跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 04:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余柏毅
研究生(外文):Bor-Yih Yu
論文名稱:各類煤炭氣化多聯產化學品程序之設計、最適化與經濟分析
論文名稱(外文):Design, Optimization and Economical Evaluation of Coal-based Poly-generation Process to Produce Chemicals
指導教授:錢義隆
指導教授(外文):I-Lung Chien
口試日期:2017-06-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:211
中文關鍵詞:煤炭氣化多聯產合成天然氣甲醇製烯烴乙二醇設計與最適化經濟分析
外文關鍵詞:Coal GasificationPoly-generationSynthetic Natural Gas (SNG)Methanol-to-OlefinEthylene GlycolProcess Design and OptimizationEconomical Evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討各類煤炭氣化以多聯產製化學品的製程設計、最適化與經濟評估研究。由於國內缺少能源來源,因此逾98%的能源來源仰賴進口。而煤炭價格便宜、全球存量豐、且易於運送,因此為國內最主要的能源來源之一,未來煤炭在國內仍將扮演重要的角色。
氣化過程為此類研究的核心,而本研究以此為起點。首先,本研究提出一維的氣化爐模型,探討煤炭與生質能源在不同條件下的操作情形。接續探討的是煤炭氣化以合成天然氣生產程序、以及合成天然氣與氨的多聯產生產與操作。由於進口天然氣需要經過壓縮與液化等步驟,導致價格昂貴(11.3~11.7 USD/MMBTU),因此由煤炭以產合成天然氣頗具經濟效益(10.336 USD/MMBTU)。若以多聯產的方式生產,則可提升經濟效益,但若其中一產物的產量相對過小時,經濟效益的提升即不明顯。
再來探討的是新穎的甲醇產製烯烴程序的整廠製程,以產製乙烯與丙烯產物為主要目標。本研究針對此程序進行完整嚴密的模擬,並仔細探討各個變數所造成的影響。由於丙烷與丙烯沸點相近,不易分離,因此本研究亦特別針對丙烷與丙烯分離系統進行探討。所探討的分離方法有以下四種,分別為使用蒸氣作熱源的傳統單塔分離、使用熱廢水作熱源的傳統單塔式分離、利用蒸氣再壓縮循環做熱整合的傳統單塔式分離、以及利用乙腈溶液作挾帶劑的萃取蒸餾分離。分析結果得知使用熱廢水作熱源的傳統單塔式分離、以及萃取蒸餾分離皆能大幅改善成本以及分離使用的塔板數目。
本文最後探討的合成氣產製乙二醇程序的設計與最適化。此程序包含兩階段,第一階段為將合成氣中一氧化碳轉化為草酸二甲酯,第二階段則將草酸二甲酯氫化成乙二醇。於第一階段中,甲醇於系統中的循環量為最具決定性的變數,其主要由填充床反應器進料中,甲醇與一氧化氮及二氧化氮的總和之莫耳比例(MeOH/NOs)來影響。於第二階段中,最重要的變數為混合進料中氫氣與草酸二甲酯莫爾進料比(HDMR)。
總括而言,本文針對各類煤炭氣化的下游化學品生產程序進行的完整與嚴密的模擬,輔以最適化、熱整合、經濟與能量分析,以仔細探討各程序的內部行為。透過本研究,對於此類程序有了更透徹的了解。
In this work, the design, optimization, and economic evaluation of coal-based poly-generation processes to produce different kind of chemicals are investigated. We lack energy sources in Taiwan, thus over 98% of the energy sources come from importation. Among those energy sources, coal has several advantages such as its relative low proce, abundance, and easy transportation. Therefore, coal has been one of the most important energy sources in Taiwan, and it is expected that its role will be retained in the future.
Gasification is the center of this kind of processes, which is also the starting point of this work. Firstly, a 1-dimension gasifier model is established to investigate the gasification performance of coal or biomass under different operating conditions. After that, the coal-to-synthetic natural gas (SNG) and coal-based poly-generation process to produce SNG and ammonia are followed. Because importation of natural gas required liquefaction and compression, thus the importation price is quite expensive in Taiwan (11.3~11.7 USD/MMBTU). Thus, converting coal into SNG can be economically attractive (10.336 USD/MMBTU). If the poly-generation configuration is adopted, the economic performance can be further enhanced. But the enhancement of economic performance may be not obvious once one of the product flowrate is too small.
