跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍翊蓁
研究生(外文):Yi-Chen Lan
論文名稱:利用瀝乾法測量細菌纖維素含水量與乾燥後復水量
論文名稱(外文):Determination of Water Holding Capacity and Water Rehydration Capability of Bacterial Cellulose by Draining Method
指導教授:劉懷勝劉懷勝引用關係
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:160
中文關鍵詞:細菌纖維素含水量瀝乾法復水量甘油孔隙度通透性
外文關鍵詞:bacterial cellulosewater holding capacitydraining methodwater rehydration capabilityglycerolporositypermeability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌纖維素因其特殊的奈米纖維結構使其具有高孔隙度與高孔洞表面積,又因纖維素具親水性,因此具有高含水量 (water holding capacity, WHC)的特性,本實驗利用Chen (2015) 所提出之瀝乾法測量細菌纖維素之含水量,並將測量裝置加以改良。
實驗定義瀝乾時間間隔:∆T為水滴落下的時間間隔,當實驗滿足水滴持續∆T min不再落下則瀝乾實驗結束。本研究確立一瀝乾準則:瀝乾時間間隔 ∆T = 6 min, 纖維素面積A = 16 cm2,在此準則下測量細菌纖維素的含水量,其實驗結果能客觀地代表此纖維素的含水量。此時細菌纖維素含水量變異係數 (coefficient of variation)小於5 %,瀝乾時間不超過30 min且實驗過程中蒸發損失小於 1.5 %。
本研究利用已確立之瀝乾準則測量甘油/纖維素膜含有甘油水溶液之能力 (glycerol holding capacity, GHC),實驗發現隨著甘油濃度增加,甘油/纖維素膜含有溶液的孔洞體積會略微增加,纖維素逐漸膨潤,導致GHC隨之增加。
利用瀝乾法測量熱風乾燥後之甘油/纖維素膜之復水量 (water rehydration capability, WRC)。實驗發現當甘油濃度大於10 wt %時,熱風乾燥後殘留在纖維素結構內的甘油能避免纖維素結構被破壞,使纖維素之復水量提升到未乾燥纖維素含水量的90 %以上。
熱風乾燥後之甘油/纖維素膜,其復水後之孔隙度與通透性相對於熱風乾燥纖維素有明顯的提升,孔隙度由96 %以下提升至 99.3 %以上,而其通透性由2*10-6 ~3*10-6 cm2/sec提升到6*10-6 ~6.5*10-6 cm2/sec,但兩者皆略小於未乾燥之纖維素。
Bacterial Cellulose (BC) of unique nano-fibers structure and strong hydrophilicity is noted for its high water holding capacity (WHC). In this study WHC was measured by a draining method proposed by Chen (2015) with a slight modification.
Experimental results suggested that a convenient set of draining criteria: time interval between draining droplets (∆T) = 6 min and the size of BC (A) = 16 cm2 to measure. WHC would satisfactorily result in less than 5 % coefficient of variation, and evaporation loss is less than 1.5 % within 30 mins.
Furthermore, GHC (glycerol holding capacity) of gly/BC membrane was measured via this draining method by soaking BC memebrane in glycerol solution of various concentrations. The results showed that as the concentration of glycerol solution increased, GHC of gly/BC increased. Meanwhile, as the concentration of glycerol solution increased, up to 12 % swelling effect was noted.
As to WRC (water rehydration capability) of BC dried by hot air, the experimental results showed that the WRC of gly/BC (glycerol concentration 10 wt % or more) could retain at least 90 % of capability compared to only 5 % by hot-air dried BC and 20~40% by freeze-dried BC.
The porosity of rehydrated gly/BC was higher than 99.3 % and the permeability was about 6*10-6 ~6.5*10-6 cm2/sec, which were slightly lower than never-dried BC, but far greater than the hot-air dried BC and freeze-dried BC.
