跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊霖
研究生(外文):Chun-Lin Wu
論文名稱:利用超臨界溶液快速膨脹法進行藥物鄰乙氧基苯甲醯胺、甲亢平與甲萘醌之微粒化研究
論文名稱(外文):Study of the RESS Process for the Micronization of Ethenzamide, Carbimazole and Menadione
指導教授:陳延平陳延平引用關係
指導教授(外文):Yan-Ping Chen
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:超臨界溶液快速膨脹法實驗設計法2k因子設計微粒化溶離速率鄰乙氧基苯甲醯胺甲亢平甲萘醌
外文關鍵詞:RESSdesign of experimentfactorial designmicronizationdissolution rateethemzamidecarbimazolemenadione
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為利用超臨界溶液快速膨脹法,以超臨界二氧化碳作為系統中的溶劑,對兩種原料藥與一種食品添加劑進行微粒化實驗,其目標藥物分別為抗消炎止痛藥鄰乙氧基苯甲醯胺 (Ethenzamide)、抗甲狀腺劑甲亢平 (Carbimazole) 與維生素K3甲萘醌 (Menadione),藉由縮小目標藥物的尺寸,以提高藥物的總表面積,並增加其溶離速率,以達到提升生物可利用度 (Bioavailability) 之目的。

在第一支藥物 Ethenzamide 的研究中,設定的操作條件為 (Text, Pext, Tpost, DN) = (338 K, 200 bar, 298 K, 1000 μm),雖然藥物平均粒徑僅有從17.69 μm 縮小至 9.37 μm,但從最後的溶離試驗結果來看,經過微粒化程序後,目標藥物之溶離速率常數kw值從0.0254 min-1提升至0.2471 min-1,將近提高有9.73倍之多,有很顯著的提升。而從FTIR、DSC、XRD圖譜中,沒有發現藥物變質與晶型轉變的現象,雖然微粒化後的藥物結晶強度有略微下降,但在藥物的熱穩定性與熔點上並沒有太大改變。

在第二支藥物Carbimazole的研究中,設定的操作條件為 (Text, Pext, Tpost, DN) = (348 K, 220 bar, 298 K, 1000 μm),目標藥物平均粒徑從84.58 μm縮小至3.63 μm,縮小程度有23.3倍之多。在定性分析方面,根據FTIR、DSC、XRD圖譜,雖然沒有發生藥物變質與晶型轉變的現象,但因為結晶強度有大幅度的降低,導致微粒化後的藥物在熱穩定性上並非很穩定,熔點約下降了12.77℃。在溶離試驗方面,代入 Weibull model 進行迴歸後,得到原料藥之kw值高達0.1263 min-1,可以說已經有相當良好的溶離速率,但微粒化過後藥物之kw值為1.8957 min-1,又更加提升該藥物溶離速率多達15.01倍,效果相當顯著。

在最後一支食品添加劑Menadione的研究中,使用實驗設計法中廣泛使用的因子實驗 (Factorial design),設計一個23因子實驗,探討三種不同的操作變數萃取溫度 (Text)、萃取壓力 (Pext) 以及環境收集溫度 (Tpost),對於超臨界溶液快速膨脹法之粒徑大小結果影響。並在完成因子實驗後,再以第四個操作變數─噴嘴內徑 (DN) 來作延伸探討。根據23因子設計與ANOVA分析的結果,微粒化後的藥物粒徑大約落在1-3 μm這區間,而環境收集溫度是影響粒徑最為顯著的操作因子,影響程度 (Contribution) 高達91.086%。本研究選用因子試驗中以1000 μm內徑之噴嘴以及最溫和的操作條件 (Run 4) 之產物作後續儀器分析,SEM圖發現藥物平均粒徑從129.14 μm縮小至1.17 μm,縮小了110.38倍之多。在定性分析方面,同樣從FTIR、DSC、XRD圖譜中,沒有發現藥物有變質與晶型轉變的現象,但結晶強度有大幅度的降低,形成了近似非晶型 (Amorphous form) 的結構,熔點略為下降了2.82℃。而在溶離試驗方面,藥物之kw值從0.0144 min-1上升至0.0631 min-1,溶離速率加快了約4.38倍。
In this study, the rapid expansion of supercritical solution (RESS) process was applied to produce micronized particles of two active pharmaceutical ingredients (APIs) and one kind of food additives. They were ethenzamide, carbimazole and menadione, respectively. The solubility of APIs and food additives is usually insoluble and poorly bioavailable. Therefore, by the reduction of targeted drug particles into submicron scale, it leads to a significant increase in dissolution rate and bioavailability.

