|
1.Boudreau, M.D. and Beland, F.A., An evaluation of the biological and toxicological properties of aloe barbadensis (miller), aloe vera. Journal of environmental science and health, 2006. 24(1): p. 103-54. 2.Eshun, K. and He, Q., Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries--a review. Food science and nutrition, 2004. 44(2): p. 91-6. 3.Hamman, J.H., Composition and applications of aloe vera leaf gel. Molecules, 2008. 13(8): p. 1599-1616. 4.Hu, Y., Xu, J., and Hu, Q., Evaluation of antioxidant potential of aloe vera (aloe barbadensis miller) extracts. Journal of agricultural and food chemistry, 2003. 51: p. 7788-7791. 5.Lee, K.Y., Weintraub, S.T., and Yu, B.P., Isolation and identification of a phenolic antioxidant from aloe barbadensis. Free radical biology & medicine, 2000. 28(2): p. 261-265. 6.Femenia, A.,Sanchez, E., Simal, S., and, Rossello C., Compositional features of polysaccharides from aloe vera (aloe barbadensis miller) plant tissues. Carbohydrate polymers, 1999. 39: p. 109-117. 7.Ahlawat, K.S. and Khatkar, B.S., Processing, food applications and safety of aloe vera products: a review. Journal of food science and technology, 2011. 48(5): p. 525-33. 8.Hsu, T.Y., Sheu, S.C., Liaw, E.T., Wang, T.C., and Lin, C.C., Anti-oxidant activity and effect of pinus morrisonicola hay. on the survival of leukemia cell line u937. Phytomedicine, 2005. 12(9): p. 663-9. 9.Yen, G.C., Duh, P.D., Huang, D.W., Hsu, C.L., and Fu, T.Y., Protective effect of pine (pinus morrisonicola hay.) needle on ldl oxidation and its anti-inflammatory action by modulation of inos and cox-2 expression in lps-stimulated raw 264.7 macrophages. Food and chemical toxicology, 2008. 46(1): p. 175-85. 10.Tourino, S., Selga, A., Jimeänez, A., Juli’a, L., Lozano, C., Liza’rraga, D., Cascante, M., and Torres, J.L.S., Procyanidin fractions from pine (pinus pinaster) bark: radical scavenging power in solution, antioxidant activity in emulsion, and antiproliferative effect in melanoma cells. Journal of agricultural and food chemistry, 2005. 53: p. 4728-4735. 11.Kong, Z., Liu, Z., and Ding, B., Study on the antimutagenic effect of pine needle extract. Mutation research, 1995. 347: p. 101-104. 12.Chen, Y.H., Hsieh, P.C., Mau, J.L., and Sheu, S.C., Antioxidant properties and mutagenicity of pinus morrisonicola and its vinegar preparation. Food science and technology, 2011. 44(6): p. 1477-1481. 13.Bito, T., Roy, S., Sen, C.K., and Packer, L., Pine bark extract pycnogenol downregulates ifn-induced adhesion of t cells to human keratinocytes by inhibiting inducible icam-1 expression. Free radical biology & medicine, 2000. 28(2): p. 219-227. 14.Ka, M.H., Choi, E.H., Chun, H.S., and Lee, K.G., Antioxidative activity of volatile extracts isolated from angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. Journal of agricultural and food chemistry, 2005. 53: p. 4124-4129. 15.Zeng, W.C., Zhang, Z., Gao, H., Jia, L.R., and He, Q., Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (cedrus deodara). Journal of food science, 2012. 77(7): p. C824-9. 16.Haghi, A.K. and Ghanadzadeh, H., A study of thermal drying process. Indian journal of chemical technology, 2005. 12: p. 654-663. 17.Stanisavljevic, I.T., Lazic, M.L., and Veljkovic, V.B., Ultrasonic extraction of oil from tobacco (nicotiana tabacum l.) seeds. Ultrason sonochem, 2007. 14(5): p. 646-52. 18.Carrera, C., Ruiz-Rodriguez, A., Palma, M., and Barroso, C.G., Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 2012. 732: p. 100-4. 