跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾旻芝
研究生(外文):Min-Chih Chung
論文名稱:含蛋白質類澱粉纖維混合材料之製備與性質探討
論文名稱(外文):Synthesis and Characterization of Protein Fibril-Containing Hybrid Materials
指導教授:王勝仕
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:100
中文關鍵詞:類澱粉纖維氧化石墨烯混合材料
外文關鍵詞:Amyloid fibrilGraphene oxideHybrid material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多年來,類澱粉纖維(amyloid fibril)一直被視為導致類澱粉症的主要原因,但近年許多研究漸漸證明,類澱粉纖維僅是類澱粉症的副產物,又類澱粉纖維本身為一種變性蛋白質,擁有高穩定性和纖維狀結構,因此類澱粉纖維的應用逐漸被重視,另一方面,由於近年生醫領域的發展,材料研發講求高生物相容性和生物可降解性,類澱粉纖維本身即為蛋白質,又有一定機械強度和穩定性,很適合用於材料合成。
本文嘗試將母雞蛋白溶菌酶(Hen egg white lysozyme)形成之類澱粉纖維以不同比例加入氧化石墨烯(Graphene oxide)製備氧化石墨烯-類澱粉纖維複合材料,並對其型態、結合方式、熱穩定性和機械性質進行量測。
由本研究結果推測,在複合材料合成過程當中,類澱粉纖維和氧化石墨烯皆會可能先進行拆解,類澱粉纖維會還原成類澱粉纖維原絲;氧化石墨烯會剝離成更薄或較無規則的型態,接著類澱粉纖維原絲會以靜電作用力和氫鍵作用力平貼在氧化石墨烯表面,加入些微的類澱粉纖維即可造成氧化石墨烯結構很大的改變。
在比較加入不同量類澱粉纖維的複合材料方面,加入越多的類澱粉纖維有越高的熱穩定性,但關於其機械性質,加入微量的類澱粉纖維有助剛性提升,但加入更多的類澱粉纖維可能導致其分散相更趨明顯而使剛性延性皆降低。總結來說,加入類澱粉纖維後的氧化石墨烯複合材料預期會有更好的生物可降解性和生物相容性,和更低的生物毒性,且此材料擁有可調整性,可以依據加入類澱粉纖維量的不同有的熱穩定性和機械性質,在氧化石墨烯應用於如生醫材料或生物感測器上有很大的潛力。
For many years, amyloid fibrils have been considered the cause of amyloidosis. However, recent evidence has proved that amyloid fibrils are only the side product formed during amyloidogenesis. Moreover, amyloid fibrils belong to one kind of denatured proteins that have high stability and fiber structure. Therefore, the applications of amyloid fibrils are now receiving an increasing attention. Given their excellent mechanical property and stability, amyloid fibrils are suitable for material applications.
In this research, attempts were made to first prepare the graphene oxide-amyloid fibril hybrid materials by adding hen lysozyme derived-amyloid fibrils into graphene oxide with different ratios, and then analyze their morphology, interaction, thermal and mechanical properties. The results show that during the synthesis, amyloid fibril and graphene oxide may both undergo disassembly: amyloid fibrils may disaggregate to form protofilaments, wherease graphene oxide may exfoliate. Furthermore, results suggest that the binding between protofilament and thinner graphene oxide may be governed by the electrostatic interaction and hydrogen bonding, which means the hybrid materials made of protofilament and thin graphene oxide exhibit lower energy. Comparison of the hydrid materials with different ratios indicates that the thermal stability could be enhanced upon adding more amyloid fibrils. However, as for the mechanical property, there exists a positive correlation between the rigidity and added amount of amyloid fibrils during the range of 1:0.016, followed by a decrease in the rigidity upon further increase in the amount of fibrillar species. We speculate that this may attributed to the formation of highly dispersed phase. In conclusion, the hybrid materials resulted from the addition of amyloid fibril to graphene oxide are expected to be more biodegradable and biocompatible with less toxicity. Also, the aforesaid hybrid materials exhibit adjustability. The thermal and mechanical properties could be controlled by the ratio between amyloid fibrils and graphene oxide. Therefore, these hybrid materials hold great potential for the applications in the fields of biomaterials and bio-sensoring.