The next topic to investigate is the novel methanol-to-olefin (MTO) process, and the main products are ethylene and propylene. In this work, the rigorous simulation of this process is studied, and the influences from variables are carefully investigated. Besides, due to the close boiling point between propylene and propane, separating them through distillation is not easy. Thus, four method for separation propane with propylene are studied. They are traditional single-column separation using steam as the heat source (case 1), using waste hot water as the heat source (case 2), distillation with the vapor recompression cycle (case 3), and the extractive distillation using acetonitrile solution as the entrainer (case 4). From the results, it is found that case 2 and case 4 may be economically attractive.
The final topic is the syngas-to-ethylene glycol (EG) process. There are two stages in this process. In the first stage, CO in syngas is converted into dimethyl oxalate (DMO) as an intermediate, while in the second stage, DMO is hydrogenated to become EG. In the first stage, the circulation rate of methanol inside the process is the most important one. It is mainly determined by the ratio of methanol to the combined nitric oxide and nitric dioxide flowrate into the packed-bed reactor. In the second stage, the most influential variable is the molar ratio of hydrogen and DMO in the combined feed.
In short, many coal-based poly-generation processes for producing chemicals are rigorously studied in this work. The analysis methods include optimization, heat integration, economic and energetic evaluation. Through this work, a better understanding toward these processes can be obtained.
口試委員會審定書 i
誌謝 iii
中文摘要 v
英文摘要 vii
目錄 xi
圖目錄 xv
表目錄 xix
第一章 緒論 1
1-1 研究背景與動機 1
1-2文獻探討 5
1-2.1 燃料氣化產製合成氣 5
1-2.2 淨煤相關策略 7
1-2.3 合成氣處理 8
1-2.4 合成氣於下游化學廠的多聯產製程 10
1-2.5 合成天然氣製程 12
1-2.6 氨製程 14
1-2.7 烯烴類製程 15
1-2.8 乙二醇製程 19
1-3 組織章節 23
第二章 氣化爐的設計與操作 24
2-1 氣化爐模型設計與驗證 25
2-2 水煤漿氣化之模擬分析 31
2-3 二氧化碳煤漿氣化之模擬分析 34
2-4 煤炭與生質能混摻氣化的模擬分析 36
2-5 結論 38
第三章 煤製合成天然氣程序的設計與經濟分析 39
3-1整廠程序架構 39
3-2空氣分離裝置 41
3-3 合成氣處理段 45
3-3.1酸水氣轉移反應 45
3-3.2 酸氣移除程序 48
3-4 合成天然氣工廠 57
3-5 廢熱回收程序與整廠能量轉換分析 60
3-6 經濟分析 65
3-6.1設備成本 65
3-6.2 固定操作與維修成本: 68
3-6.3變動操作與維修成本: 68
3-6.4經濟結構模型 69
3-6.5經濟分析結果 70
3-7 結論 72
第四章 煤製合成天然氣與氨多聯產程序的設計與經濟分析 73
4-1整廠程序之架構 73
4-2 空氣分離裝置 78
4-3 合成氣潔淨與組成調配 80
4-4 合成天然氣工廠 84
4-5 氨工廠 85
4-6 廢熱回收與再利用 92
4-7 經濟分析 95
4-8 結論 97
第五章、甲醇製烯烴程序的設計與最適化研究 98
5-1 反應段 98
5-2 潔淨段 104
5-3 第一分離段 107
5-4 第二分離段 114
5-5 結論 124
第六章 合成氣製草酸二甲酯程序的設計與最適化研究 125
6-1 反應動力式與反應條件 128
6-1.1 耦聯反應 128
6-1.2 再生反應 130
6-2 整廠程序流程 135
6-3 最適化研究 143
6-3.1 變數歸類與最適化步驟建立 143
6-3.2 最適化結果討論 149
6-4 結論 158
第七章 草酸二甲酯氫化產乙二醇程序的設計與最適化研究 159
7-1氫化反應之動力式與反應條件 161
7-2草酸二甲酯加氫整廠製程 164
7-3製程之最適化研究 168
7-3.1 變數歸類與最適化步驟建立 169
7-3.2 最適化的前置作業 173
7-3.3 完整最適化結果 177
7-4 結論 184
第八章 全文回顧與未來展望 185
參考文獻 188
附錄一、氣化爐中反應計算 200
附錄二、氣化爐中性質計算 204
附錄三、甲醇製烯烴程序反應器能量平衡計算 207
作者簡介 210
1.Fan, L. S., Chemical looping systems for Fossil Energy Conservations. John-Wiley and Sons: New Jersey, Inc., U.S., 2010.
2.Liu, K. C. S., and V. Subramani, Hydrogen and Syngas Production and Purification Technologies. John-Wiley and sons: New Jersey, Inc., U.S., 2010.
3.Bell, D. A., B. F. Towler and M. Fan, Coal Gasification and Its Applications. Elsevier: Amsterdam, 2011.