19.Amarni, F. and Kadi, H., Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane. Innovative food science & emerging technologies, 2010. 11(2): p. 322-327. 20.Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., and Lanoiselle, J.L., Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food chemistry, 2011. 128(2): p. 364-70. 21.Huang, C.Y., Wu, S.J., Yang, W.N., Kuan, A.W., and Chen, C.Y., Antioxidant activities of crude extracts of fucoidan extracted from sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food chemistry, 2016. 197: p. 1121-1129. 22.Loots, D.T., Westhuizen, F.H.V.D., and Botes, L., Aloe ferox leaf gel phytochemical content, antioxidant capacity, and possible health benefits. Journal of agricultural and food chemistry, 2007. 55: p. 6891-6896. 23.Asadi-Shahmirzadi, A., Mozaffari, S., Sanei, Y., Baeeri, M., Hajiaghaee, R., Monsef-Esfahani, H.R., and Abdollahi, M., Benefit of aloe vera and matricaria recutita mixture in rat irritable bowel syndrome: combination of antioxidant and spasmolytic effects. Chinese journal of integrative medicine, 2012. 24.Rahman, S., Carter, P., and Bhattarai, N., Aloe vera for tissue engineering applications. Journal of functional biomaterials, 2017. 8(1). 25.Reynolds, T. and Dweck, A.C., Aloe vera leaf gel: a review update. Journal of ethnopharmacology, 1999. 68: p. 3-37. 26.Talmadge, J., Chavez, J., Jacobs, L., Munger, C., Chinnah, T., Chow, J.T., Williamson, D., and Yates, K., Fractionation of aloe vera l. inner gel, purification and molecular profiling of activity. International immunopharmacology, 2004. 4(14): p. 1757-73. 27.Esua, M.F. and Rauwald, J.W., Novel bioactive maloyl glucans from aloe vera gel: isolation, structure elucidation and in vitro bioassays. Carbohydrate research, 2006. 341(3): p. 355-64. 28.Rajasekaran, S., Sivagnanam, K., and Subramanian, S., Antioxidant effect of aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacological reports, 2005. 57: p. 90-96. 29.Yagi, A., Kabash, A., Okamura, N., Haraguchi, H., Moustafa, S.M., and Khalifa, T.I., Antioxidant, free radical scavenging and anti-inflammatory effects of aloesin derivatives in aloe vera. Planta medica, 2002. 68: p. 957-960. 30.Narsih and Agato, Evaluation of bioactive compounds of aloe vera extract using sub- critical water method. Biotechnology, 2016. 12(3): p. 113-120. 31.Kim, K.Y. and Chung, H.J., Flavor compounds of pine sprout tea and pine needle tea. Journal of agricultural and food chemistry, 2000. 48: p. 1269-1272. 32.Schafer, A., Chovanova, Z., Muchova, J., Sumegova, K., Liptakova, A., Durackova, Z., and Hogger, P., Inhibition of cox-1 and cox-2 activity by plasma of human volunteers after ingestion of french maritime pine bark extract (pycnogenol). Biomedicine and pharmacotherapy, 2006. 60(1): p. 5-9. 33.Kwak, C.S., Moon, S.C., and Lee, M.S., Antioxidant, antimutagenic, and antitumor effects of pine needles (pinus densiflora). Nutrition and cancer, 2006. 56(2): p. 162-71. 34.Fang, J.M., Chang C.F., and Cheng, Y.S., Flavonoids from pinus morrisonicola. Phytochemistry, 1987. 26(9): p. 2559-2561. 35.Doymaz, İ., Drying behaviour of green beans. Journal of food engineering, 2005. 69(2): p. 161-165. 36.Roberts, J.S., Kidd, D.R., and Padilla-Zakour, O., Drying kinetics of grape seeds. Journal of food engineering, 2008. 89(4): p. 460-465. 37.Doymaz, İ., Thin-layer drying behaviour of mint leaves. Journal of food engineering, 2006. 74(3): p. 370-375. 38.Silva, W.P., Silva, C.M.D.P.S., Gama, F.J.A., and Gomes, J.P., Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. Journal of the saudi society of agricultural sciences, 2014. 