致謝 I
中文摘要 III
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 2
2.1 氧化石墨烯(Graphene Oxide)簡介 2
2.1.1 發展歷史 2
2.1.2 石墨烯(Graphene)簡介 5
2.1.3 氧化石墨烯(Graphene Oxide)結構 7
2.1.4 氧化石墨烯性質 10
2.1.5 氧化石墨烯合成-Modified Hummers Method 14
2.2 蛋白質(protein)簡介 15
2.2.1 蛋白質結構 15
2.2.2 蛋白質的構型 19
2.2.3 聚集體 19
2.3 類澱粉纖維(amyloid fibril)簡介 24
2.3.1 類澱粉纖維分子結構 24
2.3.2 類澱粉症 27
2.3.3 類澱粉纖維應用 30
2.3.4 母雞蛋白溶菌酶類澱粉纖維 38
2.4 氧化石墨烯在生醫領域的應用 43
2.4.1 氧化石墨烯和DNA結合 43
2.4.2 氧化石墨烯和蛋白質結合 44
2.4.3 其他應用 44
2.5 性質測試儀器 46
2.5.1 X光繞射分析儀(X-ray scattering techniques, XRD) 46
2.5.2 原子力顯微鏡原理(Atomic Force Microscope, AFM) 47
2.5.3 熱重力分析 (Thermogravimetric analysis, TGA) 49
2.5.4 傅里葉轉換紅外光譜 (Fourier Transform Infrared Spectroscopy, FTIR) 50
2.5.5 穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM) 51
2.5.6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 52
第三章 實驗方法 54
3.1 實驗藥品與儀器 54
3.2合成氧化石墨烯 56
3.3 溶菌酶類澱粉纖維合成 58
3.4 氧化石墨烯和類澱粉纖維複合材料合成 58
3.4.1 氧化石墨烯和類澱粉纖維複合粉末材料 59
3.4.2 氧化石墨烯和類澱粉纖維複合薄膜材料 60
第四章 結果與討論 61
4.1 複合材料型態 61
4.1.1 TEM 觀察結果 61
4.1.2 SEM觀察結果 65
4.2 混合材料結構探討 67
4.3 混成材料形成機制探討 74
4.3.1 傅里葉轉換紅外光譜結果討論 74
4.3.2 螢光顯微鏡結果討論 78
4.4 熱穩定性 79
4.5 機械性質探討 81
第五章 結論和未來展望 84
Reference 86
[1] M.J. Buehler, Y.C. Yung, How protein materials balance strength, robustness, and adaptability, Hfsp J, 4 (2010) 26-40.
[2] Ting Yan, Huijie Zhang *, Dandi Huang, Shini Feng, M. Fujita, X.-D. Gao, Chitosan-Functionalized Graphene Oxide as a Potential Immunoadjuvant, Nanomaterials-Basel, 7 (2017).
[3] Z.U. Khan, A. Kausar, H. Ullah, A. Badshah, W.U. Khan, A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques, J Plast Film Sheet, 32 (2016) 336-379.
[4] D.C. Schafhaeutl, Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden, 21 (1840) 129-157.
[5] B. BC, On the atomic weight of graphite, Philos Trans R Soc London, (1859) 249-259.
[6] H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Das Adsorptionsverhalten Sehr Dunner Kohlenstoff-Folien, Z Anorg Allg Chem, 316 (1962) 119-127.
[7] H.P. Boehm, Some Aspects of the Surface-Chemistry of Carbon-Blacks and Other Carbons, Carbon, 32 (1994) 759-769.
[8] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
[9] D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future, Angew Chem Int Edit, 49 (2010) 9336-9344.
[10] R. Heyrovska, Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon, Physics, (2008).
[11] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Mater Today, 15 (2012) 86-97.
[12] T.F. Yeh, C.Y. Teng, L.C. Chen, S.J. Chen, H.S. Teng, Graphene oxide-based nanomaterials for efficient photoenergy conversion, J Mater Chem A, 4 (2016) 2014-2048.