4. Bureau of Energy, Ministry of Economic Affairs in Taiwan. http://web.customs.gov.tw.
5.Field, R. P.; Brasington, R., Baseline Flowsheet Model for IGCC with Carbon Capture. Ind Eng Chem Res 2011, 50 (19), 11306-11312.
6.Tampa Electric Polk Power Station Integrated Gasification Combined Cycle Project-Final Technical Report; Tampa Electric Company Polk Power Station: August, 2002.
7.Xu, W. C.; Tomita, A., Effect of Coal Type on the Flash Pyrolysis of Various Coals. Fuel 1987, 66 (5), 627-631.
8.Westbrook, C. K.; Dryer, F. L., Simplified Reaction-Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combust Sci Technol 1981, 27 (1-2), 31-43.
9.Jones, W. P.; Lindstedt, R. P., Global Reaction Schemes for Hydrocarbon Combustion. Combust Flame 1988, 73 (3), 233-249.
10.Kumar, M.; Ghoniem, A. F., Multiphysics Simulations of Entrained Flow Gasification. Part I: Validating the Nonreacting Flow Solver and the Particle Turbulent Dispersion Model. Energ Fuel 2012, 26 (1), 451-463.
11.Kumar, M.; Ghoniem, A. F., Multiphysics Simulations of Entrained Flow Gasification. Part II: Constructing and Validating the Overall Model. Energ Fuel 2012, 26 (1), 464-479.
12.Robinson, P. J.; Luyben, W. L., Simple Dynamic Gasifier Model That Runs in Aspen Dynamics. Ind Eng Chem Res 2008, 47 (20), 7784-7792.
13.Cost and Performance Baseline for Fossil Energy Power Plants Study. Volume 1: Bituminous coal and Natural Gas to electricity; DOE/NETL: May 2007.
14.Wu, Y. X.; Zhang, J. S.; Smith, P. J.; Zhang, H.; Reid, C.; Lv, J. F.; Yue, G. X., Three-Dimensional Simulation for an Entrained Flow Coal Slurry Gasifier. Energ Fuel 2010, 24, 1156-1163.
15.Monaghan, R. F. D.; Ghoniem, A. F., A dynamic reduced order model for simulating entrained flow gasifiers Part I: Model development and description. Fuel 2012, 91 (1), 61-80.
16.Monaghan, R. F. D.; Ghoniem, A. F., A dynamic reduced order model for simulating entrained flow gasifiers. Part II: Model validation and sensitivity analysis. Fuel 2012, 94 (1), 280-297.
17.Perez-Fortes, M.; Bojarski, A. D.; Puigjaner, L., Advanced simulation environment for clean power production in IGCC plants. Comput Chem Eng 2011, 35 (8), 1501-1520.
18.Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S. E., Optimal design and integration of an air separation unit (ASU) for an integrated gasification combined cycle (IGCC) power plant with CO2 capture. Fuel Process Technol 2011, 92 (9), 1685-1695.
19.Cryogenic Air Separation History and Technological Progress, company report; Linde: 2009.
20.Merkel, T. C.; Lin, H. Q.; Wei, X. T.; Baker, R., Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J Membrane Sci 2010, 359 (1-2), 126-139.
21.Kusuma, V. A.; Li, Z. W.; Hopkinson, D.; Luebke, D. R.; Chen, S. G., Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture. Ind Eng Chem Res 2016, 55 (43), 11329-11337.
22.Newsome, D. S., The water-gas shift reaction. Catal Rev 1980, 21 (2), 275-318.
23.Lund, C. R. F., Microkinetics of water-gas shift over sulfided Mo/Al2O3 catalysts. Ind Eng Chem Res 1996, 35 (8), 2531-2538.
24.Choi, Y.; Stenger, H. G., Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J Power Sources 2003, 124 (2), 432-439.
25.Phatak, A. A.; Koryabkina, N.; Rai, S.; Ratts, J. L.; Ruettinger, W.; Farrauto, R. J.; Blau, G. E.; Delgass, W. N.; Ribeiro, F. H., Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria. Catal Today 2007, 123 (1-4), 224-234.
26.Thinon, O.; Rachedi, K.; Diehl, F.; Avenier, P.; Schuurman, Y., Kinetics and mechanism of the water-gas shift reaction over platinum supported catalysts. Top Catal 2009, 52 (13-20), 1940-1945.
27.Germani, G.; Schuurman, Y., Water-gas shift reaction kinetics over mu-structured Pt/CeO2/Al2O3 catalysts. Aiche J 2006, 52 (5), 1806-1813.
28.Breckenridge, W. H., A.; Ong, J.O.; Sharp, C, Use of SELEXOL process on coke gasification to ammonia project. In Laurance Reid Gas Conditioning Conference, Norman, OK, 2000.