13(1): p. 67-74. 39.Rayaguru, K. and Routray, W., Mathematical modeling of thin layer drying kinetics of stone apple slices. International food research journal, 2012. 19: p. 1503-1510. 40.Franks, F., Freeze-drying of bioproducts: putting principles into practice. European journal of pharmaceutics and biopharmaceutics, 1998. 45: p. 221-229. 41.Ratti, C., Hot air and freeze-drying of high-value foods: a review. Journal of food engineering, 2001. 49: p. 311-319. 42.Abascal, K., Ganora, L., and Yarnell, E., The effect of freeze-drying and its implications for botanical medicine: a review. Phytotherapy research, 2005. 19: p. 655-660. 43.Torres, C., Diaz-Maroto, M.C., Hermosin-Gutierrez, I., and Perez-Coello, M.S., Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Analytica Chimica Acta, 2010. 660(1-2): p. 177-82. 44.Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, F.S., and Yong, M.Y., Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food chemistry, 2009. 113(1): p. 166-172. 45.Popp, M., Lied, W., Meyer, A.J., Richter, A., Schiller, P., and Schwitte, H., Sample preservation for determination of organic compounds: microwave versus freeze-drying. Journal of experimental botany, 1996. 47(303): p. 1469-1473. 46.Piga, A., Caro, A.D., and Corda, G., From plums to prunes: influence of drying parameters on polyphenols and antioxidant activity. Journal of agricultural and food chemistry, 2003. 51: p. 3675-3681. 47.Diäaz-Maroto, M.C., Rez-Coello, M.S.P., and Cabezudo, M.D., Effect of drying method on the volatiles in bay leaf (laurus nobilis l.). Journal of agricultural and food chemistry, 2002. 50(1): p. 4520-4524. 48.Sellami, I.H., Wannes, W.A., Bettaieb, I., Berrima, S., Chahed, T., Marzouk, B., and Limam, F., Qualitative and quantitative changes in the essential oil of laurus nobilis l. leaves as affected by different drying methods. Food chemistry, 2011. 126(2): p. 691-697. 49.Julkunen-Tiitto, R. and Sorsa, S., Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. Journal of chemical ecology, 2001. 27(4): p. 779-789. 50.Yousif, A.N., Durance, T.D., Scaman, C.H., and Girard, B., Headspace volatiles and physical characteristics of vacuum-microwave, air, and freeze-dried oregano (lippia berlandieri schauer). Journal of food science, 2000. 65(6): p. 926-930. 51.Harbourne, N., Marete, E., Jacquier, J.C., and O''Riordan, D., Effect of drying methods on the phenolic constituents of meadowsweet (filipendula ulmaria) and willow (salix alba). Lwt - food science and technology, 2009. 42(9): p. 1468-1473. 52.Asami, D.K., Hong, Y.-J., Barrett, D.M., and Mitchell, A.E., Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Agricultural and food chemistry, 2003. 51: p. 1237-1241. 53.Mahanom, H., Azizah, A., and Dzulkifly, M.H., Effect of different drying methods on concentrations of several phytochemicals in herbal preparation of 8 medicinal plants leaves. Malaysian journal of nutrition, 1999. 5: p. 47-54. 54.Diaz-Maroto, M.C., Perez-Coello, M.S., Cabezudo, M.D., Effect of different drying methods on the volatile components of parsley ( petroselinum crispum l. ). European food research and technology, 2002. 215(3): p. 227-230. 55.Kozempel, M.F., Sullivan, J.F., Craig, J.C., JR., and Konstance, R.P., Explosion puffing of fruits and vegetables. Journal of food science, 1989. 54(3): p. 772-773. 56.Sullivan, J.F., Konstance, R.P., Aceto, N.C., Heiland, W.K., and JR., J.C.C., Continuous explosion-puffing of potatoes. Journal of food science, 1977. 42(6): p. 1462-1463. 