[13] P. Avouris, Graphene: Electronic and Photonic Properties and Devices, Nano Lett, 10 (2010) 4285-4294.
[14] R. Garg, N.K. Dutta, N.R. Choudhury, Work Function Engineering of Graphene, Nanomaterials-Basel, 4 (2014) 267-300.
[15] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308-1308.
[16] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett, 8 (2008) 902-907.
[17] J.S.F. Ali H. Palejwala, Javier A. Mata, Errol L. G. Samuel, Thomas G. Luerssen, Laszlo Perlaky, Thomas A. Kent, James M. Tour, Andrew Jea, Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats, (2016).
[18] A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering, J Phys Chem B, 110 (2006) 22328-22338.
[19] A.C.M. de Moraes, P.F. Andrade, A.F. de Faria, M.B. Simoes, F.C.C.S. Salomao, E.B. Barros, M.D. Goncalves, O.L. Alves, Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate, Carbohyd Polym, 123 (2015) 217-227.
[20] U. Hofmann, R. Holst, The acidic nature and the methylation of graphitoxide., Ber Dtsch Chem Ges, 72 (1939) 754-771.
[21] G. Ruess, Über das graphitoxyhydroxyd (graphitoxyd), Monatsh. Chem., 76 (1946) 381-417.
[22] M. Mermoux, Y. Chabre, A. Rousseau, Ftir and C-13 Nmr-Study of Graphite Oxide, Carbon, 29 (1991) 469-474.
[23] W. Scholz, H.P. Boehm, Graphite Oxide .6. Structure of Graphite Oxide, Z Anorg Allg Chem, 369 (1969) 327-&.
[24] T. Nakajima, A. Mabuchi, R. Hagiwara, A New Structure Model of Graphite Oxide, Carbon, 26 (1988) 357-361.
[25] A. Lerf, H.Y. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J Phys Chem B, 102 (1998) 4477-4482.
[26] T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem Mater, 18 (2006) 2740-2749.
[27] L.B. Casabianca, M.A. Shaibat, W.W.W. Cai, S. Park, R. Piner, R.S. Ruoff, Y. Ishii, NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional C-13 Solid-State NMR and ab Initio Chemical Shift Calculations, J Am Chem Soc, 132 (2010) 5672-5676.
[28] L.J. Cote, J. Kim, V.C. Tung, J.Y. Luo, F. Kim, J.X. Huang, Graphene oxide as surfactant sheets, Pure Appl Chem, 83 (2011) 95-110.
[29] J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Graphene oxide dispersions in organic solvents, Langmuir, 24 (2008) 10560-10564.
[30] D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide, J Colloid Interf Sci, 430 (2014) 108-112.
[31] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun''ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat Nanotechnol, 3 (2008) 563-568.
[32] X.F. Gao, D.E. Jiang, Y.L. Zhao, S. Nagase, S.B. Zhang, Z.F. Chen, Theoretical Insights into the Structures of Graphene Oxide and Its Chemical Conversions Between Graphene, J Comput Theor Nanos, 8 (2011) 2406-2422.
[33] P. Cui, J. Lee, E. Hwang, H. Lee, One-pot reduction of graphene oxide at subzero temperatures, Chem Commun, 47 (2011) 12370-12372.
[34] G. Eda, Y.Y. Lin, S. Miller, C.W. Chen, W.F. Su, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide, Appl Phys Lett, 92 (2008).
[35] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films, Adv Funct Mater, 19 (2009) 2577-2583.
[36] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nanotechnol, 3 (2008) 270-274.
[37] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, Acs Nano, 2 (2008) 463-470.
[38] W.W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D.X. Yang, A. Velamakanni, S.J. An, M. Stoller, J.H. An, D.M. Chen, R.S. Ruoff, Synthesis and solid-state NMR structural characterization of (13)C-labeled graphite oxide, Science, 321 (2008) 1815-1817.
