(54.236.58.220) 您好!臺灣時間:2021/03/01 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張立佶
研究生(外文):Li-Ji Jhang
論文名稱:壓縮膨發處理對蘆薈及五葉松萃取抗氧化物之影響
論文名稱(外文):Effects of compressional-puffing pretreatment for antioxidant compounds extraction from Aloe vera and Pinus morrisonicola
指導教授:李篤中李篤中引用關係
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:104
中文關鍵詞:蘆薈台灣五葉松抗氧化能力壓縮膨發處理臨界含水量
外文關鍵詞:Aloe veraPinus morrisonicolaAntioxidant activityCompressional-puffing pretreatmentCritical moisture content
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
壓縮膨發處理已被證明為一新穎的萃取前處理方法,被用來提升萃取植物抗氧化物的含量,在本研究中,利用壓縮膨發來對蘆薈(42.47 g/g)及五葉松(1.61 g/g)做試驗,探討不同含水量及不同乾燥方法造成的影響,利用掃描式電子顯微鏡(SEM)可以發現樣品表面在前處理過後出現許多微孔,藉由水銀測孔儀(MIP),發現熱乾燥的蘆薈經壓縮膨發後,總孔隙面積從2.16上升到13.59 m2/g,冷凍乾燥的蘆薈則是從2.39上升到9.64 m2/g。當熱乾燥後蘆薈含水量在1 g/g,經前處理後所得到的抗氧化物含量為未處理的2.6倍,反觀冷凍乾燥後的蘆薈(1 g/g),抗氧化物含量僅上升1.6倍。且當壓縮膨發溫度為180、200、220ºC時,臨界含水量個別為0.33、1、1.5 g/g。另外對熱乾燥後的五葉松進行壓縮膨發處理,在同樣的前處理條件下,可以發現一樣在1 g/g含水量時會有最大的提升效果,多酚含量從未處理的19.2上升到51.4 GAE mg/g DW,抗氧化能力由137.9上升到392.8 TE umol/g DW。藉由乾燥的過程再加上壓縮膨發的前處理,可以使得在特定含水量下,有最大的萃取含量,得到比未乾燥的原樣品有更好的壓縮膨發效果。
Compressional-puffing pretreatment recently has been reported to become a novel method used to increase the extraction yields from plants. In this study, two plants, aloe vera (42.47 g/g) and pinus morrisonicola (1.61 g/g), were dried to different moisture content and conducted under the same pretreatment and extraction process. SEM pictures showed that a large amount of small pores appeared after pretreatment. MIP results indicated that the total pore area increased from 2.16 to 13.59 m2/g for thermal-dried aloe pieces and from 2.39 to 9.64 m2/g for freeze-dried aloe pieces. When the thermal-dried aloe was 1 g/g, the results showed a 2.5 fold increase in the extraction yields of antioxidant compounds after 200 ºC and 20 seconds pretreatment. But when the freeze-dried aloe was 1 g/g, the treated one was only 1.6 times the untreated. For different puffing temperature 180, 200 and 220 ºC, the critical moisture content were 0.33, 1 and 1.5 g/g respectively when the highest extraction yields occurred. On the other hand, for thermal-dried pine needles, the largest enhancement of antioxidants occurred also at 1 g/g under the same condition, which increased from 19.2 to 51.4 GAE mg/g DW of phenolic compounds and from 137.9 to 392.8 TE umol/g DW of antioxidant activity. By using a simple step of drying, higher enhancement of extraction yields could be obtained than the original sample.