For ethenzamide, the micronized result was not found obviously under the operating condition (Text at 338 K, Pext at 200 bar, Tpost at 298 K and nozzle diameter at 1000 μm). The mean particle size was only reduced from 17.69 μm to 9.37 μm after the RESS process. However, in the dissolution rate test, the dissolution rate constant (kw) was increased from 0.0254 min-1 to 0.2471 min-1. The rate of dissolution was significantly enhanced by 9.73 times. Besides, the thermal and spectrometric properties of the ethenzamide were nearly consistent between the original and RESS processed particles.

For carbimazole, the mean particle size was reduced from 84.58 μm to 3.63 μm under the operating condition (Text at 348 K, Pext at 220 bar, Tpost at 298 K and nozzle diameter at 1000 μm). The micronized degree was up to 23.3 times. The chemical properties of carbimazole were same. However, the melting point and the enthalpy of fusion were decreased because of the lower crystallinity after the RESS process. In addition, the dissolution rate constant (kw) of original and RESS processed particles was 0.1263 min-1 and 1.8957 min-1. Although the original dissolution rate of carbimazole was decent enough, the dissolution rate still improved 15.01 times after the RESS process.

For menadione, the factorial design was applied as the design of experiment. It was for the purpose of discussing the effect of the different parameters on the value of micronized mean particle size. Three parameters, extraction temperature (Text), extraction pressure (Pext) and post-expansion temperature (Tpost), were chosen in this 23 factorial design. After finishing the 23 factorial design, nozzle diameter (DN) was selected as another parameter to discuss. Results from the analysis of variance (ANOVA) showed that post-expansion temperature was the most significantly parameter whose contribution was high to 91.086%. Then, the product in the most moderate condition (Run 4) was subsequently selected to be analyzed. The mean particle size was dramatically micronized from 129.14 μm to 1.17 μm. In qualitative analysis, there was no change of the physical and chemical properties after the RESS process. Moreover, the RESS processed menadione was closed to amorphous form because of its quite small intensity of crystallinity. In the dissolution rate test, the dissolution rate constant (kw) was changed from 0.0144 min-1 to 0.0631 min-1. As a result, the dissolution rate enhanced 4.38 times.
口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 超臨界流體簡介 1
1.2 超臨界流體技術與應用 2
1.3 藥物微粒化之目的 4
1.4 超臨界流體微粒化技術 6
1.4.1 超臨界溶液快速膨脹法 7
1.4.2 氣體飽和溶液沉積法 8
1.4.3 超臨界反溶劑法 9
1.4.4 超臨界流體輔助霧化法 10
1.5 研究動機 11
第二章 實驗設計與分析 16
2.1 因子實驗 16
2.2 2k因子設計 16
2.3 2k因子設計的數學模型 19
2.4 2k因子設計加入中心點實驗 19
2.5 變異數分析 20
2.6 因子設計實驗實例 22
第三章 實驗方法 29
3.1 實驗藥品 29
3.1.1 目標藥物 29
3.1.2 其他藥品 30
3.2 實驗裝置 30
3.3 實驗步驟 32
3.4 實驗分析 33
第四章 結果與討論 51
4.1 鄰乙氧基苯甲醯胺 (Ethenzamide) 51
4.1.1 顆粒再結晶 52
4.1.2 定性分析 52
4.1.3 溶離速率測試 53
4.2 甲亢平 (Carbimazole) 54
4.2.1 顆粒再結晶 54
4.2.2 定性分析 55
4.2.3 溶離速率測試 56
4.3 甲萘醌 (Menadione) 57
4.3.1 2k因子設計 57
4.3.2 變異數分析 58
4.3.3 各參數的因子效應 60
4.3.4 顆粒再結晶 63
4.3.5 定性分析 64
4.3.6 溶離速率測試 65
第五章 結論 98
第六章 參考文獻 100
Alessi, P., Cortesi, A., Kikic, I., Foster, N., Macnaughton, S., & Colombo, I. (1996). Particle production of steroid drugs using supercritical fluid processing. Industrial & engineering chemistry research, 35(12), 4718-4726.
