z.; Han, B.H.; Wei, Z., Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 2010. 4(9): p. 5019-26. 82.Nguyen, V.H.; Shim, J.J., Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites. Journal of Spectroscopy, 2015. 2015: p. 1-9. 83.Trchová, M.; Morávková, Z.; Bláha, M.; Stejskal, J., Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochimica Acta, 2014. 122: p. 28-38. 84.Wang, G.; Xing, W.; Zhuo, S., The production of polyaniline/graphene hybrids for use as a counter electrode in dye-sensitized solar cells. Electrochimica Acta, 2012. 66: p. 151-157. 85.Cochet, M.; Louarn, G.; Quillard, S.; Buisson, J.P.; Lefrant, S., Theoretical and experimental vibrational study of emeraldine in salt form. Part II. Journal of Raman Spectroscopy, 2000. 31(12): p. 1041-1049. 86.Wang, H.; Wang, Y.; Cao, X.; Feng, M.; Lan, G., Vibrational properties of graphene and graphene layers. Journal of Raman Spectroscopy, 2009. 40(12): p. 1791-1796. 87.Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K.M., Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt Express, 2012. 20(17): p. 19463-73. 88.Barton, J.M., The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions. 1985. 72: p. 111-154. 89.Palaniappan, S.; Sreedhar, B.; Nair, S.M., Polyaniline as a Curing Agent for Epoxy Resin: Cure Kinetics by Differential Scanning Calorimetry. Macromolecular Chemistry and Physics, 2001. 202(7): p. 1227-1231. 90.Jang, J.; Bae, J.; Lee, K., Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer, 2005. 46(11): p. 3677-3684. 91.Lu, J.; Moon, K.-S.; Kim, B.-K.; Wong, C.P., High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer, 2007. 48(6): p. 1510-1516. 92.Olivier, P.A., A note upon the development of residual curing strains in carbon/epoxy laminates. Study by thermomechanical analysis. Composites Part A: Applied Science and Manufacturing, 2006. 37(4): p. 602-616. 93.Green, K.J.; Dean, D.R.; Vaidya, U.K.; Nyairo, E., Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites Part A: Applied Science and Manufacturing, 2009. 40(9): p. 1470-1475. 94.Huang, J.; Xiao, Y.; Mya, K.Y.; Liu, X.; He, C.; Dai, J.; Siow, Y.P., Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides. Journal of Materials Chemistry, 2004. 14(19): p. 2858. 95.Yamashita, T.; Hayes, P., Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449. 96.Wang, S.G.; Han, G.; Yu, G.H.; Jiang, Y.; Wang, C.; Kohn, A.; Ward, R.C.C., Evidence for FeO formation at the Fe/MgO interface in epitaxial TMR structure by X-ray photoelectron spectroscopy. Journal of Magnetism and Magnetic Materials, 2007. 310(2): p. 1935-1936. 97.Wessling, B., Scientific and Commercial Breakthrough for Organic Metals. Synthetic Metals, 1997. 85(1-3): p. 1313-1318. 98.Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F., Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Communications, 2012. 152(15): p. 1341-1349.
|