29.Bhattacharyya, D.; Turton, R.; Zitney, S. E., Steady-State Simulation and Optimization of an Integrated Gasification Combined Cycle Power Plant with CO2 Capture. Ind Eng Chem Res 2011, 50 (3), 1674-1690.
30.Robinson, P. J.; Luyben, W. L., Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water-Gas Shift Reactors, and CO2 Absorption/Stripping. Ind Eng Chem Res 2010, 49 (10), 4766-4781.
31.Robinson, P. J.; Luyben, W. L., Plantwide Control of a Hybrid Integrated Gasification Combined Cycle/Methanol Plant. Ind Eng Chem Res 2011, 50 (8), 4579-4594.
32.Mondal, P.; Dang, G. S.; Garg, M. O., Syngas production through gasification and cleanup for downstream applications - Recent developments. Fuel Process Technol 2011, 92 (8), 1395-1410.
33.Meerman, J. C.; Ramirez, A.; Turkenburg, W. C.; Faaij, A. P. C., Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment. Renew Sust Energ Rev 2011, 15 (6), 2563-2587.
34.Yi, Q.; Fan, Y.; Li, W. Y.; Feng, J., CO2 Capture and Use in a Novel Coal-Based Polygeneration System. Ind Eng Chem Res 2013, 52 (39), 14231-14240.
35.Chen, Y.; Adams, T. A.; Barton, P. I., Optimal Design and Operation of Flexible Energy Polygeneration Systems. Ind Eng Chem Res 2011, 50 (8), 4553-4566.
36.Qian, Y.; Liu, J. Y.; Huang, Z. X.; Kraslawski, A.; Cui, J.; Huang, Y. L., Conceptual design and system analysis of a poly-generation system for power and olefin production from natural gas. Appl Energ 2009, 86 (10), 2088-2095.
37.Lin, H.; Jin, H. G.; Gao, L.; Han, W., Techno-economic evaluation of coal-based polygeneration systems of synthetic fuel and power with CO2 recovery. Energ Convers Manage 2011, 52 (1), 274-283.
38.Salkuyeh, Y. K.; Adams, T. A., A novel polygeneration process to co-produce ethylene and electricity from shale gas with zero CO2 emissions via methane oxidative coupling. Energ Convers Manage 2015, 92, 406-420.
39.Li, S.; Jin, H. G.; Gao, L.; Zhang, X. S., Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture. Appl Energ 2014, 130, 552-561.
40.Lin, H.; Jin, H. G.; Gao, L.; Zhang, N., A polygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery. Energy 2014, 74, 174-180.
41.Botero, C.; Field, R. P.; Brasington, R. D.; Herzog, H. J.; Ghoniem, A. F., Performance of an IGCC plant with carbon capture and coal-CO2-slurry feed: Impact of coal rank, slurry loading, and syngas cooling technology. Ind Eng Chem Res 2012, 51 (36), 11778-11790.
42.Lim, Y.; Lee, C. J.; Jeong, Y. S.; Song, I. H.; Lee, C. J.; Han, C., Optimal design and decision for combined steam reforming process with dry methane reforming to reuse CO2 as a raw material. Ind Eng Chem Res 2012, 51 (13), 4982-4989.
43.Gangadharan, P.; Kanchi, K. C.; Lou, H. H., Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem Eng Res Des 2012, 90 (11), 1956-1968.
44.Chmielniak, T.; Sciazko, M., Co-gasification of biomass and coal for methanol synthesis. Appl Energ 2003, 74 (3-4), 393-403.
45.White, G. A.; Rozskowski, T. R.; Stanbridg, D. W. In L. Seglin, American Chemical Society Division of Fuel Chemistry, editors. Methanation of synthesis gas: a symposium sponsored by the Division of Fuel Chemistry at the 168th meeting of the American Chemical Society, Washington: American Chemical Society;, 1975.
46.Twigg, M. V., Catalyst handbook. 2nd ed. London: Manson Publishing Ltd.: 1996.
47.Jensen, J., Poulsen JM, Anderson NU From coal to clean energy. Nitrogen +Syngas 310; March/April 2011.
48.Pearce BB, T. M., Woodward C, Methanation. In: Twigg MV, editor. Catalyst handbook. 2nd ed. Manson Publishing Ltd.;: London, 1996.
49.Kopyscinski, J.; Schildhauer, T. J.; Biollaz, S. M. A., Production of synthetic natural gas (SNG) from coal and dry biomass - A technology review from 1950 to 2009. Fuel 2010, 89 (8), 1763-1783.