Asghari, I., & Esmaeilzadeh, F. (2012). Investigation of key influence parameters for synthesis of submicron carboxymethylcellulose particles via rapid expansion of supercritical CO 2 solution by Taguchi method. The Journal of Supercritical Fluids, 69, 34-44.
Baseri, H., & Lotfollahi, M. N. (2013). Formation of gemfibrozil with narrow particle size distribution via rapid expansion of supercritical solution process (RESS). Powder Technology, 235, 677-684.
Chen, J.-F., Zhang, J.-Y., Shen, Z.-G., Zhong, J., & Yun, J. (2006). Preparation and characterization of amorphous cefuroxime axetil drug nanoparticles with novel technology: high-gravity antisolvent precipitation. Industrial & engineering chemistry research, 45(25), 8723-8727.
Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European journal of pharmaceutical sciences, 13(2), 123-133.
Dubbs, M. D., & Gupta, R. B. (1998). Solubility of vitamin E (alpha-tocopherol) and vitamin K-3 (menadione) in ethanol-water mixture. Journal of Chemical and Engineering Data, 43(4), 590-591. doi:10.1021/je980017l
Fattahi, A., Karimi-Sabet, J., Keshavarz, A., Golzary, A., Rafiee-Tehrani, M., & Dorkoosh, F. A. (2016). Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. The Journal of Supercritical Fluids, 107, 469-478.
Gao, Z. (2011). Mathematical modeling of variables involved in dissolution testing. Journal of pharmaceutical sciences, 100(11), 4934-4942.
Ghoreishi, S., Hedayati, A., & Kordnejad, M. (2016). Micronization of chitosan via rapid expansion of supercritical solution. The Journal of Supercritical Fluids, 111, 162-170.
Haque, A. T., & Chun, B.-S. (2016). Particle formation and characterization of mackerel reaction oil by gas saturated solution process. Journal of food science and technology, 53(1), 293-303.
Herrero, M., Cifuentes, A., & Ibañez, E. (2006). Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food chemistry, 98(1), 136-148.
Hezave, A. Z., & Esmaeilzadeh, F. (2010). Micronization of drug particles via RESS process. The Journal of Supercritical Fluids, 52(1), 84-98.
Hezave, A. Z., & Esmaeilzadeh, F. (2011). The effects of RESS parameters on the diclofenac particle size. Advanced Powder Technology, 22(5), 587-595.
Hiendrawan, S., Veriansyah, B., & Tjandrawinata, R. R. (2014). Micronization of fenofibrate by rapid expansion of supercritical solution. Journal of Industrial and Engineering Chemistry, 20(1), 54-60.
Hiendrawan, S., Veriansyah, B., & Tjandrawinata, R. R. (2015). Journal of Chemical and Pharmaceutical Research, 2015, 7 (3): 708-715. Journal of Chemical and Pharmaceutical Research, 7(3), 708-715.
Hirunsit, P., Huang, Z., Srinophakun, T., Charoenchaitrakool, M., & Kawi, S. (2005). Particle formation of ibuprofen–supercritical CO 2 system from rapid expansion of supercritical solutions (RESS): A mathematical model. Powder Technology, 154(2), 83-94.
Huang, Z., Guo, Y.-h., Miao, H., & Teng, L.-j. (2014). Solubility of progesterone in supercritical carbon dioxide and its micronization through RESS. Powder Technology, 258, 66-77.
Huang, Z., Sun, G.-B., Chiew, Y. C., & Kawi, S. (2005). Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technology, 160(2), 127-134. doi:10.1016/j.powtec.2005.08.024
Keck, C. M., & Müller, R. H. (2006). Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European Journal of Pharmaceutics and Biopharmaceutics, 62(1), 3-16.
Keith, L. H., Walters, D. B., & National Toxicology Program (U.S.). (1992). National Toxicology Program''s chemical solubility compendium. Boca Raton: Lewis Publishers.
Keshavarz, A., Karimi-Sabet, J., Fattahi, A., Golzary, A., Rafiee-Tehrani, M., & Dorkoosh, F. A. (2012). Preparation and characterization of raloxifene nanoparticles using rapid expansion of supercritical solution (RESS). The Journal of Supercritical Fluids, 63, 169-179.
