Alessi, P., Cortesi, A., Kikic, I., Foster, N., Macnaughton, S., & Colombo, I. (1996). Particle production of steroid drugs using supercritical fluid processing. Industrial & engineering chemistry research, 35(12), 4718-4726.
Asghari, I., & Esmaeilzadeh, F. (2012). Investigation of key influence parameters for synthesis of submicron carboxymethylcellulose particles via rapid expansion of supercritical CO 2 solution by Taguchi method. The Journal of Supercritical Fluids, 69, 34-44.
Baseri, H., & Lotfollahi, M. N. (2013). Formation of gemfibrozil with narrow particle size distribution via rapid expansion of supercritical solution process (RESS). Powder Technology, 235, 677-684.
Chen, J.-F., Zhang, J.-Y., Shen, Z.-G., Zhong, J., & Yun, J. (2006). Preparation and characterization of amorphous cefuroxime axetil drug nanoparticles with novel technology: high-gravity antisolvent precipitation. Industrial & engineering chemistry research, 45(25), 8723-8727.
Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European journal of pharmaceutical sciences, 13(2), 123-133.
Dubbs, M. D., & Gupta, R. B. (1998). Solubility of vitamin E (alpha-tocopherol) and vitamin K-3 (menadione) in ethanol-water mixture. Journal of Chemical and Engineering Data, 43(4), 590-591. doi:10.1021/je980017l
Fattahi, A., Karimi-Sabet, J., Keshavarz, A., Golzary, A., Rafiee-Tehrani, M., & Dorkoosh, F. A. (2016). Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. The Journal of Supercritical Fluids, 107, 469-478.
Gao, Z. (2011). Mathematical modeling of variables involved in dissolution testing. Journal of pharmaceutical sciences, 100(11), 4934-4942.
Ghoreishi, S., Hedayati, A., & Kordnejad, M. (2016). Micronization of chitosan via rapid expansion of supercritical solution. The Journal of Supercritical Fluids, 111, 162-170.
Haque, A. T., & Chun, B.-S. (2016). Particle formation and characterization of mackerel reaction oil by gas saturated solution process. Journal of food science and technology, 53(1), 293-303.
Herrero, M., Cifuentes, A., & Ibañez, E. (2006). Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food chemistry, 98(1), 136-148.
Hezave, A. Z., & Esmaeilzadeh, F. (2010). Micronization of drug particles via RESS process. The Journal of Supercritical Fluids, 52(1), 84-98.
Hezave, A. Z., & Esmaeilzadeh, F. (2011). The effects of RESS parameters on the diclofenac particle size. Advanced Powder Technology, 22(5), 587-595.
Hiendrawan, S., Veriansyah, B., & Tjandrawinata, R. R. (2014). Micronization of fenofibrate by rapid expansion of supercritical solution. Journal of Industrial and Engineering Chemistry, 20(1), 54-60.
Hiendrawan, S., Veriansyah, B., & Tjandrawinata, R. R. (2015). Journal of Chemical and Pharmaceutical Research, 2015, 7 (3): 708-715. Journal of Chemical and Pharmaceutical Research, 7(3), 708-715.
Hirunsit, P., Huang, Z., Srinophakun, T., Charoenchaitrakool, M., & Kawi, S. (2005). Particle formation of ibuprofen–supercritical CO 2 system from rapid expansion of supercritical solutions (RESS): A mathematical model. Powder Technology, 154(2), 83-94.
Huang, Z., Guo, Y.-h., Miao, H., & Teng, L.-j. (2014). Solubility of progesterone in supercritical carbon dioxide and its micronization through RESS. Powder Technology, 258, 66-77.
Huang, Z., Sun, G.-B., Chiew, Y. C., & Kawi, S. (2005). Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technology, 160(2), 127-134. doi:10.1016/j.powtec.2005.08.024
Keck, C. M., & Müller, R. H. (2006). Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European Journal of Pharmaceutics and Biopharmaceutics, 62(1), 3-16.
Keith, L. H., Walters, D. B., & National Toxicology Program (U.S.). (1992). National Toxicology Program''s chemical solubility compendium. Boca Raton: Lewis Publishers.