[39] J.Z. Shang, L. Ma, J.W. Li, W. Ai, T. Yu, G.G. Gurzadyan, The Origin of Fluorescence from Graphene Oxide, Sci Rep-Uk, 2 (2012).
[40] U. Hofmann, A. Frenzel, The reduction of graphite oxide with hydrogen sulphide, Kolloid Z, 68 (1934) 149-151.
[41] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
[42] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 448 (2007) 457-460.
[43] V. Palermo, I.A. Kinloch, S. Ligi, N.M. Pugno, Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective, Adv Mater, 28 (2016) 6232-6238.
[44] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J Am Chem Soc, 80 (1958) 1339-1339.
[45] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem Soc Rev, 39 (2010) 228-240.
[46] A.M. Dimiev, J.M. Tour, Mechanism of Graphene Oxide Formation, Acs Nano, 8 (2014) 3060-3068.
[47] M. Fathy, A. Gomaa, F.A. Taher, M.M. El-Fass, A.E.B. Kashyout, Optimizing the preparation parameters of GO and rGO for large-scale production, J Mater Sci, 51 (2016) 5664-5675.
[48] N.S. SN Alam, L Kumar, Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO), Graphene, 6 (2017) 1-18.
[49] C.M.G. Reginald H. Garrett Biochemistry 5th Edition, (2012).
[50] J.G.V. Donald Voet, Charlotte W. Pratt, Fundamentals of Biochemistry, Fifth Edition, (2016).
[51] A.J. Bruce Alberts, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter, Molecular Biology of the Cell, 4th edition, (2002).
[52] O.B. Ptitsyn, Structures of Folding Intermediates, Curr Opin Struc Biol, 5 (1995) 74-78.
[53] G.V. Semisotnov, N.A. Rodionova, O.I. Razgulyaev, V.N. Uversky, A.F. Gripas, R.I. Gilmanshin, Study of the Molten Globule Intermediate State in Protein Folding by a Hydrophobic Fluorescent-Probe, Biopolymers, 31 (1991) 119-128.
[54] C.M. Dobson, Protein folding and misfolding, Nature, 426 (2003) 884-890.
[55] M.M.C. David L. Nelson, Lehninger Principles of Biochemistry Sixth Edition, (2012).
[56] E. Evangelisti, R. Cascella, M. Becatti, G. Marrazza, C.M. Dobson, F. Chiti, M. Stefani, C. Cecchi, Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases, Sci Rep-Uk, 6 (2016).
[57] S.K. Chaturvedi, M.K. Siddiqi, P. Alam, R.H. Khan, Protein misfolding and aggregation: Mechanism, factors and detection, Process Biochem, 51 (2016) 1183-1192.
[58] Y. Yoshimura, Y.X. Lin, H. Yagi, Y.H. Lee, H. Kitayama, K. Sakurai, M. So, H. Ogi, H. Naiki, Y. Goto, Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation, Proc. Natl. Acad. Sci. U. S. A., 109 (2012) 14446-14451.
[59] G.I.a.I.S. Clara Iannuzzi, Differential effects of glycation on protein aggregation and amyloid formation, Frontiers in Molecular Biosciences, (2014).
[60] B. Caughey, P.T. Lansbury, Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders, Annu Rev Neurosci, 26 (2003) 267-298.
[61] F.U. Hartl, M. Hayer-Hartl, Converging concepts of protein folding in vitro and in vivo, Nat Struct Mol Biol, 16 (2009) 574-581.
[62] D.N. Brems, L.A. Alter, M.J. Beckage, R.E. Chance, R.D. Dimarchi, L.K. Green, H.B. Long, A.H. Pekar, J.E. Shields, B.H. Frank, Altering the Association Properties of Insulin by Amino-Acid Replacement, Protein Eng, 5 (1992) 527-533.
[63] R. Nelson, M.R. Sawaya, M. Balbirnie, A.O. Madsen, C. Riekel, R. Grothe, D. Eisenberg, Structure of the cross-beta spine of amyloid-like fibrils, Nature, 435 (2005) 773-778.
[64] M. Fandrich, J. Meinhardt, N. Grigorieff, Structural polymorphism of Alzheimer A beta and other amyloid fibrils, Prion, 3 (2009) 89-93.