中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xii
ABBREVIATION LIST xiii
Chapter 1 Introduction 1
Chapter 2 Literature review 4
2.1 Aloe vera and its applications 4
2.2 Pinus morrisonicola and its applications 6
2.3 Drying characteristics 8
2.4 Compressional-puffing pretreatment 12
2.5 Batch solvent extraction of antioxidant compounds 15
2.6 Antioxidant compounds 17
2.6.1 Phenolic compounds 17
2.6.2 Antioxidant activity 21
Chapter 3 Materials and methods 22
3.1 Chemicals and materials 22
3.1.1 Chemicals 22
3.1.2 Materials 22
3.2 Drying methods 23
3.2.1 Thermal-drying 23
3.2.2 Freeze-drying 24
3.3 Compressional-puffing pretreatment and extraction process 25
3.3.1 Compressional-puffing pretreatment 25
3.3.2 Batch solvent extraction process 25
3.4 Analysis methods 26
3.4.1 Total flavonoids content (TFC) 26
3.4.2 Total phenolic content (TPC) 27
3.4.3 DPPH radical scavenging assay 28
3.4.4 ABTS radical scavenging activity 30
3.4.5 Scanning electron microscopy (SEM) 31
3.4.6 Mercury intrusion porosimetry (MIP) 32
Chapter 4 Results and Discussion 33
4.1 Drying characteristics 33
4.2 Effects of compressional-puffing pretreatment on aloe 41
4.2.1 Morphological changes 41
4.2.2 Pore size distribution 45
4.2.3 Moisture content decreases after compressional-puffing pretreatment 49
4.3 Antioxidant capability at different moisture content aloe w/wo puffing 52
4.3.1 Aloe under thermal-drying 52
4.3.2 Aloe under freeze-drying 59
4.3.3 The relationship between antioxidant capability and moisture content difference 63
4.3.4 The difference between thermal-drying and freeze-drying 66
4.4 Puffing temperature effects on critical moisture content 74
4.4.1 Puffing temperature at 180 ºC for 20 seconds 74
4.4.2 Puffing temperature at 200 ºC for 20 seconds 77
4.4.3 Puffing temperature at 220 ºC for 20 seconds 80
4.4.4 Puffing temperature effects on critical moisture content 83
4.4.5 Discussion of critical moisture content affected by puffing temperature 85
4.5 Antioxidant capability at different moisture content pine needles w/wo puffing 89
Chapter 5 Conclusions 94
REFERENCE 96
1.Boudreau, M.D. and Beland, F.A., An evaluation of the biological and toxicological properties of aloe barbadensis (miller), aloe vera. Journal of environmental science and health, 2006. 24(1): p. 103-54.
2.Eshun, K. and He, Q., Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries--a review. Food science and nutrition, 2004. 44(2): p. 91-6.
3.Hamman, J.H., Composition and applications of aloe vera leaf gel. Molecules, 2008. 13(8): p. 1599-1616.
4.Hu, Y., Xu, J., and Hu, Q., Evaluation of antioxidant potential of aloe vera (aloe barbadensis miller) extracts. Journal of agricultural and food chemistry, 2003. 51: p. 7788-7791.
5.Lee, K.Y., Weintraub, S.T., and Yu, B.P., Isolation and identification of a phenolic antioxidant from aloe barbadensis. Free radical biology & medicine, 2000. 28(2): p. 261-265.
6.Femenia, A.,Sanchez, E., Simal, S., and, Rossello C., Compositional features of polysaccharides from aloe vera (aloe barbadensis miller) plant tissues. Carbohydrate polymers, 1999. 39: p. 109-117.
7.Ahlawat, K.S. and Khatkar, B.S., Processing, food applications and safety of aloe vera products: a review. Journal of food science and technology, 2011. 48(5): p. 525-33.
8.Hsu, T.Y., Sheu, S.C., Liaw, E.T., Wang, T.C., and Lin, C.C., Anti-oxidant activity and effect of pinus morrisonicola hay. on the survival of leukemia cell line u937. Phytomedicine, 2005. 12(9): p. 663-9.
9.Yen, G.C., Duh, P.D., Huang, D.W., Hsu, C.L., and Fu, T.Y., Protective effect of pine (pinus morrisonicola hay.) needle on ldl oxidation and its anti-inflammatory action by modulation of inos and cox-2 expression in lps-stimulated raw 264.7 macrophages. Food and chemical toxicology, 2008. 46(1): p. 175-85.
10.Tourino, S., Selga, A., Jimeänez, A., Juli’a, L., Lozano, C., Liza’rraga, D., Cascante, M., and Torres, J.L.S., Procyanidin fractions from pine (pinus pinaster) bark: radical scavenging power in solution, antioxidant activity in emulsion, and antiproliferative effect in melanoma cells. Journal of agricultural and food chemistry, 2005. 53: p. 4728-4735.