50.Xu, J. G.; Froment, G. F., Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics. AICHE J 1989, 35 (1), 88-96.
51.From coal to substitute natural gas using TREMP. HaldorTopsoe: 2008.
52.Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia.; DOE/NETL: 2011.
53.Kao, Y. L.; Lee, P. H.; Tseng, Y. T.; Chien, I. L.; Ward, J. D., Design, control and comparison of fixed-bed methanation reactor systems for the production of substitute natural gas. J Taiwan Inst Chem E 2014, 45 (5), 2346-2357.
54.Araujo, A.; Skogestad, S., Control structure design for the ammonia synthesis process. Comput Chem Eng 2008, 32 (12), 2920-2932.
55.Zhang, C.; Vasudevan, S.; Rangaiah, G. P., Plantwide control system design and performance evaluation for ammonia synthesis process. Ind Eng Chem Res 2010, 49 (24), 12538-12547.
56.Hinrichsen, O., Kinetic simulation of ammonia synthesis catalyzed by ruthenium. Catal Today 1999, 53 (2), 177-188.
57.Rossetti, I.; Pernicone, N.; Ferrero, F.; Forni, L., Kinetic study of ammonia synthesis on a promoted Ru/C catalyst. Ind Eng Chem Res 2006, 45 (12), 4150-4155.
58.Siporin, S. E.; Davis, R. J., Use of kinetic models to explore the role of base promoters on Ru/MgO ammonia synthesis catalysts. J Catal 2004, 225 (2), 359-368.
59.Liu, H. Z., Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese J Catal 2014, 35 (10), 1619-1640.
60.Maxwell, G. R., Synthetic Nitrogen Products, A Practical Guide to the Products and Processes. Kluber: New York, 2004.
61.新興能源科技有限公司, 甲醇制烯烴反应典型操作条件和产物组成. http://www.syn.ac.cn/doshow1.php?id=26 (accessed July, 2015).
62.Graaf, G. H.; Stamhuis, E. J.; Beenackers, A. A. C. M., Kinetics of Low-Pressure Methanol Synthesis. Chem Eng Sci 1988, 43 (12), 3185-3195.
63.Vanden Bussche, K. M.; Froment, G. F., A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 1996, 161 (1), 1-10.
64.Luyben, W. L., Design and control of a methanol reactor/column process. Ind Eng Chem Res 2010, 49 (13), 6150-6163.
65.Meyer, J. J.; Tan, P.; Apfelbacher, A.; Daschner, R.; Hornung, A., Modeling of a Methanol Synthesis Reactor for Storage of Renewable Energy and Conversion of CO2 - Comparison of Two Kinetic Models. Chem Eng Technol 2016, 39 (2), 233-245.
66.Lim, H. W.; Park, M. J.; Kang, S. H.; Chae, H. J.; Bae, J. W.; Jun, K. W., Modeling of the Kinetics for Methanol Synthesis using Cu/ZnO/Al2O3/ZrO2 Catalyst: Influence of Carbon Dioxide during Hydrogenation. Ind Eng Chem Res 2009, 48 (23), 10448-10455.
67.An, X.; Zuo, Y. Z.; Zhang, Q.; Wang, J. F., Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst. Chinese J Chem Eng 2009, 17 (1), 88-94.
68.Kiss, A. A.; Pragt, J. J.; Vos, H. J.; Bargeman, G.; de Groot, M. T., Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 2016, 284, 260-269.
69.Mignard, D.; Sahibzada, M.; Duthie, J. M.; Whittington, H. W., Methanol synthesis from flue-gas CO2 and renewable electricity: a feasibility study. Int J Hydrogen Energ 2003, 28 (4), 455-464.
70.Milani, D.; Khalilpour, R.; Zahedi, G.; Abbas, A., A model-based analysis of CO2 utilization in methanol synthesis plant. J Co2 Util 2015, 10, 12-22.
71.Luu, M. T.; Milani, D.; Abbas, A., Analysis of CO2 utilization for methanol synthesis integrated with enhanced gas recovery. J Clean Prod 2016, 112, 3540-3554.
72.Bermudez, J. M.; Ferrera-Lorenzo, N.; Luque, S.; Arenillas, A.; Menendez, J. A., New process for producing methanol from coke oven gas by means of CO2 reforming. Comparison with conventional process. Fuel Process Technol 2013, 115, 215-221.
73.Manenti, F.; Bozzano, G., Optimal control of methanol synthesis fixed-bed reactor. Ind Eng Chem Res 2013, 52 (36), 13079-13091.
74.Gayubo, A. G.; Aguayo, A. T.; Alonso, A.; Atutxa, A.; Bilbao, J., Reaction scheme and kinetic modelling for the MTO process over a SAPO-18 catalyst. Catal Today 2005, 106 (1-4), 112-117.