[65] L.C.S. Kyle L Morris, X-ray fibre diffraction studies of amyloid fibrils, Methods Mol Biol (2012) 121-135.
[66] L. Serpell, Amyloid structure, Essays Biochem, 56 (2014) 1-10.
[67] C.S. Goldsbury, S. Wirtz, S.A. Muller, S. Sunderji, P. Wicki, U. Aebi, P. Frey, Studies on the in vitro assembly of A beta 1-40: Implications for the search for A beta fibril formation inhibitors, J Struct Biol, 130 (2000) 217-231.
[68] R. Verel, I.T. Tomka, C. Bertozzi, R. Cadalbert, R.A. Kammerer, M.O. Steinmetz, B.H. Meier, Polymorphism in an amyloid-like fibril-forming model peptide, Angew Chem Int Edit, 47 (2008) 5842-5845.
[69] K. Klement, K. Wieligmann, J. Meinhardt, P. Hortschansky, W. Richter, M. Fandrich, Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer''s A beta(1-40) amyloid fibrils, J Mol Biol, 373 (2007) 1321-1333.
[70] J. Meinhardt, C. Sachse, P. Hortschansky, N. Grigorieff, M. Fandrich, A beta(1-40) Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils, J Mol Biol, 386 (2009) 869-877.
[71] F. Chiti, C.M. Dobson, Protein misfolding, functional amyloid, and human disease, Annu Rev Biochem, 75 (2006) 333-366.
[72] R.M. Murphy, Peptide aggregation in neurodegenerative disease, Annual Review of Biomedical Engineering, 4 (2002) 155-174.
[73] C.A. Ross, M.A. Poirier, Protein aggregation and neurodegenerative disease, Nat Med, 10 (2004) S10-S17.
[74] J.W. Kelly, Alternative conformations of amyloidogenic proteins govern their behavior, Curr Opin Struc Biol, 6 (1996) 11-17.
[75] A.S. Cohen, E. Calkins, Electron Microscopic Observations on a Fibrous Component in Amyloid of Diverse Origins, Nature, 183 (1959) 1202-1203.
[76] R.R. Kopito, Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol, 10 (2000) 524-530.
[77] M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J.S. Zurdo, N. Taddei, G. Ramponi, C.M. Dobson, M. Stefani, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, 416 (2002) 507-511.
[78] M.D. Kirkitadze, G. Bitan, D.B. Teplow, Paradigm shifts in Alzheimer''s disease and other neuro degenerative disorders: The emerging role of oligomeric assemblies, J Neurosci Res, 69 (2002) 567-577.
[79] H.L. Roberts, D.R. Brown, Seeking a Mechanism for the Toxicity of Oligomeric alpha-Synuclein, Biomolecules, 5 (2015) 282-305.
[80] Y. Porat, A. Abramowitz, E. Gazit, Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism, Chem Biol Drug Des, 67 (2006) 27-37.
[81] N.P. Reynolds, M. Charnley, R. Mezzenga, P.G. Hartley, Engineered Lysozyme Amyloid Fibril Networks Support Cellular Growth and Spreading, Biomacromolecules, 15 (2014) 599-608.
[82] J. Mains, D.A. Lamprou, L. McIntosh, I.D.H. Oswald, A.J. Urquhart, Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles, Chem Commun, 49 (2013) 5082-5084.
[83] S.K. Maji, D. Schubert, C. Rivier, S. Lee, J.E. Rivier, R. Riek, Amyloid as a depot for the formulation of long-acting drugs, Plos Biol, 6 (2008) 240-252.
[84] V. Castelletto, J.E. McKendrick, I.W. Hamley, U. Olsson, C. Cenker, PEGylated Amyloid Peptide Nanocontainer Delivery and Release System, Langmuir, 26 (2010) 11624-11627.
[85] D. Li, H. Furukawa, H.X. Deng, C. Liu, O.M. Yaghi, D.S. Eisenberg, Designed amyloid fibers as materials for selective carbon dioxide capture, Proc. Natl. Acad. Sci. U. S. A., 111 (2014) 191-196.