Keshmiri, K., Vatanara, A., Tavakoli, O., & Manafi, N. (2015). Production of ultrafine clobetasol propionate via rapid expansion of supercritical solution (RESS): Full factorial approach. The Journal of Supercritical Fluids, 101, 176-183. doi:10.1016/j.supflu.2015.01.024
Kim, M.-S., Kim, J.-Y., Kim, C. K., & Kim, N.-K. (2005). Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO 2. Chemosphere, 58(4), 459-465.
King, J., & Williams, L. (2003). Utilization of critical fluids in processing semiconductors and their related materials. Current Opinion in Solid State and Materials Science, 7(4), 413-424.
Knez, Ž., Knez Hrnčič, M., & Škerget, M. (2015). Particle formation and product formulation using supercritical fluids. Annual review of chemical and biomolecular engineering, 6, 379-407.
Lee, B.-M., Kim, D. S., Lee, Y.-H., Lee, B.-C., Kim, H.-S., Kim, H., & Lee, Y.-W. (2011). Preparation of submicron-sized RDX particles by rapid expansion of solution using compressed liquid dimethyl ether. The Journal of Supercritical Fluids, 57(3), 251-258.
Lee, C.-S., Tang, M., Ho, S.-L., & Chen, Y.-P. (2015). Recrystallization and Micronization of 4-Dimethylaminoantipyrine Using the Rapid Expansion of Supercritical Solution (RESS) Process. International Journal of Chemical Engineering and Applications, 6(6), 427.
Lin, P.-C., Su, C.-S., Tang, M., & Chen, Y.-P. (2012). Micronization of ethosuximide using the rapid expansion of supercritical solution (RESS) process. The Journal of Supercritical Fluids, 72, 84-89.
Liu, G.-T., & Nagahama, K. (1996). Application of rapid expansion of supercritical solutions in the crystallization separation. Industrial & engineering chemistry research, 35(12), 4626-4634.
Lo, B., Tai, C., Chang, J., Wu, C., Chen, B., Kuo, T.-C., . . . Ling, Y. (2007). Supercritical carbon dioxide-assisted oxidative degradation and removal of polymer residue after reactive ion etching of photoresist. Green Chemistry, 9(2), 133-138.
Loth, H., & Hemgesberg, E. (1986). Properties and dissolution of drugs micronized by crystallization from supercritical gases. International journal of pharmaceutics, 32(2-3), 265-267.
Müllers, K. C., Paisana, M., & Wahl, M. A. (2015). Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharmaceutical research, 32(2), 702-713.
Matson, D., Petersen, R., & Smith, R. (1986). Formation of silica powders from the rapid expansion of supercritical solutions. ADV. CERAM. MATER. Adv. Ceram. Mater., 1(3), 242.
Mattea, F., Martín, Á., & Cocero, M. J. (2009). Carotenoid processing with supercritical fluids. Journal of Food Engineering, 93(3), 255-265.
Montes, A., Wehner, L., Pereyra, C., & de la Ossa, E. M. (2016). Mangiferin nanoparticles precipitation by supercritical antisolvent process. The Journal of Supercritical Fluids, 112, 44-50.
Montgomery, D. C. (2009). Design and analysis of experiments (7. ed.). Hoboken, N.J.: Wiley.
Moore, J. W., & Flanner, H. H. (1996). Mathematical comparison of dissolution profiles. Pharmaceutical technology, 20(6), 64-74.
Moribe, K., Tsutsumi, S.-i., Morishita, S., Shinozaki, H., Tozuka, Y., Oguchi, T., & Yamamoto, K. (2005). Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution. Chemical and pharmaceutical bulletin, 53(8), 1025-1028.
Paisana, M. C., Müllers, K. C., Wahl, M. A., & Pinto, J. F. (2016). Production and stabilization of olanzapine nanoparticles by rapid expansion of supercritical solutions (RESS). The Journal of Supercritical Fluids, 109, 124-133.
Pourasghar, M., Fatemi, S., Vatanara, A., & Najafabadi, A. R. (2012). Production of ultrafine drug particles through rapid expansion of supercritical solution; a statistical approach. Powder Technology, 225, 21-26.
