(3.238.7.202) 您好!臺灣時間:2021/03/03 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊曉玲
研究生(外文):Xiao-Ling Yang
論文名稱:利用Aspen Plus ActiveX自動化伺服器進行萃取蒸餾塔的最適化
論文名稱(外文):Extractive Distillation Optimization by Using Aspen Plus ActiveX Automation Server
指導教授:吳哲夫吳哲夫引用關係
指導教授(外文):Jeffrey D. Ward
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:100
中文關鍵詞:萃取蒸餾共沸混合物模擬退火演算法最適化變壓蒸餾
外文關鍵詞:Extractive distillationAzeotropic mixturesSimulated annealing algorithmOptimizationPressure-swing distillation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:755
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
運用連續式萃取蒸餾的方法進行共沸混合物分離,其中流程的設計和優化對年總成本有顯著影響。針對這些問題,本研究應用模擬退火演算法進行最適化設計,並且整合了商用模擬軟體(Aspen Plus)來建立萃取蒸餾的模型,在模擬退火演算法跟商用模擬軟體之間的連接介面是採用具有優化相關功能的MATLAB,並且選取三組有代表性的共沸體系運用此法進行分離。
對丙酮和甲醇(Acetone-methanol system)混合物分離的結果顯示優於常規優化方法的結果。對於正己烷和乙酸乙酯(N-hexane-ethyl acetate system)共沸物系統,比較了N-甲基吡咯烷酮(NMP),2-甲基吡啶,3-甲基吡啶,二甲基甲醯胺(DMF),吡咯作為萃取劑時的年總成本,在產品的純度設定為99.5mol%的條件下,DMF具有性能和經濟效益優勢。對於正己烷和四氫呋喃(N-hexane-THF system)共沸物系統,比較了DMF,NMP,2-甲基吡啶作為萃取劑,在產品的純度均為99.5mol%時,DMF是最合適的萃取劑。
結果表明,該方法能成功分離出這些共沸混合物,優化年總成本,並且具有提高獲得全域最優的概率和減少計算時間的優點,該方法可以成為其他複雜蒸餾系統的一般適用方法。
In this paper, continuous extractive distillation was used to separate azeotropic mixtures. The design and optimization have a critical impact on its total annual cost. An optimization method that integrates simulated annealing algorithm, the simulation software Aspen Plus and the optimization-related features of MATLAB was proposed. We then programmed the continuous-running SA method to optimize three cases of extractive distillation. For the acetone-methanol case, the TAC of using different entrainers are much lower when compared with conventional optimization method. For the n-hexane-ethyl acetate system, the candidate entrainers are NMP, 2-methylpyridine, 3-methylpyridine, DMF, pyrrole. In this case, purities of the products are set at 99.5mol%. Results show that DMF has performance and economic benefit. For n-hexane-tetrahydrofuran system, the candidate entrainers are DMF, NMP, 2-methylpyridine. Also, all products’ purities are set at 99.5mol%. DMF is the most suitable entrainer. These azeotropic mixtures were separated successfully with this method. Results show that the continuous-running simulation has the advantage of a high probability to obtain the global optimum and less computing time. This method may become a generally applicable method for other complicated distillation systems.
誌謝 i
摘要 iii
Abstract v
Table of Contents vii
List of Figures xi
List of Tables xv
1. Introduction 1
1.1. Overview 1
1.2. Literature review 2
1.3. Motivation 4
1.4. Dissertation organization 5
2. Methods 6
2.1. Overview 6
2.2. ActiveX automation server 7
2.3. Simulated annealing 8
2.3.1. Initial temperature 11
2.3.2. Final temperature 11
2.3.3. Number of iterations 11
2.3.4. Move generator 12
2.3.5. Cooling schedule 13
2.4. Optimization using simulated annealing 14
2.4.1. Implementation of the SA algorithm and simulation software 14
2.4.2. The continuous-running procedure 16
2.4.3. Optimization strategy 17
3. Case study 19
3.1. Acetone-methanol system 19
3.1.1. Overview 19
3.1.2. Water solvent 24
3.1.3. DMSO solvent 28
3.1.4. Chlorobenzene solvent 31
3.1.5. Design results comparison 34
3.2. N-hexane-ethyl acetate system 36
3.2.1. Overview 36
3.2.2. DMF solvent 40
3.2.3. NMP solvent 44
3.2.4. 2-methylpyridine solvent 48
3.2.5. 3-methylpyridine solvent 54
3.2.6. Design results comparison 59
3.3. N-hexane-tetrahydrofuran 61
3.3.1. Overview 61
3.3.2. NMP solvent 65
3.3.3. DMF solvent 68
3.3.4. 2-methylpyridine solvent 71
3.3.5. Design results comparison 76
3.4. Pressure-swing distillation process 78
3.4.1. Overview 78
3.4.2. Simulated annealing 81
3.4.3. Optimization results 84
4. Conclusions 86
References 88
Appendix A: TAC Calculation (1) 94
Appendix B: MATLAB Code 96
Appendix C: TAC Calculation (2) 99
Appendix D: TAC Calculation of vacuum system 100
[1]Widagdo, Soemantri, and Warren D. Seider. "Journal review. Azeotropic distillation." AIChE Journal 42.1 (1996): 96-130.