[86] C.X. Li, M.M. Alam, S. Bolisetty, J. Adamcik, R. Mezzenga, New biocompatible thermo-reversible hydrogels from PNiPAM-decorated amyloid fibrils, Chem Commun, 47 (2011) 2913-2915.
[87] C.X. Li, J. Adamcik, R. Mezzenga, Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties, Nat Nanotechnol, 7 (2012) 421-427.
[88] C.X. Li, S. Bolisetty, R. Mezzenga, Hybrid Nanocomposites of Gold Single-Crystal Platelets and Amyloid Fibrils with Tunable Fluorescence, Conductivity, and Sensing Properties, Adv Mater, 25 (2013) 3694-3700.
[89] S. Bolisetty, N. Reinhold, C. Zeder, M.N. Orozco, R. Mezzenga, Efficient purification of arsenic-contaminated water using amyloid-carbon hybrid membranes, Chem Commun, 53 (2017) 5714-5717.
[90] A. Herland, P. Bjork, K.P.R. Nilsson, J.D.M. Olsson, P. Asberg, P. Konradsson, P. Hammarstrom, O. Inganas, Electroactive luminescent self-assembled bio-organic nanowires: Integration of semiconducting oligoelectrolytes within amyloidogenic proteins (vol 17, pg 1466, 2005), Adv Mater, 17 (2005) 1703-1703.
[91] M. Hamedi, A. Herland, R.H. Karlsson, O. Inganas, Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT, Nano Lett, 8 (2008) 1736-1740.
[92] M. Malisauskas, R. Meskys, L.A. Morozova-Roche, Ultrathin Silver Nanowires Produced by Amyloid Biotemplating, Biotechnol Progr, 24 (2008) 1166-1170.
[93] S.M. Pilkington, S.J. Roberts, S.J. Meade, J.A. Gerrard, Amyloid Fibrils as a Nanoscaffold for Enzyme Immobilization, Biotechnol Progr, 26 (2010) 93-100.
[94] J.K. Raynes, F.G. Pearce, S.J. Meade, J.A. Gerrard, Immobilization of Organophosphate Hydrolase on an Amyloid Fibril Nanoscaffold: Towards Bioremediation and Chemical Detoxification, Biotechnol Progr, 27 (2011) 360-367.
[95] J. Juarez, A. Cambon, S. Goy-Lopez, A. Topete, P. Taboada, V. Mosquera, Obtention of Metallic Nanowires by Protein Biotemplating and Their Catalytic Application, J Phys Chem Lett, 1 (2010) 2680-2687.
[96] J. Juarez, A. Cambon, A. Topete, P. Taboada, V. Mosquera, One-Dimensional Magnetic Nanowires Obtained by Protein Fibril Biotemplating, Chem-Eur J, 17 (2011) 7366-7373.
[97] S. Kim, S.Y. Bae, B.Y. Lee, T.D. Kim, Coaggregation of amyloid fibrils for the preparation of stable and immobilized enzymes, Anal Biochem, 421 (2012) 776-778.
[98] S. Bolisetty, J.J. Vallooran, J. Adamcik, S. Handschin, F. Gramm, R. Mezzenga, Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions, J Colloid Interf Sci, 361 (2011) 90-96.
[99] B.V. Andersson, C. Skoglund, K. Uvdal, N. Solin, Preparation of amyloidlike fibrils containing magnetic iron oxide nanoparticles: Effect of protein aggregation on proton relaxivity, Biochem Bioph Res Co, 419 (2012) 682-686.
[100] C.X. Li, R. Mezzenga, Functionalization of Multiwalled Carbon Nanotubes and Their pH-Responsive Hydrogels with Amyloid Fibrils, Langmuir, 28 (2012) 10142-10146.
[101] S. Bolisetty, J. Adamcik, J. Heier, R. Mezzenga, Amyloid Directed Synthesis of Titanium Dioxide Nanowires and Their Applications in Hybrid Photovoltaic Devices, Adv Funct Mater, 22 (2012) 3424-3428.