57.Nath, A. and Chattopadhyay, P.K., Effect of process parameters and soy flour concentration on quality attributes and microstructural changes in ready-to-eat potato–soy snack using high-temperature short time air puffing. Lwt - food science and technology, 2008. 41(4): p. 707-715. 58.Li, M.F., Sun, S.N., Xu, F., and Sun, R.C., Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food chemistry, 2012. 134(3): p. 1392-8. 59.Qina, L. and Chena, H., Enhancement of flavonoids extraction from fig leaf using steam explosion. Industrial crops and products, 2015. 69: p. 1-6. 60.Martin-Sampedro, R., Revilla, E., Villar, J.C., and Eugenio, M.E., Enhancement of enzymatic saccharification of eucalyptus globulus: steam explosion versus steam treatment. Bioresource technology, 2014. 167: p. 186-91. 61.Song, H., Yang, R., Zhao, W., Katiyo, W., Hua, X., and Zhang, W., Innovative assistant extraction of flavonoids from pine (larixolgensis henry) needles by high-density steam flash-explosion. Journal of agricultural and food chemistry, 2014. 62: p. 3806-3812. 62.Li, J., Gellerstedt, G., and Toven, K., Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresource technology, 2009. 100(9): p. 2556-61. 63.Perez, E.E., Carelli, A.A., and Crapiste, G.H., Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of food engineering, 2011. 105(1): p. 180-185. 64.Xu, H.N. and He, C.H., Extraction of isoflavones from stem of pueraria lobata (willd.) ohwi using n-butanol/water two-phase solvent system and separation of daidzein. Separation and purification technology, 2007. 56: p. 85-89. 65.Khiari, Z., Makris, D.P., and Kefalas, P., An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food and bioprocess technology, 2007. 2(4): p. 337-343. 66.Chan, C.H., Yusoff, R., and Ngoh, G.C., Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical engineering research and design, 2014. 92(6): p. 1169-1186. 67.Crossley, J.I. and Aguilera, J.M., Modeling the effect of microstructure on food extraction. Journal of food process engineering, 2001. 24: p. 161-177. 68.Ben Amor, B. and Allaf, K., Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocyanins from malaysian roselle (hibiscus sabdariffa). Food chemistry, 2009. 115(3): p. 820-825. 69.Chen, G. and Chen, H., Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion. Food chemistry, 2011. 126(4): p. 1934-8. 70.Rusak, G., Komes, D., Likic, S., Horzic, D., and Kovac, M., Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food chemistry, 2008. 110: p. 852-858. 71.Rakotondramasy-Rabesiaka, L., Havet, J.L., Porte, C., and Fauduet, H., Solid–liquid extraction of protopine from fumaria officinalis l.—analysis determination, kinetic reaction and model building. Separation and purification technology, 2007. 54: p. 253-261. 72.Gironi, F. and Piemonte, V., Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chemical engineering research and design, 2011. 89(7): p. 857-862. 73.Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., Velic, D, Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of food engineering, 2007. 81: p. 236-242. 74.Durling, N.E., Catchpole, O.J., Grey, J.B., Webby, R.F., Mitchell, K.A., Foo, L.Y., and Perry, N.B., Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food chemistry, 2007. 101: p. 1417-1424. 75.Qu, W., Pan, Z., and Ma, H., Extraction modeling and activities of antioxidants from pomegranate marc. Journal of food engineering, 2010. 99(1): p. 16-23. 76.Franco, D., Pinelo, M., Sineiro, J., and Nunez, M.J., Processing of rosa rubiginosa: extraction of oil and antioxidant substances. Bioresource technology, 2007. 