11.Kong, Z., Liu, Z., and Ding, B., Study on the antimutagenic effect of pine needle extract. Mutation research, 1995. 347: p. 101-104.
12.Chen, Y.H., Hsieh, P.C., Mau, J.L., and Sheu, S.C., Antioxidant properties and mutagenicity of pinus morrisonicola and its vinegar preparation. Food science and technology, 2011. 44(6): p. 1477-1481.
13.Bito, T., Roy, S., Sen, C.K., and Packer, L., Pine bark extract pycnogenol downregulates ifn-induced adhesion of t cells to human keratinocytes by inhibiting inducible icam-1 expression. Free radical biology & medicine, 2000. 28(2): p. 219-227.
14.Ka, M.H., Choi, E.H., Chun, H.S., and Lee, K.G., Antioxidative activity of volatile extracts isolated from angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. Journal of agricultural and food chemistry, 2005. 53: p. 4124-4129.
15.Zeng, W.C., Zhang, Z., Gao, H., Jia, L.R., and He, Q., Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (cedrus deodara). Journal of food science, 2012. 77(7): p. C824-9.
16.Haghi, A.K. and Ghanadzadeh, H., A study of thermal drying process. Indian journal of chemical technology, 2005. 12: p. 654-663.
17.Stanisavljevic, I.T., Lazic, M.L., and Veljkovic, V.B., Ultrasonic extraction of oil from tobacco (nicotiana tabacum l.) seeds. Ultrason sonochem, 2007. 14(5): p. 646-52.
18.Carrera, C., Ruiz-Rodriguez, A., Palma, M., and Barroso, C.G., Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 2012. 732: p. 100-4.
19.Amarni, F. and Kadi, H., Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane. Innovative food science & emerging technologies, 2010. 11(2): p. 322-327.
20.Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., and Lanoiselle, J.L., Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food chemistry, 2011. 128(2): p. 364-70.
21.Huang, C.Y., Wu, S.J., Yang, W.N., Kuan, A.W., and Chen, C.Y., Antioxidant activities of crude extracts of fucoidan extracted from sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food chemistry, 2016. 197: p. 1121-1129.
22.Loots, D.T., Westhuizen, F.H.V.D., and Botes, L., Aloe ferox leaf gel phytochemical content, antioxidant capacity, and possible health benefits. Journal of agricultural and food chemistry, 2007. 55: p. 6891-6896.
23.Asadi-Shahmirzadi, A., Mozaffari, S., Sanei, Y., Baeeri, M., Hajiaghaee, R., Monsef-Esfahani, H.R., and Abdollahi, M., Benefit of aloe vera and matricaria recutita mixture in rat irritable bowel syndrome: combination of antioxidant and spasmolytic effects. Chinese journal of integrative medicine, 2012.
24.Rahman, S., Carter, P., and Bhattarai, N., Aloe vera for tissue engineering applications. Journal of functional biomaterials, 2017. 8(1).
25.Reynolds, T. and Dweck, A.C., Aloe vera leaf gel: a review update. Journal of ethnopharmacology, 1999. 68: p. 3-37.
26.Talmadge, J., Chavez, J., Jacobs, L., Munger, C., Chinnah, T., Chow, J.T., Williamson, D., and Yates, K., Fractionation of aloe vera l. inner gel, purification and molecular profiling of activity. International immunopharmacology, 2004. 4(14): p. 1757-73.
27.Esua, M.F. and Rauwald, J.W., Novel bioactive maloyl glucans from aloe vera gel: isolation, structure elucidation and in vitro bioassays. Carbohydrate research, 2006. 341(3): p. 355-64.
28.Rajasekaran, S., Sivagnanam, K., and Subramanian, S., Antioxidant effect of aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacological reports, 2005. 57: p. 90-96.
29.Yagi, A., Kabash, A., Okamura, N., Haraguchi, H., Moustafa, S.M., and Khalifa, T.I., Antioxidant, free radical scavenging and anti-inflammatory effects of aloesin derivatives in aloe vera. Planta medica, 2002. 68: p. 957-960.
30.Narsih and Agato, Evaluation of bioactive compounds of aloe vera extract using sub- critical water method. Biotechnology, 2016. 12(3): p. 113-120.