75.Bos, A. N. R.; Tromp, P. J. J.; Akse, H. N., Conversion of Methanol to Lower Olefins - Kinetic Modeling, Reactor Simulation, and Selection. Ind Eng Chem Res 1995, 34 (11), 3808-3816.
76.Soundararajan, S.; Dalai, A. K.; Berruti, F., Modeling of methanol to olefins (MTO) process in a circulating fluidized bed reactor. Fuel 2001, 80 (8), 1187-1197.
77.Najafabadi, A. T.; Fatemi, S.; Sohrabi, M.; Salmasi, M., Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. J Ind Eng Chem 2012, 18 (1), 29-37.
78.Zhao, Y. F.; Li, H.; Ye, M.; Liu, Z. M., 3D Numerical simulation of a large scale MTO fluidized bed reactor. Ind Eng Chem Res 2013, 52 (33), 11354-11364.
79.Chen, D.; Rebo, H. P.; Gronvold, A.; Moljord, K.; Holmen, A., Methanol conversion to light olefins over SAPO-34: kinetic modeling of coke formation. Micropor Mesopor Mat 2000, 35-6, 121-135.
80.Chen, D.; Grlnvold, A.; Moljord, K.; Holmen, A., Methanol conversion to light olefins over SAPO-34: Reaction network and deactivation kinetics. Ind Eng Chem Res 2007, 46 (12), 4116-4123.
81.Chang, J.; Zhang, K.; Chen, H. G.; Yang, Y. P.; Zhang, L. M., CFD modelling of the hydrodynamics and kinetic reactions in a fluidised-bed MTO reactor. Chem Eng Res Des 2013, 91 (12), 2355-2368.
82.Zhuang, Y. Q.; Gao, X.; Zhu, Y. P.; Luo, Z. H., CFD modeling of methanol to olefins process in a fixed-bed reactor. Powder Technol 2012, 221, 419-430.
83.Ying, L.; Yuan, X. S.; Ye, M.; Cheng, Y. W.; Li, X.; Liu, Z. M., A seven lumped kinetic model for industrial catalyst in DMTO process. Chem Eng Res Des 2015, 100, 179-191.
84.Zhu, J., Separation of MTO process technology. Separation of MTO process technology 2011, 38, 222-225.
85.Li, T.; Wang, L., Analysis of absorbent for ethylene recovery of MTO reaction effluent. Petroleum Refinery Engineering 2011, 41(8), 18-21.
86.张怀生; 王松汉; 裴雪梅 甲醇制烯烴(mto)气体分离工艺流程 2010, CN 201010203557 (In Chinese).
87.Schmal, J. P.; Van der Kooi, H. J.; De Rijke, A.; Olujic, Z.; Jansens, P. J., Internal versus external heat integration - Operational and economic analysis. Chem Eng Res Des 2006, 84 (A5), 374-380.
88.Olujic, Z.; Sun, L.; de Rijke, A.; Jansens, P. J., Conceptual design of an internally heat integrated propylene-propane splitter. Energy 2006, 31 (15), 3083-3096.
89.Ho, T. J.; Huang, C. T.; Lin, J. M.; Lee, L. S., Dynamic simulation for internally heat-integrated distillation columns (HIDiC) for propylene-propane system. Comput Chem Eng 2009, 33 (6), 1187-1201.
90.Alcantara-Avila, J. R.; Gomez-Castro, F. I.; Segovia-Hernandez, J. G.; Sotowa, K.; Horikawa, T., Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation. Chem Eng Process 2014, 82, 112-122.
91.Liao, B.; Lei, Z. G.; Xu, Z.; Zhou, R. Q.; Duan, Z. T., New process for separating propylene and propane by extractive distillation with aqueous acetonitrile. Chem Eng J 2001, 84 (3), 581-586.
92.Chen, B. H.; Lei, Z. G.; Li, Q. S.; Li, C. Y., Application of CAMD in separating hydrocarbons by extractive distillation. AICHE J 2005, 51 (12), 3114-3121.
93.Kumar, R.; M., P. J.; King, C. J., Process Design Considerations for Extractive Distillation - Separation of Propylene-Propane. Adv Chem Ser 1972, 115, 16-34.
94.Song, H. Y.; Jin, R. H.; Kang, M. R.; Chen, J., Progress in synthesis of ethylene glycol through C-1 chemical industry routes. Chinese J Catal 2013, 34 (6), 1035-1050.
95.Yue, H. R.; Zhao, Y. J.; Ma, X. B.; Gong, J. L., Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 2012, 41 (11), 4218-4244.