[2]Andersen, H. W., Lionel Laroche, and Manfred Morari. "Effect of design on the operation of homogeneous azeotropic distillation." Computers & chemical engineering 19.1 (1995): 105-122.
[3]Knapp, Jeffrey P., and Michael F. Doherty. "Thermal integration of homogeneous azeotropic distillation sequences." AIChE journal 36.7 (1990): 969-984.
[4]Lei, Zhigang, Chengyue Li, and Biaohua Chen. "Extractive distillation: a review." Separation & Purification Reviews 32.2 (2003): 121-213.
[5]Lladosa, E., Montón, J. B., Burguet, M. C., & Munoz, R. "Phase equilibria involved in extractive distillation of dipropyl ether+ 1-propyl alcohol using 2-ethoxyethanol as entrainer." Fluid phase equilibria 255.1 (2007): 62-69.
[6]Momoh, S. O. "Assessing the accuracy of selectivity as a basis for solvent screening in extractive distillation processes." Separation science and technology 26.5 (1991): 729-742.
[7]Luyben, William L., and I-Lung Chien. Design and control of distillation systems for separating azeotropes. John Wiley & Sons, 2011.
[8]Arifin, Saiful, and I-Lung Chien. "Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer." Industrial & Engineering Chemistry Research 47.3 (2008): 790-803.
[9]Doherty, Michael F., and Glenn A. Caldarola. "Design and synthesis of homogeneous azeotropic distillations. 3. The sequencing of columns for azeotropic and extractive distillations." Industrial & engineering chemistry fundamentals 24.4 (1985): 474-485.
[10]Knight, Jennifer R., and Michael F. Doherty. "Optimal design and synthesis of homogeneous azeotropic distillation sequences." Industrial & engineering chemistry research 28.5 (1989): 564-572.
[11]Kossack, S., Kraemer, K., Gani, R., & Marquardt, W. "A systematic synthesis framework for extractive distillation processes." chemical engineering research and design 86.7 (2008): 781-792.
[12]Kossack, Sven, Korbinian Kraemer, and Wolfgang Marquardt. "Combining shortcut methods and rigorous MINLP optimization for the design of distillation processes for homogeneous azeotropic mixtures." INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES. Vol. 152. Institution of Chemical Engineers; 1999, 2006.
[13]Wang, Y., Bu, G., Wang, Y., Zhao, T., Zhang, Z., & Zhu, Z. "Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process." Computers & Chemical Engineering 95 (2016): 97-107.
[14]Cardoso, M. F., Salcedo, R. L., De Azevedo, S. F., & Barbosa, D. "Optimization of reactive distillation processes with simulated annealing." Chemical Engineering Science 55.21 (2000): 5059-5078.
[15]Wei-zhong, An, and Yuan Xi-Gang. "A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences." Computers & Chemical Engineering 33.1 (2009): 199-212.
[16]García-Herreros, P., Gómez, J. M., Gil, I. D., & Rodríguez, G. "Optimization of the design and operation of an extractive distillation system for the production of fuel grade ethanol using glycerol as entrainer." Industrial & Engineering Chemistry Research 50.7 (2011): 3977-3985.
[17]ASPEN, PLUS. "User Guide (Version 10.2). AspenTechnology."
