跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林展誠
研究生(外文):Chan-Cheng Lin
論文名稱:利用常壓微電漿裝置進行水酸化之研究
論文名稱(外文):Water Acidification by Atmospheric Pressure Microplamas Operated in Air
指導教授:徐振哲
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:常壓微電漿水處理
外文關鍵詞:atmospheric-pressure microplasmawater treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
常壓微電漿系統因不需要真空系統,且電子密度和能量密度高而具有局部高反應性,在近年來有許多相關的研究被報導。其中,利用此系統於空氣下處理目標物,在近幾年來受到生醫領域的學者關注,因為電漿與空氣反應後所產生的化合物有殺菌之效果。
本實驗利用一交流電驅動低成本常壓微電產生系統(Microplasma generation devices, MGD)以產生任意維度小於1 mm之電漿進行實驗。此裝置為一介電質放電型微電漿系統,主要是由兩層電極和介電質組成一「電極-介電質-電極」之結構,而其電極圖樣製作方法為碳粉轉印法,此方法之優點為圖樣可客製化、製作時間短且操作簡單,相當有利於實驗開發階段之研究。
本實驗為利用上述之裝置進行水酸化研究。提供一交流電使此裝置產生電漿,並利用電漿與空氣反應,進而產生主要產物,如:二氧化氮(NO2)、過氧化氫(H2O2)等,再藉由電漿產生的流動現象,將這些產物送往距離電漿約3-5 mm的去離子水滴(約10μL),並溶解於水中進行反應而達到酸鹼值下降之效果。其中,形成此流動現象的原因為電漿中的離子所造成,因為周遭電場的影響,使離子會順著電場方向移動,並與氣體中的分子相互作用,使氣體形成一流動。於研究中利用一簡易粒子圖像測速系統偵測氣體流速,並觀測其流場。實驗改變電源供應頻率和電壓、電極幾何參數,觀察氣體流速和流場的變化,並探討其與酸化速度的關係。實驗結果顯示利用此裝置可在數十秒內使水的酸鹼值達到3,且當電壓、頻率以及流速增加時,可加快水酸化的速度,並且可以利用不同的電極圖案改變流場,進而改變酸化速度。
Many researches of atmospheric-pressure microplasma system has been reported in the recent year, because it can be operated without vacuum system, and it has a lot of advantages, such as high electronic density, high energy density and high reactive in the local area and so on. Atmosphere microplasma system has been also paid attention by the researchers of biomedical engineering, because using the system to treat sample in air can be sterilized by compounds which is produced from reaction of plasma and air.
The research used a low-cost and atmospheric-pressure microplasma generation system (MGD) which was driven by AC as an experimental device, and the device can produce microdischarges below 1 mm at any dimension. The device was a dielectric-type MGD which was composed by two electrodes and dielectric, and it had a sandwich structure of “electrode-dielectric-electrode”. The electrode pattern of device was fabricated by Toner Transfer Method, and the device had many advantages, such as customized, short fabricated time and easy operation, so it was suitable for research of laboratory investigation.
The investigation used above device to conduct experiment of water acidification. By applying a high voltage to MGD to generate plasma, and the system formed key products which was reacted by plasma and air, such as NO2. The products was transported to 10 μL of DI water droplet which was sit adjacent to the plasma generation electrode of the MGD with a distance of 3-5 mm by a stream formed by MGD, and the pH value decreased from 5.5 to 3 in 60 seconds by the dissolving of NO2. The forming mechanism of the stream was that ions which was generated by MGD collided with molecular in air by affect of electronic field, then the collision caused the gas stream flew to direction of electronic field. In the research, flow velocity and flow pattern measured by a Particle Image Velocimetry (PIV) system which is made by our team. Experimental factors were including power-applied frequency, power-applied voltage and geometric parameters of electrodes. Results showed that higher flow velocity could be obtained under circumstances of higher frequency or higher voltage, and higher flow velocity caused higher acidification rate. Also, changing geometric parameters of electrodes could change flow pattern, and it effected acidification rate.