Keshavarz, A., Karimi-Sabet, J., Fattahi, A., Golzary, A., Rafiee-Tehrani, M., & Dorkoosh, F. A. (2012). Preparation and characterization of raloxifene nanoparticles using rapid expansion of supercritical solution (RESS). The Journal of Supercritical Fluids, 63, 169-179.
Keshmiri, K., Vatanara, A., Tavakoli, O., & Manafi, N. (2015). Production of ultrafine clobetasol propionate via rapid expansion of supercritical solution (RESS): Full factorial approach. The Journal of Supercritical Fluids, 101, 176-183. doi:10.1016/j.supflu.2015.01.024
Kim, M.-S., Kim, J.-Y., Kim, C. K., & Kim, N.-K. (2005). Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO 2. Chemosphere, 58(4), 459-465.
King, J., & Williams, L. (2003). Utilization of critical fluids in processing semiconductors and their related materials. Current Opinion in Solid State and Materials Science, 7(4), 413-424.
Knez, Ž., Knez Hrnčič, M., & Škerget, M. (2015). Particle formation and product formulation using supercritical fluids. Annual review of chemical and biomolecular engineering, 6, 379-407.
Lee, B.-M., Kim, D. S., Lee, Y.-H., Lee, B.-C., Kim, H.-S., Kim, H., & Lee, Y.-W. (2011). Preparation of submicron-sized RDX particles by rapid expansion of solution using compressed liquid dimethyl ether. The Journal of Supercritical Fluids, 57(3), 251-258.
Lee, C.-S., Tang, M., Ho, S.-L., & Chen, Y.-P. (2015). Recrystallization and Micronization of 4-Dimethylaminoantipyrine Using the Rapid Expansion of Supercritical Solution (RESS) Process. International Journal of Chemical Engineering and Applications, 6(6), 427.
Lin, P.-C., Su, C.-S., Tang, M., & Chen, Y.-P. (2012). Micronization of ethosuximide using the rapid expansion of supercritical solution (RESS) process. The Journal of Supercritical Fluids, 72, 84-89.
Liu, G.-T., & Nagahama, K. (1996). Application of rapid expansion of supercritical solutions in the crystallization separation. Industrial & engineering chemistry research, 35(12), 4626-4634.
Lo, B., Tai, C., Chang, J., Wu, C., Chen, B., Kuo, T.-C., . . . Ling, Y. (2007). Supercritical carbon dioxide-assisted oxidative degradation and removal of polymer residue after reactive ion etching of photoresist. Green Chemistry, 9(2), 133-138.
Loth, H., & Hemgesberg, E. (1986). Properties and dissolution of drugs micronized by crystallization from supercritical gases. International journal of pharmaceutics, 32(2-3), 265-267.
Müllers, K. C., Paisana, M., & Wahl, M. A. (2015). Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharmaceutical research, 32(2), 702-713.
Matson, D., Petersen, R., & Smith, R. (1986). Formation of silica powders from the rapid expansion of supercritical solutions. ADV. CERAM. MATER. Adv. Ceram. Mater., 1(3), 242.
Mattea, F., Martín, Á., & Cocero, M. J. (2009). Carotenoid processing with supercritical fluids. Journal of Food Engineering, 93(3), 255-265.
Montes, A., Wehner, L., Pereyra, C., & de la Ossa, E. M. (2016). Mangiferin nanoparticles precipitation by supercritical antisolvent process. The Journal of Supercritical Fluids, 112, 44-50.
Montgomery, D. C. (2009). Design and analysis of experiments (7. ed.). Hoboken, N.J.: Wiley.
Moore, J. W., & Flanner, H. H. (1996). Mathematical comparison of dissolution profiles. Pharmaceutical technology, 20(6), 64-74.
Moribe, K., Tsutsumi, S.-i., Morishita, S., Shinozaki, H., Tozuka, Y., Oguchi, T., & Yamamoto, K. (2005). Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution. Chemical and pharmaceutical bulletin, 53(8), 1025-1028.
Paisana, M. C., Müllers, K. C., Wahl, M. A., & Pinto, J. F. (2016). Production and stabilization of olanzapine nanoparticles by rapid expansion of supercritical solutions (RESS). The Journal of Supercritical Fluids, 109, 124-133.
Pourasghar, M., Fatemi, S., Vatanara, A., & Najafabadi, A. R. (2012). Production of ultrafine drug particles through rapid expansion of supercritical solution; a statistical approach. Powder Technology, 225, 21-26.