96.Zhou;, J.; Liu;, X.; Liu, D., Progress and perspective of synthesis of ethylene glycol from syngas via oxalate. Chemical Industry and Engineering Progress 2009, 28(1), 47-50. (In Chinese)
97.Luo, N.; Ji, Y.; Mao, Y.; Zhang, B., Syn-gas-based mono ethylene glycol synthesis in Pujing Chemical. Appl. Petrochem. Res. 2012, 2, 23-26.
98.Ji, Y.; Zhang, B.; Li, W.; Xiao, W. D., Study on intrinsic kinetics of coupling reaction of carbon monoxide to dimethyl oxalate. Natural Gas Chemical Industry 2010, (35), 20-24 (In Chinese).
99.Liu, G.; Ji, Y.; Li, W., Kinetic study on methyl nitrite synthesis from methanol and dinitrogen trixiode. Chem Eng J 2010, 157 (2-3), 483-488.
100.Ji, Y. Study of catalyst, mechanism, and intrinsic kinetics of CO catalytic coupling to dimethyl oxalate (DMO). East China University of Science and Technology, 2010.
101.Li, Z. H.; Wang, W. H.; Lv, J.; Ma, X. B., Modeling of a packed bubble column for methyl nitrite regeneration based on reaction kinetics and mass transfer. Ind Eng Chem Res 2013, 52 (8), 2814-2823.
102.Meng, F. D.; Xu, G. X.; Guo, R. Q.; Yan, H. F.; Chen, M. Q., Kinetic study of carbon monoxide coupling reaction over supported palladium catalyst. Chem Eng Process 2004, 43 (6), 785-790.
103.Li, Z.; He, C.; Tin, D.; Wang, B.; Ma, X.; Xu, G., Macrokinetic of CO catalytic coupling reaction to produce diethyl oxalate. J. Chem. Ind. Eng. 2005, 56, 2315-2319 (In Chinese).
104.Zhu, Y. P.; Tu, S.; Luo, Z. H., Modeling for the catalytic coupling reaction of carbon monoxide to diethyl oxalate in fixed-bed reactors: Reactor model and its applications. Chem Eng Res Des 2012, 90 (9), 1361-1371.
105.Jiang, C. W.; Zheng, Z. W.; Zhu, Y. P.; Luo, Z. H., Design of a two-stage fluidized bed reactor for preparation of diethyl oxalate from carbon monoxide. Chem Eng Res Des 2012, 90 (7), 915-925.
106.Zhang, Q.; Huang, W.; Wen, F.; Xiao, W., Hydrogenation of dimethyl oxalate to ethylene glycol. Petrochemical Technology 2007, 36(4), 340-344 (In Chinese).
107.Zhu, Y. P.; Chen, G. Q.; Luo, Z. H., Iterative multiscale computational fluid dynamics-single-particle model for intraparticle transfer and catalytic hydrogenation reaction of dimethyl oxalate in a fluidized-red reactor. Ind Eng Chem Res 2014, 53 (1), 110-122.
108.Li, S. M.; Wang, Y.; Zhang, J.; Wang, S. P.; Xu, Y.; Zhao, Y. J.; Ma, X. B., Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2 catalyst. Ind Eng Chem Res 2015, 54 (4), 1243-1250.
109.Xu, G. H.; Li, Y. C.; Li, Z. H.; Wang, H. J., Kinetics of the hydrogenation of diethyl oxalate to ethylene glycol. Ind Eng Chem Res 1995, 34 (7), 2371-2378.
110.陳貽盾 氣相催化合成草酸酯連續工藝. 1995, CN1027257C.
111.Peking University Pioneer Co. http://www.pioneer-pku.com/en/product.aspx?ProductsCateId=78&CateId=78 (accessed August, 2016).
112.Karan, K.; Mehrotra, A. K.; Behie, L. A., A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants. Chem Eng Sci 1999, 54 (15-16), 2999-3006.
113.Svoronos, P. D. N.; Bruno, T. J., Carbonyl sulfide: A review of its chemistry and properties. Ind Eng Chem Res 2002, 41 (22), 5321-5336.
114.Watanabe, H.; Otaka, M., Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel 2006, 85 (12-13), 1935-1943.
115.Seo, M. W.; Goo, J. H.; Kim, S. D.; Lee, S. H.; Choi, Y. C., Gasification characteristics of coal/biomass blend in a dual circulating fluidized bed reactor. Energ Fuel 2010, 24, 3108-3118.
116.Wen, C. Y.; Chaung, T. Z., Entrainment coal-gasification modeling. Ind Eng Chem Proc Dd 1979, 18 (4), 684-695.