[18]Ryoo, Hong S., and Nikolaos V. Sahinidis. "Global optimization of nonconvex NLPs and MINLPs with applications in process design." Computers & Chemical Engineering 19.5 (1995): 551-566.
[19]Leyffer, Sven. "Deterministic methods for mixed integer nonlinear programming." PhD University of Dundee (1993).
[20]Dekkers, Anton, and Emile Aarts. "Global optimization and simulated annealing." Mathematical programming 50.1 (1991): 367-393.
[21]Konak, Abdullah, David W. Coit, and Alice E. Smith. "Multi-objective optimization using genetic algorithms: A tutorial." Reliability Engineering & System Safety 91.9 (2006): 992-1007.
[22]Chelouah, Rachid, and Patrick Siarry. "Tabu search applied to global optimization." European journal of operational research 123.2 (2000): 256-270.
[23]Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. "Equation of state calculations by fast computing machines." The journal of chemical physics 21.6 (1953): 1087-1092.
[24]Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi. "Optimization by simulated annealing." science 220.4598 (1983): 671-680.
[25]Aarts, E. H., de Bont, F. M., Habers, E. H., & van Laarhoven, P. J. "Parallel implementations of the statistical cooling algorithm." INTEGRATION, the VLSI journal 4.3 (1986): 209-238.
[26]Burke, Edmund K., Graham Kendall, and Glenn Whitwell. "A simulated annealing enhancement of the best-fit heuristic for the orthogonal stock-cutting problem." INFORMS Journal on Computing 21.3 (2009): 505-516.
[27]Cheng, Jian-Kai. "利用最適化演算法與捷徑法進行反應蒸餾塔的設計." 臺灣大學化學工程學研究所學位論文 (2010): 1-212.
[28]Huang, H. J., Lin, W., Ramaswamy, S., & Tschirner, U. "Process modeling of comprehensive integrated forest biorefinery—an integrated approach." Applied biochemistry and biotechnology 154.1-3 (2009): 26-37.
[29]Aarts, Emile HL, and Peter JM van Laarhoven. "Statistical cooling: A general approach to combinatorial optimization problems." (1985).
[30]Patel, A. N., R. S. H. Mah, and I. A. Karimi. "Preliminary design of multiproduct noncontinuous plants using simulated annealing." Computers & Chemical Engineering 15.7 (1991): 451-469.
[31]Painton, L. A., and U. M. Diwekar. "Synthesizing optimal design configurations for a Brayton cycle power plant." Computers & chemical engineering 18.5 (1994): 369-381.
[32]Luyben, William L. "Comparison of extractive distillation and pressure-swing distillation for acetone− methanol separation." Industrial & Engineering Chemistry Research 47.8 (2008): 2696-2707.
[33]Luyben, William L. Distillation design and control using Aspen simulation. John Wiley & Sons, 2013.
[34]Acosta, J., Arce, A., Martínez-Ageitos, J., Rodil, E., & Soto, A. "Vapor− liquid equilibrium of the ternary system ethyl acetate+ hexane+ acetone at 101.32 kpa." Journal of Chemical & Engineering Data 47.4 (2002): 849-854.
[35]Yuan, S., Zou, C., Yin, H., Chen, Z., & Yang, W. "Study on the separation of binary azeotropic mixtures by continuous extractive distillation." Chemical Engineering Research and Design 93 (2015): 113-119.
[36]https://portal.sw.nat.gov.tw/APGA/GA03_LIST (Customs Administration, Ministry of Finance)
[37]http://www.icis.com/chemicals/channel-info-chemicals-a-z/
[38]XIE, Qiang, Hui WAN, and Guo-feng GUAN. "Isobaric vapor-liquid equilibrium for tetrahydrofuran-water-n-hexane system." Chemical Engineering (China) 4 (2010): 018.
[39]Luyben, William L. "Pressure-swing distillation for minimum-and maximum-boiling homogeneous azeotropes." Industrial & Engineering Chemistry Research 51.33 (2012): 10881-10886.
[40]Seider, Warren D., Junior D. Seader, and Daniel R. Lewin. PRODUCT & PROCESS DESIGN PRINCIPLES: SYNTHESIS, ANALYSIS AND EVALUATION, (With CD). John Wiley & Sons, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