Rescigno, A. (1992). Bioequivalence. Pharmaceutical research, 9(7), 925-928.
Reveco-Chilla, A. G., Cabrera, A. L., Juan, C., Zacconi, F. C., del Valle, J. M., & Valenzuela, L. M. (2016). Solubility of menadione and dichlone in supercritical carbon dioxide. Fluid Phase Equilibria, 423, 84-92.
Reverchon, E., & Adami, R. (2013). Supercritical assisted atomization to produce nanostructured chitosan-hydroxyapatite microparticles for biomedical application. Powder Technology, 246, 441-447.
Shah, V. P., Tsong, Y., Sathe, P., & Liu, J.-P. (1998). In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharmaceutical research, 15(6), 889-896.
Sharma, S. K., & Jagannathan, R. (2016). High throughput RESS processing of sub-10nm ibuprofen nanoparticles. The Journal of Supercritical Fluids, 109, 74-79.
Shinozaki, H., Oguchi, T., Suzuki, S., Aoki, K., Sako, T., Morishita, S., . . . Yamamoto, K. (2006). Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansion of supercritical solutions. Drug development and industrial pharmacy, 32(7), 877-891.
Subra, P., & Jestin, P. (1999). Powders elaboration in supercritical media: comparison with conventional routes. Powder Technology, 103(1), 2-9.
Türk, M. (2000). Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions. The Journal of Supercritical Fluids, 18(3), 169-184.
Türk, M., & Bolten, D. (2010). Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): results for naproxen. The Journal of Supercritical Fluids, 55(2), 778-785.
Türk, M., & Bolten, D. (2016). Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). The Journal of Supercritical Fluids, 116, 239-250.
Taylor, L. T. (2009). Supercritical fluid chromatography for the 21st century. The Journal of Supercritical Fluids, 47(3), 566-573.
Uchida, H., Nishijima, M., Sano, K., Demoto, K., Sakabe, J., & Shimoyama, Y. (2015). Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. The Journal of Supercritical Fluids, 105, 128-135.
Uzel, R. A., & Yaman, Ü. R. (2016). A novel method for food particle production using subcritical water extraction: Ganoderma mushroom as a case example. The Journal of Supercritical Fluids, 111, 74-82.
Velasco, D., Benito, L., Fernández-Gutiérrez, M., San Román, J., & Elvira, C. (2010). Preparation in supercritical CO 2 of porous poly (methyl methacrylate)–poly (l-lactic acid)(PMMA–PLA) scaffolds incorporating ibuprofen. The Journal of Supercritical Fluids, 54(3), 335-341.
Yamini, Y., Arab, J., & Asghari-khiavi, M. (2003). Solubilities of phenazopyridine, propranolol, and methimazole in supercritical carbon dioxide. Journal of pharmaceutical and biomedical analysis, 32(1), 181-187.
Yasuji, T., Takeuchi, H., & Kawashima, Y. (2008). Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Advanced drug delivery reviews, 60(3), 388-398.
Yildiz, N., Tuna, Ş., Döker, O., & Çalimli, A. (2007). Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS). The Journal of Supercritical Fluids, 41(3), 440-451.
陳鈞振. (2006). 以連續式超臨界反溶劑沉積法進行藥物微粒化及包覆之研究. 國立臺灣化學工程學研究所碩士論文
蘇至善. (2007). 藥物固體於超臨界二氧化碳中溶解度與微粒化之研究. 國立臺灣化學工程學研究所博士論文
陳淑鈺. (2008). 利用超臨界二氧化碳進行奈米二氧化矽表面接枝之研究. 國立臺灣化學工程學研究所碩士論文
陳瓊云. (2010). 利用超臨界反溶劑法進行異抗壞血酸、沒食子酸丙脂及薑黃素微利化. 國立臺灣化學工程學研究所碩士論文
方鈞顥. (2015). 利用超臨界溶液快速膨脹法進行藥物Monobenzone、Ethylparaben、Edaravone與Kojic acid之微粒化研究. 國立臺灣化學工程學研究所碩士論文
簡豪志. (2016). 利用超臨界溶液快速膨脹法進行藥物氯貝酸與百里酚之微粒化研究. 國立臺灣化學工程學研究所碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