誌謝 I
中文摘要 III
Abstract V
目錄 VIII
圖目錄 X
表目錄 XIV
第 1 章 緒論 1
1.1 前言 1
1.2 研究目標與動機 2
1.3 論文總覽 3
第 2 章 文獻回顧 5
2.1 電漿簡介1, 2 5
2.1.1 電漿產生機制 5
2.1.2 氣體崩潰電壓 7
2.1.3 熱平衡電漿和非熱平衡電漿 9
2.1.4 常壓及低壓電漿 11
2.2 常壓微電漿系統 13
2.2.1 微電漿簡介 13
2.2.2 常見微電漿系統的種類8-20 14
2.2.3 微電漿應用 19
2.3 電漿在水處理的應用 22
2.3.1 電漿直接接觸水的機制和種類 22
2.3.2 電漿無接觸水的機制和種類 27
2.3.3 水的酸化現象於空氣電漿無接觸水系統36, 45, 49, 51-54 33
2.4 電漿系統在控制氣流的應用 34
2.4.1 利用電漿控制氣流之原理 34
2.4.2 表面電暈放電型致動器58, 59 36
2.4.3 表面介電質放電型致動器+ 39
2.4.4 氣體流速檢測系統-粒子圖像測速71, 72 (Particle Image Velocimetry, PIV) 44
第 3 章 實驗設備及架構 47
3.1 銅箔基板微電漿產生裝置 47
3.1.1 銅箔基板微電漿產生裝置之製備 47
3.1.2 以銅箔基板微電漿產生裝置進行實驗之設備 51
3.2 電漿檢測 52
3.2.1 電性檢測 52
3.2.2 光學檢測 54
3.3 液體檢測 55
3.4 氣體流速檢測 56
3.4.1 簡易粒子圖像測速系統 56
3.4.2 簡易PIV系統之流速檢測校準 59
第 4 章 實驗結果與討論 61
4.1 光譜儀分析 61
4.2 以銅箔基板微電漿產生裝置產生離子風 64
4.2.1 離子風造成周圍氣體流動之流場圖 64
4.2.2 距離對氣體流速之影響 67
4.2.3 操作電壓與頻率對流速的影響 71
4.3 銅箔基板微電漿產生裝置:水酸化 73
4.3.1 水在微電漿裝置之位置對於酸化速度之影響 73
4.3.2 於開放環境下進行水酸化處理 77
4.3.3 不同電漿操作條件對於酸化速率之影響 78
4.3.4 電極圖樣對酸化速率之影響 80
第 5 章 結果與未來展望 87
第 6 章 參考文獻 89
1.N. S. J. Braithwaite, "Introduction to gas discharges," Plasma Sources Science & Technology, 9 (4), 517-527 (2000).
2.V. Nehra, A. Kumar and H. Dwivedi, "Atmospheric non-thermal plasma sources," International Journal of Engineering, 2 (1), 53-68 (2008).
3.D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A, 29 (2)(2011).
4.C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B-Atomic Spectroscopy, 61 (1), 2-30 (2006).
5.K. Tachibana, "Current status of microplasma research," Ieej Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006).
6.F. Rossi, O. Kylian, H. Rauscher, M. Hasiwa and D. Gilliland, "Low pressure plasma discharges for the sterilization and decontamination of surfaces," New Journal of Physics, 11(2009).
7.M. Nitschke, S. Zschoche, A. Baier, F. Simon and C. Werner, "Low pressure plasma immobilization of thin hydrogel films on polymer surfaces," Surf Coat Tech, 185 (1), 120-125 (2004).
8.S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J. P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki and N. Mason, "The 2012 Plasma Roadmap," Journal of Physics D-Applied Physics, 45 (25)(2012).
9.A. P Papadakis, S. Rossides and A. C Metaxas, "Microplasmas: A review," The Open Applied Physics Journal, 4 (1)(2011).
10.K. H. Schoenbach and K. Becker, "20 years of microplasma research: a status report," European Physical Journal D, 70 (2)(2016).
11.R. Foest, M. Schmidt and K. Becker, "Microplasmas, an emerging field of low-temperature plasma science and technology," International Journal of Mass Spectrometry, 248 (3), 87-102 (2006).