31.Kim, K.Y. and Chung, H.J., Flavor compounds of pine sprout tea and pine needle tea. Journal of agricultural and food chemistry, 2000. 48: p. 1269-1272.
32.Schafer, A., Chovanova, Z., Muchova, J., Sumegova, K., Liptakova, A., Durackova, Z., and Hogger, P., Inhibition of cox-1 and cox-2 activity by plasma of human volunteers after ingestion of french maritime pine bark extract (pycnogenol). Biomedicine and pharmacotherapy, 2006. 60(1): p. 5-9.
33.Kwak, C.S., Moon, S.C., and Lee, M.S., Antioxidant, antimutagenic, and antitumor effects of pine needles (pinus densiflora). Nutrition and cancer, 2006. 56(2): p. 162-71.
34.Fang, J.M., Chang C.F., and Cheng, Y.S., Flavonoids from pinus morrisonicola. Phytochemistry, 1987. 26(9): p. 2559-2561.
35.Doymaz, İ., Drying behaviour of green beans. Journal of food engineering, 2005. 69(2): p. 161-165.
36.Roberts, J.S., Kidd, D.R., and Padilla-Zakour, O., Drying kinetics of grape seeds. Journal of food engineering, 2008. 89(4): p. 460-465.
37.Doymaz, İ., Thin-layer drying behaviour of mint leaves. Journal of food engineering, 2006. 74(3): p. 370-375.
38.Silva, W.P., Silva, C.M.D.P.S., Gama, F.J.A., and Gomes, J.P., Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. Journal of the saudi society of agricultural sciences, 2014. 13(1): p. 67-74.
39.Rayaguru, K. and Routray, W., Mathematical modeling of thin layer drying kinetics of stone apple slices. International food research journal, 2012. 19: p. 1503-1510.
40.Franks, F., Freeze-drying of bioproducts: putting principles into practice. European journal of pharmaceutics and biopharmaceutics, 1998. 45: p. 221-229.
41.Ratti, C., Hot air and freeze-drying of high-value foods: a review. Journal of food engineering, 2001. 49: p. 311-319.
42.Abascal, K., Ganora, L., and Yarnell, E., The effect of freeze-drying and its implications for botanical medicine: a review. Phytotherapy research, 2005. 19: p. 655-660.
43.Torres, C., Diaz-Maroto, M.C., Hermosin-Gutierrez, I., and Perez-Coello, M.S., Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Analytica Chimica Acta, 2010. 660(1-2): p. 177-82.
44.Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, F.S., and Yong, M.Y., Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food chemistry, 2009. 113(1): p. 166-172.
45.Popp, M., Lied, W., Meyer, A.J., Richter, A., Schiller, P., and Schwitte, H., Sample preservation for determination of organic compounds: microwave versus freeze-drying. Journal of experimental botany, 1996. 47(303): p. 1469-1473.
46.Piga, A., Caro, A.D., and Corda, G., From plums to prunes: influence of drying parameters on polyphenols and antioxidant activity. Journal of agricultural and food chemistry, 2003. 51: p. 3675-3681.
47.Diäaz-Maroto, M.C., Rez-Coello, M.S.P., and Cabezudo, M.D., Effect of drying method on the volatiles in bay leaf (laurus nobilis l.). Journal of agricultural and food chemistry, 2002. 50(1): p. 4520-4524.
48.Sellami, I.H., Wannes, W.A., Bettaieb, I., Berrima, S., Chahed, T., Marzouk, B., and Limam, F., Qualitative and quantitative changes in the essential oil of laurus nobilis l. leaves as affected by different drying methods. Food chemistry, 2011. 126(2): p. 691-697.
49.Julkunen-Tiitto, R. and Sorsa, S., Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. Journal of chemical ecology, 2001. 27(4): p. 779-789.
50.Yousif, A.N., Durance, T.D., Scaman, C.H., and Girard, B., Headspace volatiles and physical characteristics of vacuum-microwave, air, and freeze-dried oregano (lippia berlandieri schauer). Journal of food science, 2000. 65(6): p. 926-930.