98(18): p. 3506-12. 77.Cisse, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., and Dornier, M., Aqueous extraction of anthocyanins from hibiscus sabdariffa: experimental kinetics and modeling. Journal of food engineering, 2012. 109(1): p. 16-21. 78.Xu, H.N., Huang, W.N., and He, C.H., Modeling for extraction of isoflavones from stem of pueraria lobata (willd.) ohwi using n-butanol/water two-phase solvent system. Separation and purification technology, 2008. 62(3): p. 590-595. 79.Goto, M., Smith, J.M., and McCoy, B.J., Kinetics and mass transfer for supercritical fluid extraction of wood. Industrial and engineering chemistry research, 1990. 29: p. 282-289. 80.Wongkittipong, R., Prat, L., Damronglerd, S., and Gourdon, C., Solid–liquid extraction of andrographolide from plants—experimental study, kinetic reaction and model. Separation and purification technology, 2004. 40(2): p. 147-154. 81.Ho, Y.S., Harouna-Oumarou, H.A., Fauduet, H., and Porte, C., Kinetics and model building of leaching of water-soluble compounds of tilia sapwood. Separation and purification technology, 2005. 45(3): p. 169-173. 82.Sayyar, S., Abidin, Z.Z., Yunus, R., and Muhammad, A., Extraction of oil from jatropha seeds-optimization and kinetics. American journal of applied sciences, 2009. 6(7): p. 1390-1395. 83.Antolovich, M., Prenzler, P.D., Patsalides, E., McDonald, S., and Robards, K., Methods for testing antioxidant activity. Analyst, 2002. 127(1): p. 183-198. 84.Zheng, W. and Wang, S.Y., Antioxidant activity and phenolic compounds in selected herbs. Journal of agricultural and food chemistry, 2001. 49(1): p. 5165-5170. 85.Soong, Y.Y. and Barlow, P.J., Antioxidant activity and phenolic content of selected fruit seeds. Food chemistry, 2004. 88(3): p. 411-417. 86.Kahkonen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S., and Heinonen, M., Antioxidant activity of plant extracts containing phenolic compounds. Journal of agricultural and food chemistry, 1999. 47: p. 3954-3962. 87.Pourmorad, F., Hosseinimehr, S.J., and Shahabimajd, N., Antioxidant activity, phenol and flavonoid contents of some selected iranian medicinal plants. African journal of biotechnology, 2006. 5: p. 1142-1145. 88.Rice-Evans, C.A., Miller, N.J., and Paganga, G., Antioxidant properties of phenolic compounas. Trends in plant science, 1997. 2(4): p. 152-159. 89.Rice-Evans, C.A., Miller, N.J., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology & medicine, 1996. 20(7): p. 933-956. 90.Acker, S.A.B.E.V., Berg, D.J.V.D., Tromp, M.N.J.L., Griffioen, D.H., Bennekom, W.P.V., Vijgh, W.J.F.V.D., and Bast, A., Structural aspects of antioxidant activity of flavonoids. Free radical biology & medicine, 1996. 20(3): p. 331-342. 91.Tsao, R., Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010. 2(12): p. 1231-46. 92.Haslam, E., Natural polyphenols (vegetable tannins) as drugs: possible modes of action. Journal of natural products, 1996. 59(2): p. 205-215. 93.Veer, P., Jansen, M.C.J.F., Klerk, M., and Kok, F.J., Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public health nutrition, 2007. 3(01). 94.Ames, B.N., Shigenaga, M.K., and Hagen, T.M., Oxidants, antioxidants, and the degenerative diseases of aging. Proceeding of national academy sciences of USA, 1993. 90: p. 7915-7922. 95.Ali, G., Flavonoids and phenolic acids: role and biochemical activity in plants and human. Journal of medicinal plants research, 2011. 5(31): p. 6697-6703. 