[102] S. Bolisetty, J.J. Vallooran, J. Adamcik, R. Mezzenga, Magnetic-Responsive Hybrids of Fe3O4 Nanoparticles with beta-Lactoglobulin Amyloid Fibrils and Nanoclusters, Acs Nano, 7 (2013) 6146-6155.
[103] C.X. Li, A.K. Born, T. Schweizer, M. Zenobi-Wong, M. Cerruti, R. Mezzenga, Amyloid-Hydroxyapatite Bone Biomimetic Composites, Adv Mater, 26 (2014) 3207-+.
[104] S. Bolisetty, C.S. Boddupalli, S. Handschin, K. Chaitanya, J. Adamcik, Y. Saito, M.G. Manz, R. Mezzenga, Amyloid Fibrils Enhance Transport of Metal Nanoparticles in Living Cells and Induced Cytotoxicity, Biomacromolecules, 15 (2014) 2793-2799.
[105] S. Bolisetty, M. Arcari, J. Adamcik, R. Mezzenga, Hybrid Amyloid Membranes for Continuous Flow Catalysis, Langmuir, 31 (2015) 13867-13873.
[106] Z.S. Al-Garawi, J.R. Thorpe, L.C. Serpell, Silica Nanowires Templated by Amyloid-like Fibrils, Angew Chem Int Edit, 54 (2015) 13327-13331.
[107] S. Chaves, L.M. Pera, C.L. Avila, C.M. Romero, M. Baigori, F.E.M. Vieyra, C.D. Borsarelli, R.N. Chehin, Towards efficient biocatalysts: photo-immobilization of a lipase on novel lysozyme amyloid-like nanofibrils, Rsc Adv, 6 (2016) 8528-8538.
[108] S. Bolisetty, R. Mezzenga, Amyloid-carbon hybrid membranes for universal water purification, Nat Nanotechnol, 11 (2016) 365-+.
[109] Z.M. Yitong Baia, Yuye Caob, Shicheng Fenga, Hua Yanga, Lingyun Chena,, S.-T. Yang, Influence of graphene oxide and reduced graphene oxide on the activity and conformation of lysozyme, Colloids and Surfaces B: Biointerfaces, (2017) 96-103.
[110] E.F. Osserman, R.E. Canfield, S. Beychok, Lysozyme, (1974).
[111] C.C.F. Blake, D.F. Koenig, G.A. Mair, A.C.T. North, D.C. Phillips, V.R. Sarma, Structure of Hen Egg-White Lysozyme - a 3-Dimensional Fourier Synthesis at 2a Resolution, Nature, 206 (1965) 757-&.
[112] B. van den Berg, E.W. Chung, C.V. Robinson, C.M. Dobson, Characterisation of the dominant oxidative folding intermediate of hen lysozyme, J Mol Biol, 290 (1999) 781-796.
[113] A.E. Cao, D.Y. Hu, L.H. Lai, Formation of amyloid fibrils from fully reduced hen egg white lysozyme, Protein Sci, 13 (2004) 319-324.
[114] E. Frare, P.P. de Laureto, J. Zurdo, C.M. Dobson, A. Fontana, A highly amyloidogenic region of hen lysozyme, J Mol Biol, 340 (2004) 1153-1165.
[115] R. Mishra, K. Sorgjerd, S. Nystrom, A. Nordigarden, Y.C. Yu, P. Hammarstrom, Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion, J Mol Biol, 366 (2007) 1029-1044.
[116] Y. Zou, W.Y. Hao, H.Y. Li, Y.C. Gao, Y. Sun, G. Ma, New Insight into Amyloid Fibril Formation of Hen Egg White Lysozyme Using a Two-Step Temperature-Dependent FTIR Approach, J Phys Chem B, 118 (2014) 9834-9843.
[117] A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nat Mater, 8 (2009) 543-557.
[118] Z.Q. Jia, Y. Wang, Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation, J Mater Chem A, 3 (2015) 4405-4412.
[119] J. Lee, J. Kim, S. Kim, D.H. Min, Biosensors based on graphene oxide and its biomedical application, Adv Drug Deliver Rev, 105 (2016) 275-287.