51.Harbourne, N., Marete, E., Jacquier, J.C., and O''Riordan, D., Effect of drying methods on the phenolic constituents of meadowsweet (filipendula ulmaria) and willow (salix alba). Lwt - food science and technology, 2009. 42(9): p. 1468-1473.
52.Asami, D.K., Hong, Y.-J., Barrett, D.M., and Mitchell, A.E., Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Agricultural and food chemistry, 2003. 51: p. 1237-1241.
53.Mahanom, H., Azizah, A., and Dzulkifly, M.H., Effect of different drying methods on concentrations of several phytochemicals in herbal preparation of 8 medicinal plants leaves. Malaysian journal of nutrition, 1999. 5: p. 47-54.
54.Diaz-Maroto, M.C., Perez-Coello, M.S., Cabezudo, M.D., Effect of different drying methods on the volatile components of parsley ( petroselinum crispum l. ). European food research and technology, 2002. 215(3): p. 227-230.
55.Kozempel, M.F., Sullivan, J.F., Craig, J.C., JR., and Konstance, R.P., Explosion puffing of fruits and vegetables. Journal of food science, 1989. 54(3): p. 772-773.
56.Sullivan, J.F., Konstance, R.P., Aceto, N.C., Heiland, W.K., and JR., J.C.C., Continuous explosion-puffing of potatoes. Journal of food science, 1977. 42(6): p. 1462-1463.
57.Nath, A. and Chattopadhyay, P.K., Effect of process parameters and soy flour concentration on quality attributes and microstructural changes in ready-to-eat potato–soy snack using high-temperature short time air puffing. Lwt - food science and technology, 2008. 41(4): p. 707-715.
58.Li, M.F., Sun, S.N., Xu, F., and Sun, R.C., Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food chemistry, 2012. 134(3): p. 1392-8.
59.Qina, L. and Chena, H., Enhancement of flavonoids extraction from fig leaf using steam explosion. Industrial crops and products, 2015. 69: p. 1-6.
60.Martin-Sampedro, R., Revilla, E., Villar, J.C., and Eugenio, M.E., Enhancement of enzymatic saccharification of eucalyptus globulus: steam explosion versus steam treatment. Bioresource technology, 2014. 167: p. 186-91.
61.Song, H., Yang, R., Zhao, W., Katiyo, W., Hua, X., and Zhang, W., Innovative assistant extraction of flavonoids from pine (larixolgensis henry) needles by high-density steam flash-explosion. Journal of agricultural and food chemistry, 2014. 62: p. 3806-3812.
62.Li, J., Gellerstedt, G., and Toven, K., Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresource technology, 2009. 100(9): p. 2556-61.
63.Perez, E.E., Carelli, A.A., and Crapiste, G.H., Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of food engineering, 2011. 105(1): p. 180-185.
64.Xu, H.N. and He, C.H., Extraction of isoflavones from stem of pueraria lobata (willd.) ohwi using n-butanol/water two-phase solvent system and separation of daidzein. Separation and purification technology, 2007. 56: p. 85-89.
65.Khiari, Z., Makris, D.P., and Kefalas, P., An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food and bioprocess technology, 2007. 2(4): p. 337-343.
66.Chan, C.H., Yusoff, R., and Ngoh, G.C., Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical engineering research and design, 2014. 92(6): p. 1169-1186.
67.Crossley, J.I. and Aguilera, J.M., Modeling the effect of microstructure on food extraction. Journal of food process engineering, 2001. 24: p. 161-177.
68.Ben Amor, B. and Allaf, K., Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocyanins from malaysian roselle (hibiscus sabdariffa). Food chemistry, 2009. 115(3): p. 820-825.
69.Chen, G. and Chen, H., Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion. Food chemistry, 2011. 126(4): p. 1934-8.
70.Rusak, G., Komes, D., Likic, S., Horzic, D., and Kovac, M., Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food chemistry, 2008. 110: p. 852-858.
71.Rakotondramasy-Rabesiaka, L., Havet, J.L., Porte, C., and Fauduet, H., Solid–liquid extraction of protopine from fumaria officinalis l.—analysis determination, kinetic reaction and model building. Separation and purification technology, 2007. 54: p. 253-261.
72.Gironi, F. and Piemonte, V., Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chemical engineering research and design, 2011. 89(7): p. 857-862.