Rescigno, A. (1992). Bioequivalence. Pharmaceutical research, 9(7), 925-928.
Reveco-Chilla, A. G., Cabrera, A. L., Juan, C., Zacconi, F. C., del Valle, J. M., & Valenzuela, L. M. (2016). Solubility of menadione and dichlone in supercritical carbon dioxide. Fluid Phase Equilibria, 423, 84-92.
Reverchon, E., & Adami, R. (2013). Supercritical assisted atomization to produce nanostructured chitosan-hydroxyapatite microparticles for biomedical application. Powder Technology, 246, 441-447.
Shah, V. P., Tsong, Y., Sathe, P., & Liu, J.-P. (1998). In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharmaceutical research, 15(6), 889-896.
Sharma, S. K., & Jagannathan, R. (2016). High throughput RESS processing of sub-10nm ibuprofen nanoparticles. The Journal of Supercritical Fluids, 109, 74-79.
Shinozaki, H., Oguchi, T., Suzuki, S., Aoki, K., Sako, T., Morishita, S., . . . Yamamoto, K. (2006). Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansion of supercritical solutions. Drug development and industrial pharmacy, 32(7), 877-891.
Subra, P., & Jestin, P. (1999). Powders elaboration in supercritical media: comparison with conventional routes. Powder Technology, 103(1), 2-9.
Türk, M. (2000). Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions. The Journal of Supercritical Fluids, 18(3), 169-184.
Türk, M., & Bolten, D. (2010). Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): results for naproxen. The Journal of Supercritical Fluids, 55(2), 778-785.
Türk, M., & Bolten, D. (2016). Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). The Journal of Supercritical Fluids, 116, 239-250.
Taylor, L. T. (2009). Supercritical fluid chromatography for the 21st century. The Journal of Supercritical Fluids, 47(3), 566-573.
Uchida, H., Nishijima, M., Sano, K., Demoto, K., Sakabe, J., & Shimoyama, Y. (2015). Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. The Journal of Supercritical Fluids, 105, 128-135.
Uzel, R. A., & Yaman, Ü. R. (2016). A novel method for food particle production using subcritical water extraction: Ganoderma mushroom as a case example. The Journal of Supercritical Fluids, 111, 74-82.
Velasco, D., Benito, L., Fernández-Gutiérrez, M., San Román, J., & Elvira, C. (2010). Preparation in supercritical CO 2 of porous poly (methyl methacrylate)–poly (l-lactic acid)(PMMA–PLA) scaffolds incorporating ibuprofen. The Journal of Supercritical Fluids, 54(3), 335-341.
Yamini, Y., Arab, J., & Asghari-khiavi, M. (2003). Solubilities of phenazopyridine, propranolol, and methimazole in supercritical carbon dioxide. Journal of pharmaceutical and biomedical analysis, 32(1), 181-187.
Yasuji, T., Takeuchi, H., & Kawashima, Y. (2008). Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Advanced drug delivery reviews, 60(3), 388-398.
Yildiz, N., Tuna, Ş., Döker, O., & Çalimli, A. (2007). Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS). The Journal of Supercritical Fluids, 41(3), 440-451.
陳鈞振. (2006). 以連續式超臨界反溶劑沉積法進行藥物微粒化及包覆之研究. 國立臺灣化學工程學研究所碩士論文蘇至善. (2007). 藥物固體於超臨界二氧化碳中溶解度與微粒化之研究. 國立臺灣化學工程學研究所博士論文陳淑鈺. (2008). 利用超臨界二氧化碳進行奈米二氧化矽表面接枝之研究. 國立臺灣化學工程學研究所碩士論文陳瓊云. (2010). 利用超臨界反溶劑法進行異抗壞血酸、沒食子酸丙脂及薑黃素微利化. 國立臺灣化學工程學研究所碩士論文
方鈞顥. (2015). 利用超臨界溶液快速膨脹法進行藥物Monobenzone、Ethylparaben、Edaravone與Kojic acid之微粒化研究. 國立臺灣化學工程學研究所碩士論文簡豪志. (2016). 利用超臨界溶液快速膨脹法進行藥物氯貝酸與百里酚之微粒化研究. 國立臺灣化學工程學研究所碩士論文