謝辭 I
摘要 II
Abstract III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
第二章 文獻回顧 2
2.1 細菌纖維素生產菌株 2
2.1.1 Acetobacter xylinum 4
2.1.2 細菌纖維素的合成機制 7
2.2 細菌纖維素 10
2.2.1 細菌纖維素的特性 11
2.3 細菌纖維素之含水量 16
2.3.1 纖維素與水之交互作用 16
2.3.2 測量細菌纖維素含水量之方法 19
2.4 細菌纖維素之修飾與含水量 25
2.4.1 原位修飾 (In situ modification) 26
2.4.2 異位修飾 (Ex situ modification) 29
2.5 細菌纖維素之應用 32
2.5.1 細菌纖維素應用於傷口敷料 33
2.5.2 細菌纖維素應用於面膜 36
2.6 細菌纖維素之通透性 38
2.6.1 通透性 (permeability)之計算 40
第三章 實驗方法 45
3.1 實驗菌株 45
3.2 培養基組成 46
3.3 實驗方法 49
3.3.1 細菌纖維素 (bacterial cellulose, BC) 49
3.3.2 細菌纖維素含水量之測量 51
3.3.3 細菌纖維素復水量之測量 52
3.3.4 細菌纖維素通透性之測量 54
3.3.5 細菌纖維素孔隙度之測量 55
3.3.6 甘油濃度之定量 57
3.3.7 葡萄糖濃度之定量 60
3.4 實驗藥品 63
3.5 實驗儀器 64
第四章 實驗結果與討論 65
4.1 瀝乾法測量裝置 65
4.1.1 測量裝置設計 65
4.1.2 測量環境設計 68
4.1.3 細菌纖維素濕重之讀取 70
4.1.4 瀝乾時間間隔 (∆T) 71
4.1.5 細菌纖維素在尼龍網上之擺放方式 72
4.2 確立瀝乾準則 79
4.2.1 瀝乾時間間隔與含水量之關係 79
4.2.2 含水量變異係數 (coefficient of variation) 83
4.2.3 落下水滴重對含水量改變量之影響 88
4.2.4 瀝乾時間 (t) 90
4.2.5 蒸發損失 93
4.2.6 瀝乾準則之確立 96
4.2.7 細菌纖維素厚度與含水量之關係 98
4.3 甘油/纖維素膜含有甘油溶液之能力 102
4.3.1 甘油/纖維素膜含有甘油溶液之能力 103
4.3.2 甘油/纖維素膜之孔洞體積 107
4.3.3 甘油/纖維素膜之吸濕性 112
4.4 細菌纖維素復水量 118
4.4.1 細菌纖維素復水量 119
4.4.2 甘油/纖維素膜熱風乾燥後之甘油含量 124
4.4.3 細菌纖維素復水分率之比較 130
4.5 細菌纖維素復水後之通透性 133
4.5.1 熱風乾燥纖維素之通透性 134
4.5.2 熱風乾燥甘油/纖維素膜之通透性 137
4.5.3 含水量、復水量與通透性之比較 143
4.6 細菌纖維素復水後之孔隙度 146
第五章 結論 150
參考文獻 153
Almeida, I. F., Pereira, T., Silva, N. H., Gomes, F. P., Silvestre, A. J., Freire, C. S., & Costa, P. C. (2014). Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. European Journal of Pharmaceutics Biopharmaceutics, 86(3), 332-336.
Amnuaikit, T., Chusuit, T., Raknam, P., & Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices (Auckl), 4, 77-81.
Azarniya, A., Eslahi, N., Mahmoudi, N., & Simchi, A. (2016). Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Applied Science and Manufacturing, 85, 113–122.
Borzani, W., & Souza, S. J. d. (1995). Mechanism of the Film Thickness Increasing during the Bacterial Production of Cellulose on Non-Agitaded Liquid Media. Biotechnology Letters, 17(11), 1271-1272.
Brown, R. M., Willison, J. H. M., & Richardson, C. L. (1976). Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Cell Biology, 73(12), 4565-4569.
Budhiono, A., Rosidi, B., Taher, H., & Iguchi, M. (1999). Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers, 40, 137-143.
Chan, Y. C. (2013). Fed-batch Production of Bacterial Cellulose in Static Conditions by Gluconacetobacter xylinus. (master), National Taiwan University.
Chang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84, 40-53.
Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol, 47(2), 107-124.
Chen, J. Y. (2015). Effects of Physical Treatment on Water Holding Capacity of Bacterial Cellulose. (master), National Taiwan University.
Chen, P., Cho, S. Y., & Jin, H.-J. (2010). Modification and applications of bacterial celluloses in polymer science. Macromolecular Research, 18(4), 309-320.
Clasen, C., Sultanova, B., Wilhelms, T., Heisig, P., & Kulicke, W. M. (2006). Effects of Different Drying Processes on the Material Properties of Bacterial Cellulose Membranes. Macromolecular Symposia, 244(1), 48-58.
Cook, K. E., & Colvin, J. R. (1980). Evidence for a Beneficial Influence of Cellulose Production on Growth of A cetobacter xylinum in Liquid Medium. Current Microbiology, 3, 203-205.
Cussler, E. L. (2009). Diffusion-mass transfer in fluid systems. Cambridge University Press.
Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, R. M., Jr. (2006). Microbial cellulose - the natural power to heal wounds. Biomaterials, 27(2), 145-151.
Diana Draelos, Z. (2000). Therapeutic moisturizers. Dermatologic Clinics, 18(4), 597-607.