12.F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang and M. G. Kong, "Microplasmas: Sources, particle kinetics, and biomedical applications," Plasma Processes and Polymers, 5 (4), 322-344 (2008).
13.K. H. Becker, K. H. Schoenbach and J. G. Eden, "Microplasmas and applications," Journal of Physics D-Applied Physics, 39 (3), R55-R70 (2006).
14.D. Staack, B. Farouk, A. Gutsol and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge," Plasma Sources Science & Technology, 14 (4), 700-711 (2005).
15.X. Lu, M. Laroussi and V. Puech, "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets," Plasma Sources Science & Technology, 21 (3)(2012).
16.A. Chirokov, A. Gutsol and A. Fridman, "Atmospheric pressure plasma of dielectric barrier discharges," Pure and Applied Chemistry, 77 (2), 487-495 (2005).
17.H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel and J. F. Behnke, "The barrier discharge: basic properties and applications to surface treatment," Vacuum, 71 (3), 417-436 (2003).
18.J. Salge, "Plasma-assisted deposition at atmospheric pressure," Surf Coat Tech, 80 (1-2), 1-7 (1996).
19.U. Kogelschatz, "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications," Plasma Chemistry and Plasma Processing, 23 (1), 1-46 (2003).
20.X. Yuan, J. Tang and Y. X. Duan, "Microplasma Technology and Its Applications in Analytical Chemistry," Applied Spectroscopy Reviews, 46 (7), 581-605 (2011).
21.J. C. T. Eijkel, H. Stoeri and A. Manz, "A molecular emission detector on a chip employing a direct current microplasma," Analytical Chemistry, 71 (14), 2600-2606 (1999).
22.R. Guchardi and P. C. Hauser, "A capacitively coupled microplasma in a fused silica capillary," Journal of Analytical Atomic Spectrometry, 18 (9), 1056-1059 (2003).
23.M. Miclea and J. Franzke, "Analytical detectors based on microplasma spectrometry," Plasma Chemistry and Plasma Processing, 27 (2), 205-224 (2007).
24.S. Pedersen-Bjergaard and T. Greibrokk, "On-column bromine-and chlorine-selected detection for capillary gas chromatography using a radio frequency plasma," Analytical Chemistry, 65 (15), 1998-2002 (1993).
25.J. Franzke, K. Kunze, M. Miclea and K. Niemax, "Microplasmas for analytical spectrometry," Journal of Analytical Atomic Spectrometry, 18 (7), 802-807 (2003).
26.D. Mariotti and R. M. Sankaran, "Microplasmas for nanomaterials synthesis," Journal of Physics D-Applied Physics, 43 (32)(2010).
27.L. L. Lin and Q. Wang, "Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis," Plasma Chemistry and Plasma Processing, 35 (6), 925-962 (2015).
28.W.-H. Chiang and R. M. Sankaran, "In-flight dimensional tuning of metal nanoparticles by microplasma synthesis for selective production of diameter-controlled carbon nanotubes," The Journal of Physical Chemistry C, 112 (46), 17920-17925 (2008).
29.F. X. Liu, P. Sun, N. Bai, Y. Tian, H. X. Zhou, S. C. Wei, Y. H. Zhou, J. Zhang, W. D. Zhu, K. Becker and J. Fang, "Inactivation of Bacteria in an Aqueous Environment by a Direct-Current, Cold-Atmospheric-Pressure Air Plasma Microjet," Plasma Processes and Polymers, 7 (3-4), 231-236 (2010).
30.J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu and S. Karrer, "Plasma medicine: possible applications in dermatology," Journal Der Deutschen Dermatologischen Gesellschaft, 8 (12), 968-976 (2010).
31.M. Bahri and F. Haghighat, "Plasma-Based Indoor Air Cleaning Technologies: The State of the Art-Review," Clean-Soil Air Water, 42 (12), 1667-1680 (2014).
32.R. Jafari, S. Asadollahi and M. Farzaneh, "Applications of Plasma Technology in Development of Superhydrophobic Surfaces," Plasma Chemistry and Plasma Processing, 33 (1), 177-200 (2013).
33.C. S. Ren, D. Z. Wang and Y. N. Wang, "Graft co-polymerization of acrylic acid onto the linen surface induced by DBD in air," Surf Coat Tech, 201 (6), 2867-2870 (2006).