[120] S. Pattnaik, K. Swain, Z.Q. Lin, Graphene and graphene-based nanocomposites: biomedical applications and biosafety, J Mater Chem B, 4 (2016) 7813-7831.
[121] Z.W. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y.Y. Zhang, Y.Y. Shao, I.A. Aksay, J. Liu, Y.H. Lin, Constraint of DNA on Functionalized Graphene Improves its Biostability and Specificity, Small, 6 (2010) 1205-1209.
[122] B.W. Liu, S. Salgado, V. Maheshwari, J.W. Liu, DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications, Curr Opin Colloid In, 26 (2016) 41-49.
[123] F. Lu, S.H. Zhang, H.J. Gao, H. Jia, L.Q. Zheng, Protein-Decorated Reduced Oxide Graphene Composite and its Application to SERS, Acs Appl Mater Inter, 4 (2012) 3278-3284.
[124] X.L. Wang, H. Bai, Z.Y. Yao, A.R. Liu, G.Q. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films, J Mater Chem, 20 (2010) 9032-9036.
[125] D.L. Han, L.F. Yan, W.F. Chen, W. Li, Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state, Carbohyd Polym, 83 (2011) 653-658.
[126] L.M. Zhang, J.G. Xia, Q.H. Zhao, L.W. Liu, Z.J. Zhang, Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs, Small, 6 (2010) 537-544.
[127] P. Huang, C. Xu, J. Lin, C. Wang, X.S. Wang, C.L. Zhang, X.J. Zhou, S.W. Guo, D.X. Cui, Folic Acid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy, Theranostics, 1 (2011) 240-250.
[128] E. Masoudipour, S. Kashanian, N. Maleki, A targeted drug delivery system based on dopamine functionalized nano graphene oxide, Chem Phys Lett, 668 (2017) 56-63.
[129] X.Y. Yang, X.Y. Zhang, Z.F. Liu, Y.F. Ma, Y. Huang, Y. Chen, High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide, J Phys Chem C, 112 (2008) 17554-17558.
[130] Z.H. Wang, C.F. Zhou, J.F. Xia, B. Via, Y.Z. Xia, F.F. Zhang, Y.H. Li, L.H. Xia, Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier, Colloid Surface B, 106 (2013) 60-65.
[131] T.B. Rouf, J.L. Kokini, Biodegradable biopolymer-graphene nanocomposites, J Mater Sci, 51 (2016) 9915-9945.
[132] A. Trache, G.A. Meininger, Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells, J Biomed Opt, 10 (2005).
[133] Douglas A. Skoog, F.J.H., S.R. Crouch, Principles of Instrumental Analysis, (2007).
[134] F. Chiti, M. Bucciantini, C. Capanni, N. Taddei, C.M. Dobson, M. Stefani, Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain, Protein Sci, 10 (2001) 2541-2547.
[135] N. Diez, A. Sliwak, S. Gryglewicz, B. Grzyb, G. Gryglewicz, Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment, Rsc Adv, 5 (2015) 81831-81837.
[136] S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Moranska, M. Setkiewicz, Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors, Sensors-Basel, 16 (2016).
[137] G. Goncalves, M. Vila, I. Bdikin, A. de Andres, N. Emami, R.A.S. Ferreira, L.D. Carlos, J. Gracio, P.A.A.P. Marques, Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation, Sci Rep-Uk, 4 (2014).
[138] J. Kong, S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Bioch Bioph Sin, 39 (2007) 549-559.
[139] X.M. Yang, Y.F. Tu, L.A. Li, S.M. Shang, X.M. Tao, Well-Dispersed Chitosan/Graphene Oxide Nanocomposites, Acs Appl Mater Inter, 2 (2010) 1707-1713.
[140] J.F. Smith, T.P.J. Knowles, C.M. Dobson, C.E. MacPhee, M.E. Welland, Characterization of the nanoscale properties of individual amyloid fibrils, Proc. Natl. Acad. Sci. U. S. A., 103 (2006) 15806-15811.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top