Faroongsarng, D., & Sukonrat, P. (2008). Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels. Int J Pharm, 352(1-2), 152-158.
Fink, H.-P., Purz, H. J., Bohn, A., & Kunze, J. (1997). Investigation of the supramolecular struture of never dried bacterial cellulose. Macromol. Symp., 120, 207-217.
Fontana, J. D., Souza, A. M. D., Fontana, C. K., Torriani, L., Moreschi, J. C., Gallotti, B. J., De Souza, S. J. ,Narcisco, G. P., Bichara, J. A., Farah, L. F. X. (1990). Acetobacter Cellulose Pellicle as a Temporary Skin Substitute. Applied Biochernistry and Biotechnology, 24-25, 253-264.
Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., & Strømme, M. (2007). Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer, 48(26), 7623-7631.
Gonçalves, S., Padrão, J., Rodrigues, I. s. P., Silva, J. o. P., Sencadas, V., Lanceros-Mendez, S., Girão, H., Dourado, F., L., Rodrigues, L. R. (2015). Bacterial Cellulose As a Support for the Growth of Retinal Pigment Epithelium. American Chemical Society, 16(4), 1341–1351.
H. C. Huang, Chen, L. C., Lin, S. B., Hsu, C. P., & Chen, H. H. (2010). In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol, 101(15), 6084-6091.
Hestrain, S., & Schramn, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 58, 345-352.
Hsieh, J. T., Wang, M. J., Lai, J. T., & Liu, H. S. (2016). A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. Journal of the Taiwan Institute of Chemical Engineers, 63, 46-51.
Hu, W., Chen, S., Yang, J., Li, Z., & Wang, H. (2014). Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym, 101, 1043-1060.
Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., & Sun, D. (2013). Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30.
Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Review Bacterial cellulose - a masterpiece of nature’s arts. Journal of Materials Science, 35, 261-270.
Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59(1-3), 101-106.
Kaewnopparat, S., Sansernluk, K., & Faroongsarng, D. (2008). Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: an approach using thermoporosimetry. AAPS PharmSciTech, 9(2), 701-707.
Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose - artificial blood vessels for microsurgery. progress in polymer science, 26, 1561-1603.
Kobayashi, S., Kashiwa, K., Kawasaki, T., & Shoda, S. J. (1991). Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. American Chemical Society, 113, 3079-3084.
Kucharzewski, M., Slezak, A., & Franek, A. (2003). Topical treatment of non-healing venous leg ulcers by cellulose membrane. Phlebologie, 32, 147-151.
Legge, R. L. (1990). Microbial Cellulose Aa A Specially Chemical. Biotechnology Advances, 8(2), 303-319.
Lima, F. d. M. T. d., Pinto, F. C. M., Andrade-da-Costa, B. L. d. S., Silva, J. G. M. d., Júnior, O. C., & Aguiar, J. L. d. A. (2017). Biocompatible bacterial cellulose membrane in dural defect repair of rat. Journal of Materials Science: Materials in Medicine, 37, 1-7.
Lin, S.-P., Loira Calvar, I., Catchmark, J. M., Liu, J.-R., Demirci, A., & Cheng, K.-C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219.
Ludwicka, K., Jedrzejczak-Krzepkowska, M., Kubiak, K., Kolodziejczyk, M., Pankiewicz, T., & Bielecki, S. (2016). Medical and Cosmetic Applications of Bacterial NanoCellulose. 145-165.
Mancini, C. E., Berndt, C. C., Sun, L., & Kucuk, A. (2001). Porosity determinations in thermally sprayed hydroxyapatite coatings. Journal of Materials Science, 36, 3891– 3896.
Masaoka, S., Ohe, T., & Sakota, N. (1993). Production of cellulose from glucose by Acetobater xylinum. Journal of Fermentation and Bioengineering, 75, 18-22.
McAloren, J. T., & Reynolds, G. F. (1965). The determination of glycerol. Analytica Chimica ACTA, 32, 170-174.
McConnell, A. A., Eastwood, M. A., & Mitchell, W. D. (1974). Physical Characteristics of Vegetable Foodstuffs that could Influence Bowel Function. J. Sci. Fd Agric., 25, 1457-1464.
Mi, Q. Y., Ma, S. R., Yu, J., He, J. S., & Zhang, J. (2016). Flexible and Transparent Cellulose Aerogels with Uniform Nanoporous Structure by a Controlled Regeneration Process. American Chemical Society, 4(3), 656–660.
Mohite, B. V., & Patil, S. V. (2014). A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem, 61(2), 101-110.