34.M. B. Chang, H. M. Lee, F. L. Wu and C. R. Lai, "Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology," Journal of the Air & Waste Management Association, 54 (8), 941-949 (2004).
35.K. Urashima and J. S. Chang, "Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology," Ieee Transactions on Dielectrics and Electrical Insulation, 7 (5), 602-614 (2000).
36.Z. C. Liu, D. X. Liu, C. Chen, D. Li, A. J. Yang, M. Z. Rong, H. L. Chen and M. G. Kong, "Physicochemical processes in the indirect interaction between surface air plasma and deionized water," Journal of Physics D-Applied Physics, 48 (49)(2015).
37.P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. F. Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. M. Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schroter, M. Shiraiwa, B. Tarabova, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui and G. Zvereva, "Plasma-liquid interactions: a review and roadmap," Plasma Sources Science & Technology, 25 (5)(2016).
38.P. Bruggeman and C. Leys, "Non-thermal plasmas in and in contact with liquids," Journal of Physics D-Applied Physics, 42 (5)(2009).
39.S. M. Korobeinikov, A. V. Melekhov and A. S. Besov, "Breakdown initiation in water with the aid of bubbles," High Temperature, 40 (5), 652-659 (2002).
40.W. An, K. Baumung and H. Bluhm, "Underwater streamer propagation analyzed from detailed measurements of pressure release," Journal of Applied Physics, 101 (5)(2007).
41.C. E. Anderson, N. R. Cha, A. D. Lindsay, D. S. Clark and D. B. Graves, "The Role of Interfacial Reactions in Determining Plasma-Liquid Chemistry," Plasma Chemistry and Plasma Processing, 36 (6), 1393-1415 (2016).
42.A. Lindsay, C. Anderson, E. Slikboer, S. Shannon and D. Graves, "Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets," Journal of Physics D-Applied Physics, 48 (42)(2015).
43.M. R. Webb and G. M. Hieftje, "Spectrochemical Analysis by Using Discharge Devices with Solution Electrodes," Analytical Chemistry, 81 (3), 862-867 (2009).
44.S. Ikawa, K. Kitano and S. Hamaguchi, "Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Low-Temperature Atmospheric Pressure Plasma Application," Plasma Processes and Polymers, 7 (1), 33-42 (2010).
45.K. Oehmigen, J. Winter, M. Hahnel, C. Wilke, R. Brandenburg, K. D. Weltmann and T. von Woedtke, "Estimation of Possible Mechanisms of Escherichia coli Inactivation by Plasma Treated Sodium Chloride Solution," Plasma Processes and Polymers, 8 (10), 904-913 (2011).
46.M. J. Traylor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark and D. B. Graves, "Long-term antibacterial efficacy of air plasma-activated water," Journal of Physics D-Applied Physics, 44 (47)(2011).
47.M. J. Pavlovich, Y. Sakiyama, D. S. Clark and D. B. Graves, "Antimicrobial Synergy Between Ambient-Gas Plasma and UVA Treatment of Aqueous Solution," Plasma Processes and Polymers, 10 (12), 1051-1060 (2013).
48.Y. Sakiyama, D. B. Graves, H. W. Chang, T. Shimizu and G. E. Morfill, "Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species," Journal of Physics D-Applied Physics, 45 (42)(2012).
49.M. J. Pavlovich, H. W. Chang, Y. Sakiyama, D. S. Clark and D. B. Graves, "Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water," Journal of Physics D-Applied Physics, 46 (14)(2013).
50.T. Shimizu, Y. Sakiyama, D. B. Graves, J. L. Zimmermann and G. E. Morfill, "The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure," New Journal of Physics, 14(2012).
51.T. Shibata and H. Nishiyama, "Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment," Journal of Physics D-Applied Physics, 47 (10)(2014).
52.K. Oehmigen, M. Hahnel, R. Brandenburg, C. Wilke, K. D. Weltmann and T. von Woedtke, "The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids," Plasma Processes and Polymers, 7 (3-4), 250-257 (2010).