117.Yu, B. Y.; Chien, I. L., Design and economic evaluation of a coal-to-synthetic natural gas process. Ind Eng Chem Res 2015, 54 (8), 2339-2352.
118.Yu, B. Y.; Chien, I. L., Design and economic evaluation of a coal-based polygeneration process to coproduce synthetic natural gas and ammonia. Ind Eng Chem Res 2015, 54 (41), 10073-10087.
119.Kohl, A. L.; Riesenfield, F. C., Gas Purification. 4th ed.; Golf Publishing Co.: TX, USA, 1997.
120.Luyben, W. L., Principles and Case Studies of Simultaneous Design, Chap.5. Wiley: New York, 2011.
121.Chang, H. W.; Chen, C. H.; Lin, L. F., Techno-economic Analysis on the Use of Substitute Natural Gas with Carbon Capture and Storage. In Taiwan Symposium on Carbon Dioxide Capture, Taiwan, 2012.
122.Chen, C. A. Technical and Economic Assessment of CO2 capture Technology for IGCC Power Plants. Carnegie Mellon University, 2005.
123.Private communication from GIBSIN Engineers, LTD, Taiwan.
124.Yu, B. Y.; Chien, I. L., Design and optimization of the methanol-to-olefin process part I: steady-state design and optimization. Chem Eng Technol 2016, 39 (12), 2293-2303.
125.Yu, B. Y.; Chien, I. L., Design and optimization of the methanol-to-olefin process part II: comparison of different methods for propylene/propane separation. Chem Eng Technol 2016, 39 (12), 2304-2311.
126.Alwahabi, S. M.; Froment, G. F., Conceptual reactor design for the methanol-to-olefins process on SAPO-34. Ind Eng Chem Res 2004, 43 (17), 5112-5122.
127.Miller, L.; Senetar, J. J. Two-staged quench tower for use with oxygenate conversion process. 2002, US 6,403,854 B2.
128.Liu, Y.; Jiao, W.; Shen, H.; Qi, G. l.; Yuan, Z. Process method and method for regenerating methyl nitrite in production of dimethyl oxalate. 2013, CN 102008922B. (In Chinese).
129.Pradhan, M. P.; Suchak, N. J.; Walse, P. R.; Joshi, J. B., Multicomponent gas absorption with multiple reactions: modelling and simulation of NOx absorption in nitric acid manufacture. Chem Eng Sci 1997, 52 (24), 4569-4591.
130.Liu, G.; Fu, J.; Ji, Y.; Jin, L.; Li, W., Measurement of methyl nitrite Henry’s law constants in methanol. 2010, 38(6), 61-63 (In Chinese).
131.Douglas, J. M., Conceptual design of chemical processes. McGraw-Hill: New York, 1988.
132.Yao, L. Study on process and simulation of preparation of ethylene glycol by syngas. Zhengzhou University, 2013.
133.Tahara, S.; Fujii, K.; Nishihira, K.; Matsuda, M.; Mizutare, K. Process for continuously preparing ethylene glycol. 1984, US 4,453,056.
134.Crandall, J. W.; Deitzler, J. E.; Kapicak, L. A.; Poppelsdorf, F. Process for the hydrolysis of dialkyl carbonates. 1987, US 4,663,477.
135.Yu, B. Y.; Chien, I. L., Design and optimization of dimethyl oxalate (DMO) hydrogenation process to produce ethylene glycol (EG). Chem Eng Res Des 2017, 121, 173-190.
136.Li, Z.; Qian, Z.; Zhao, X.; Xiao, W., Studies on hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst. Chemical Reaction Engineering and Technology 2004, 20(2), 121-127 (In Chinese).
137.Yin, A.; Dai, W.; Fan, K., Thermodynamics of ethylene glycol synthesis via hydrogenation of dimethyl oxalate. Petrochemical Technology 2008, 37(1), 62-66 (In Chinese).
138.Lin, J. D.; Zhao, X. Q.; Cui, Y. H.; Zhang, H. B.; Liao, D. W., Effect of feedstock solvent on the stability of Cu/SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol. Chem Commun 2012, 48 (8), 1177-1179.
139.Wen, C.; Cui, Y. Y.; Dai, W. L.; Xie, S. H.; Fan, K. N., Solvent feedstock effect: the insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol. Chem Commun 2013, 49 (45), 5195-5197.
140.Zheng, J. W.; Zhou, J. F.; Lin, H. Q.; Duan, X. P.; Williams, C. T.; Yuan, Y. Z., CO-mediated deactivation mechanism of SiO¬2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol. J Phys Chem C 2015, 119 (24), 13758-13766.
141.Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S., Product and Process Design Principles. 3rd ed.; Wiley: Hoboken, New Jersey, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top