Nakatsubo, F., Kamitakahara, H., & Hori, M. (1996). Cationic Ring-Opening Polymerization of 3,6-Di-O-benzyl-α-d-glucose 1,2,4-Orthopivalate and the First Chemical Synthesis of Cellulose. American Chemical Society, 118, 1677-1681.
Pa’e, N., Hamid, N. I. A., Khairuddin, N., Zahan, K. A., Seng, K. F., Siddique, B. M., & Muhamad, I. I. (2014). Effect of Different Drying Methods on the Morphology, Crystallinity, Swelling Ability and Tensile Properties of Nata De Coco. Sains Malaysiana, 43(5), 767-773.
Park, S. U., Lee, B. K., Kim, M. S., Park, K. K., Sung, W. J., Kim, H. Y., Han, D. G., Shim, J. S., Lee, Y. J., Kim, S. H., Kim, I. H., Park, D. H. (2014). The possibility of microbial cellulose for dressing and scaffold materials. Int Wound J, 11(1), 35-43.
Ping, Z. H., Nguyen, Q. T., Chen, S. M., Zhou, J. Q., & Ding, Y. D. (2001). States of water in different hydrophilic polymers - DSC and FTIR studies. Polymer, 42, 8461-8467.
Robertson, J. A., & Eastwood, M. A. (1981). A method to measure the water-holding properties of dietary fibre using suction pressure. British Journal of Nutrition, 46(02), 247.
Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose Biosynthesis and Function in Bacteria. Microbiologcal Reviews, 55, 35-38.
Schramm, M., & Hestrain, S. (1954). Factors affecting Production of Cellulose at the Air/ Liquid Interface of a Culture of Acetobacter xylinum. Journal of General Microbiology, 11(1), 123-129.
Schrecker, S. T., & Gostomski, P. A. (2005). Determining the water holding capacity of microbial cellulose. Biotechnol Lett, 27(19), 1435-1438.
Seifert, M., Stephanie Hess, Kabrelian, V., & Klemm, D. (2004). Controlling the Water Content of Never Dried and Reswollen Bacterial Cellulose by the Addition of Water-Soluble Polymers to the Culture Medium. Polymer Chemistry, 42, 463-470.
Serafica, G., Mormino, R., & Bungay, H. (2002). Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol, 58(6), 756-760. doi:10.1007/s00253-002-0978-8
Shibazaki, H., Kuca, S., Onabe, F., & Usuda, M. (1993). Bacterial Cellulose Membrane as Separation Medium. Journal of Applied Polymer Science, 50, 965-969.
Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10, 1-8.
Sulaeva, I., Henniges, U., Rosenau, T., & Potthast, A. (2015). Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv, 33(8), 1547-1571.
Sumner, J. B., & Noback, C. V. (1924). The estimation of sugar in diabetic urine, using dinitrosalicylic acid. The Journal of Biological Chemistry, 18(2), 287-190.
Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., & Gatenholm, P. (2005). Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 26(4), 419-431.
Ul-Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596-603.
Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314.
Vandamme, E. J., Baets, S. D., Vanbaelen, A., Joris, K., & Wulf, P. D. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59, 93-99.
Watanabe, K., & Yamanaka, S. (1995). Effects of Oxygen Tension in the Gaseous Phase on Production and Physical Properties of Bacterial Cellulose Formed under Static Culture Conditions. Bioscience, Biotechnology, and Biochemistry, 59(1), 65-68.
Williams, W. S., & Cannon, R. E. (1989). Alternative Environmental Roles for Cellulose Produced by Acetobacter xylinum. Applied and environmental microbiology, 55(10), 2448-2452.
Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., & Uryu, M. (1989). The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science, 24, 3141-3145.
Yin, N., Chen, S., Li, Z., Ouyang, Y., Hu, W., Tang, L., Zhang, W., Zhou, B., Yang, J., Xu, Q., Wan, H. (2012). Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Materials Letters, 81, 131–134.
Zaar, K. (1979). Visualization of Pores (Export Sites) Correlated with Cellulose Production in the Envelope of the Gram-Negative Bacterium Acetobacter Xylinum. Journal of Cell Biology, 80, 773-777.
Zhang, C. J., Wang, L., Zhao, J. C., & Zhu, P. (2011). Effect of Drying Methods on Structure and Mechanical Properties of Bacterial Cellulose Films. Advanced Materials Research, 239-242, 2667-2670.
Zhijiang, C., & Guang, Y. (2011). Bacterial cellulose/collagen composite: Characterization and first evaluation of cytocompatibility. Journal of Applied Polymer Science, 120(5), 2938-2944. doi:10.1002/app.33318
Zografi, G., & Kontny, M. J. (1986). The Interactions of Water with Cellulose- and Starch-Derived Pharmaceutical Excipients. Pharmaceutical Research, 3(4), 187-197.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