73.Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M., Velic, D, Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of food engineering, 2007. 81: p. 236-242.
74.Durling, N.E., Catchpole, O.J., Grey, J.B., Webby, R.F., Mitchell, K.A., Foo, L.Y., and Perry, N.B., Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food chemistry, 2007. 101: p. 1417-1424.
75.Qu, W., Pan, Z., and Ma, H., Extraction modeling and activities of antioxidants from pomegranate marc. Journal of food engineering, 2010. 99(1): p. 16-23.
76.Franco, D., Pinelo, M., Sineiro, J., and Nunez, M.J., Processing of rosa rubiginosa: extraction of oil and antioxidant substances. Bioresource technology, 2007. 98(18): p. 3506-12.
77.Cisse, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., and Dornier, M., Aqueous extraction of anthocyanins from hibiscus sabdariffa: experimental kinetics and modeling. Journal of food engineering, 2012. 109(1): p. 16-21.
78.Xu, H.N., Huang, W.N., and He, C.H., Modeling for extraction of isoflavones from stem of pueraria lobata (willd.) ohwi using n-butanol/water two-phase solvent system. Separation and purification technology, 2008. 62(3): p. 590-595.
79.Goto, M., Smith, J.M., and McCoy, B.J., Kinetics and mass transfer for supercritical fluid extraction of wood. Industrial and engineering chemistry research, 1990. 29: p. 282-289.
80.Wongkittipong, R., Prat, L., Damronglerd, S., and Gourdon, C., Solid–liquid extraction of andrographolide from plants—experimental study, kinetic reaction and model. Separation and purification technology, 2004. 40(2): p. 147-154.
81.Ho, Y.S., Harouna-Oumarou, H.A., Fauduet, H., and Porte, C., Kinetics and model building of leaching of water-soluble compounds of tilia sapwood. Separation and purification technology, 2005. 45(3): p. 169-173.
82.Sayyar, S., Abidin, Z.Z., Yunus, R., and Muhammad, A., Extraction of oil from jatropha seeds-optimization and kinetics. American journal of applied sciences, 2009. 6(7): p. 1390-1395.
83.Antolovich, M., Prenzler, P.D., Patsalides, E., McDonald, S., and Robards, K., Methods for testing antioxidant activity. Analyst, 2002. 127(1): p. 183-198.
84.Zheng, W. and Wang, S.Y., Antioxidant activity and phenolic compounds in selected herbs. Journal of agricultural and food chemistry, 2001. 49(1): p. 5165-5170.
85.Soong, Y.Y. and Barlow, P.J., Antioxidant activity and phenolic content of selected fruit seeds. Food chemistry, 2004. 88(3): p. 411-417.
86.Kahkonen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S., and Heinonen, M., Antioxidant activity of plant extracts containing phenolic compounds. Journal of agricultural and food chemistry, 1999. 47: p. 3954-3962.
87.Pourmorad, F., Hosseinimehr, S.J., and Shahabimajd, N., Antioxidant activity, phenol and flavonoid contents of some selected iranian medicinal plants. African journal of biotechnology, 2006. 5: p. 1142-1145.
88.Rice-Evans, C.A., Miller, N.J., and Paganga, G., Antioxidant properties of phenolic compounas. Trends in plant science, 1997. 2(4): p. 152-159.
89.Rice-Evans, C.A., Miller, N.J., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology & medicine, 1996. 20(7): p. 933-956.
90.Acker, S.A.B.E.V., Berg, D.J.V.D., Tromp, M.N.J.L., Griffioen, D.H., Bennekom, W.P.V., Vijgh, W.J.F.V.D., and Bast, A., Structural aspects of antioxidant activity of flavonoids. Free radical biology & medicine, 1996. 20(3): p. 331-342.
91.Tsao, R., Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010. 2(12): p. 1231-46.
92.Haslam, E., Natural polyphenols (vegetable tannins) as drugs: possible modes of action. Journal of natural products, 1996. 59(2): p. 205-215.
93.Veer, P., Jansen, M.C.J.F., Klerk, M., and Kok, F.J., Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public health nutrition, 2007. 3(01).