96.Cook, N.C. and Samman, S., Flavonoids chemistry, metabolism, cardioprotective effects, and dietary source. Nutritional biochemistry, 1996. 7: p. 66-76. 97.Carocho, M. and Ferreira, I.C., A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food chemistry toxicology, 2013. 51: p. 15-25. 98.Seeram, N.P. and Nair, M.G., Inhibition of lipid peroxidation and structure−activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. Journal of agricultural and food chemistry, 2002. 50: p. 5308-5312. 99.Prior, R.L., Wu, X., and Schaich, K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry, 2005. 53: p. 4290-4302. 100.Spigno, G., Tramelli, L., and Faveri, D.M.D., Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of food engineering, 2007. 81: p. 200-208. 101.Park, Y.S., Jung, S.T., Kang, S.G., Heo, B.G., Arancibia-Avila, P., Toledo, F., Drzewiecki, J., Namiesnik, J., and Gorinstein, S., Antioxidants and proteins in ethylene-treated kiwifruits. Food chemistry, 2008. 107(2): p. 640-648. 102.Adefegha, S.A. and Oboh, G., Enhancement of total phenolics and antioxidant properties of some tropical green leafy vegetables by steam cooking. Journal of food processing and preservation, 2011. 35(5): p. 615-622. 103.Brand-Williams, W., Cuvelier, M.E., and Berset, C., Use of a free radical method to evaluate antioxidant activity. Lebensmittel-wissenschaft and technologie, 1995. 28: p. 25-30. 104.Arnao, M.B., Cano, A., and Acosta, M., The hydrophilic and lipophilic contribution to total antioxidant activity. Food chemistry, 2001. 73: p. 239-244. 105.Galle, C., Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry a comparative study between oven-, vacuum-, and freeze-drying. Cement and concrete research, 2001. 31(1): p. 1467-1477. 106.Kiranoudis, C.T., Tsami, E., Maroulis, Z.B., and Marinos-Kouris, D., Drying kinetics of some fruits. Drying technology, 1997. 15(5): p. 1399-1418. 107.Zhao, J. and Chen, H., Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical engineering science, 2013. 104: p. 1036-1044. 108.Datta, A.K., Porous media approaches to studying simultaneous heat and mass transfer in food processes. ii: property data and representative results. Journal of food engineering, 2007. 80: p. 96-110. 109.Datta, A.K., Porous media approaches to studying simultaneous heat and mass transfer in food processes. i: problem formulations. Journal of food engineering, 2007. 80: p. 80-95. 110.Zhao, P., Ge, S., and Yoshikawa, K., An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion. Applied energy, 2013. 112: p. 1213-1221. 111.Yilmaz, Y. and Toledo, R.T., Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. Journal of food composition and analysis, 2006. 19(1): p. 41-48. 112.Saeed, N., Khan, M.R., and Shabbir, M., Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts torilis leptophylla l. Complementary and alternative medicine, 2012. 12: p. 221-233. 113.Maisuthisakul, P., Suttajit, M., and Pongsawatmanit, R., Assessment of phenolic content and free radical-scavenging capacity of some thai indigenous plants. Food chemistry, 2007. 100(4): p. 1409-1418. 114.Saravacos, G.D., Effect of the drying method on the water sorption of dehydrated apple and potato. Journal of food science, 1967. 32: p. 81-84. 115.Hossain, M.B., Barry-Ryan, C., Martin-Diana, A.B., and Brunton, N.P., Effect of drying method on the antioxidant capacity of six lamiaceae herbs. Food chemistry, 2010. 123(1): p. 85-91. 116.Payne, F.A., Taraba, J.L., and Saputra, D., A review of puffing processes for expansion of biological products. Journal of food engineering, 1989. 10: p. 183-197.
|