53.M. Naitali, G. Kamgang-Youbi, J. M. Herry, M. N. Bellon-Fontaine and J. L. Brisset, "Combined Effects of Long- Living Chemical Species during Microbial Inactivation Using Atmospheric Plasma- Treated Water," Applied and Environmental Microbiology, 76 (22), 7662-7664 (2010).
54.G. Murdachaew, M. E. Varner, L. F. Phillips, B. J. Finlayson-Pitts and R. B. Gerber, "Nitrogen dioxide at the air-water interface: trapping, absorption, and solvation in the bulk and at the surface," Physical Chemistry Chemical Physics, 15 (1), 204-212 (2013).
55.H. R. Velkoff and R. Godfrey, "LOW-VELOCITY HEAT-TRANSFER TO A FLAT-PLATE IN THE PRESENCE OF A CORONA DISCHARGE IN AIR," Journal of Heat Transfer-Transactions of the Asme, 101 (1), 157-163 (1979).
56.D. Bushnell, presented at the 21st Aerospace Sciences Meeting, 1983 (unpublished).
57.M. Malik, L. Weinstein and M. Hussaini, presented at the 21st Aerospace Sciences Meeting, 1983 (unpublished).
58.E. Moreau, "Airflow control by non-thermal plasma actuators," Journal of Physics D-Applied Physics, 40 (3), 605-636 (2007).
59.E. Moreau, L. Leger and G. Touchard, "Effect of a DC surface-corona discharge on a flat plate boundary layer for air flow velocity up to 25 m/s," J. Electrost., 64 (3-4), 215-225 (2006).
60.M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard and M. Cazalens, "Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control," Experiments in Fluids, 43 (6), 917-928 (2007).
61.S. G. Pouryoussefi and M. Mirzaei, "Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators," Plasma Science & Technology, 17 (5), 415-424 (2015).
62.J. J. Wang, K. S. Choi, L. H. Feng, T. N. Jukes and R. D. Whalley, "Recent developments in DBD plasma flow control," Progress in Aerospace Sciences, 62, 52-78 (2013).
63.G. I. Font and W. L. Morgan, "Recent progress in dielectric barrier discharges for aerodynamic flow control," Contributions to Plasma Physics, 47 (1-2), 103-110 (2007).
64.T. C. Corke, M. L. Post and D. M. Orlov, "SDBD plasma enhanced aerodynamics: concepts, optimization and applications," Progress in Aerospace Sciences, 43 (7-8), 193-217 (2007).
65.L. L. Yang, J. Li, J. S. Cai, G. Q. Wang and Z. K. Zhang, "Lift Augmentation Based on Flap Deflection With Dielectric Barrier Discharge Plasma Flow Control Over Multi-Element Airfoils," Journal of Fluids Engineering-Transactions of the Asme, 138 (3)(2016).
66.J. C. Zito, R. J. Durscher, J. Soni, S. Roy and D. P. Arnold, "Flow and force inducement using micron size dielectric barrier discharge actuators," Applied Physics Letters, 100 (19)(2012).
67.F. O. Thomas, T. C. Corke, M. Iqbal, A. Kozlov and D. Schatzman, "Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control," Aiaa Journal, 47 (9), 2169-2178 (2009).
68.T. C. Corke, C. L. Enloe and S. P. Wilkinson, in Annual Review of Fluid Mechanics, 2010, Vol. 42, pp. 505-529.
69.Y. C. Cho and W. Shyy, "Adaptive flow control of low-Reynolds number aerodynamics using dielectric barrier discharge actuator," Progress in Aerospace Sciences, 47 (7), 495-521 (2011).
70.C. C. Wang and S. Roy, "Three-dimensional simulation of a microplasma pump," Journal of Physics D-Applied Physics, 42 (18)(2009).
71.A. Melling, "Tracer particles and seeding for particle image velocimetry," Measurement Science and Technology, 8 (12), 1406-1416 (1997).
72.A. K. Prasad, "Particle image velocimetry," Current Science, 79 (1), 51-60 (2000).
73.Y. N. Lee and S. E. Schwartz, "Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water," Journal of Geophysical Research: Oceans, 86 (C12), 11971-11983 (1981).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top