94.Ames, B.N., Shigenaga, M.K., and Hagen, T.M., Oxidants, antioxidants, and the degenerative diseases of aging. Proceeding of national academy sciences of USA, 1993. 90: p. 7915-7922.
95.Ali, G., Flavonoids and phenolic acids: role and biochemical activity in plants and human. Journal of medicinal plants research, 2011. 5(31): p. 6697-6703.
96.Cook, N.C. and Samman, S., Flavonoids chemistry, metabolism, cardioprotective effects, and dietary source. Nutritional biochemistry, 1996. 7: p. 66-76.
97.Carocho, M. and Ferreira, I.C., A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food chemistry toxicology, 2013. 51: p. 15-25.
98.Seeram, N.P. and Nair, M.G., Inhibition of lipid peroxidation and structure−activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. Journal of agricultural and food chemistry, 2002. 50: p. 5308-5312.
99.Prior, R.L., Wu, X., and Schaich, K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry, 2005. 53: p. 4290-4302.
100.Spigno, G., Tramelli, L., and Faveri, D.M.D., Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of food engineering, 2007. 81: p. 200-208.
101.Park, Y.S., Jung, S.T., Kang, S.G., Heo, B.G., Arancibia-Avila, P., Toledo, F., Drzewiecki, J., Namiesnik, J., and Gorinstein, S., Antioxidants and proteins in ethylene-treated kiwifruits. Food chemistry, 2008. 107(2): p. 640-648.
102.Adefegha, S.A. and Oboh, G., Enhancement of total phenolics and antioxidant properties of some tropical green leafy vegetables by steam cooking. Journal of food processing and preservation, 2011. 35(5): p. 615-622.
103.Brand-Williams, W., Cuvelier, M.E., and Berset, C., Use of a free radical method to evaluate antioxidant activity. Lebensmittel-wissenschaft and technologie, 1995. 28: p. 25-30.
104.Arnao, M.B., Cano, A., and Acosta, M., The hydrophilic and lipophilic contribution to total antioxidant activity. Food chemistry, 2001. 73: p. 239-244.
105.Galle, C., Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry a comparative study between oven-, vacuum-, and freeze-drying. Cement and concrete research, 2001. 31(1): p. 1467-1477.
106.Kiranoudis, C.T., Tsami, E., Maroulis, Z.B., and Marinos-Kouris, D., Drying kinetics of some fruits. Drying technology, 1997. 15(5): p. 1399-1418.
107.Zhao, J. and Chen, H., Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical engineering science, 2013. 104: p. 1036-1044.
108.Datta, A.K., Porous media approaches to studying simultaneous heat and mass transfer in food processes. ii: property data and representative results. Journal of food engineering, 2007. 80: p. 96-110.
109.Datta, A.K., Porous media approaches to studying simultaneous heat and mass transfer in food processes. i: problem formulations. Journal of food engineering, 2007. 80: p. 80-95.
110.Zhao, P., Ge, S., and Yoshikawa, K., An orthogonal experimental study on solid fuel production from sewage sludge by employing steam explosion. Applied energy, 2013. 112: p. 1213-1221.
111.Yilmaz, Y. and Toledo, R.T., Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. Journal of food composition and analysis, 2006. 19(1): p. 41-48.
112.Saeed, N., Khan, M.R., and Shabbir, M., Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts torilis leptophylla l. Complementary and alternative medicine, 2012. 12: p. 221-233.
113.Maisuthisakul, P., Suttajit, M., and Pongsawatmanit, R., Assessment of phenolic content and free radical-scavenging capacity of some thai indigenous plants. Food chemistry, 2007. 100(4): p. 1409-1418.
114.Saravacos, G.D., Effect of the drying method on the water sorption of dehydrated apple and potato. Journal of food science, 1967. 32: p. 81-84.
115.Hossain, M.B., Barry-Ryan, C., Martin-Diana, A.B., and Brunton, N.P., Effect of drying method on the antioxidant capacity of six lamiaceae herbs. Food chemistry, 2010. 123(1): p. 85-91.
116.Payne, F.A., Taraba, J.L., and Saputra, D., A review of puffing processes for expansion of biological products. Journal of food engineering, 1989. 10: p. 183-197.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