跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李珊
研究生(外文):Shan Li
論文名稱:液滴在具結構表面的濕潤行為與親疏水表面接觸角定量定義探討
論文名稱(外文):Wetting Behavior of Water Droplet on Patterned Surface and Quantitative Definition of Hydrophilicity and Hydrophobicity
指導教授:陳立仁陳立仁引用關係
指導教授(外文):Li-Jen Chen
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:125
中文關鍵詞:親水疏水微結構表面濕潤轉換接觸角表面改質
外文關鍵詞:hydrophilicityhydrophobicitymicro-patterned surfacewetting transitioncontact anglesurface modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:440
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要對固體表面親疏水的臨界角度進行探討,選用四種材料表面(PET、nylon 6,6、PEOPDMS、NOA81),對部分系統進行濕潤性改質,製備七種前進角(90.8、86.3、84.3、62.9、56.6、34.9、31.6度)、四種後退角(58.2、42.5、19.9、0度)的系統。實驗方式包含濕潤現象觀察,及前進角與後退角的測量兩個部分。
液滴於表面的濕潤行為被廣泛地運用在工業上,並在科學研究中被廣泛地探討,傳統上一般以接觸角90度作為親疏水表面的臨界角度,大於90度為疏水表面、小於90度為親水表面,但文獻中對於臨界角度的說法眾說紛紜,其中以Vogler提出的65度新臨界角度最具代表性。本研究選用PET、nylon 6,6、PEOPDMS、NOA81材料表面,使探討系統包含七種前進角與四種後退角,並在表面上製備規則方柱微結構,藉由粗糙度的變化,觀察水在表面上的濕潤行為,並以埋針法測量前進角與後退角。研究顯示Vogler提出的新臨界角度65度與實驗結果不相符,但也未發現一個可以精準劃分親疏水表面的特定角度,從濕潤現象轉換與接觸角的關係,認為可以分別以前進角、後退角對親疏水表面進行定量定義:前進角大於90度或後退角大於55度的表面為疏水表面,前進角小於35度的為親水表面。
此外,對於前進角35-55度的表面,我們一直無法找到在此角度區間可以穩定測量的材料,導致對臨界角度課題的探討不夠完善,對此我們嘗試光接枝丙烯酸於PDMS表面,使表面前進角得以透過紫外光照射時間改變達到連續且精準調控的目的,儘管尚未成功找出可以連續調整前進角的反應條件,但是可以知道反應後接枝表面高度均勻,粗糙度(Ra)落在0-3.5奈米,若將此反應應用在具方柱微結構PDMS,接枝聚丙烯酸分子層不會使樣品規格在巨觀上有太大的變化。而隨反應時間增加,表面後退角先下降至0度後,接著前進角開始下降;在單體濃度較低時,反應40分鐘時達到最高親水性,前進角約為80度,照光時間繼續增加不會使樣品表面前進角繼續下降;在單體濃度較高時,反應較快速,照光10分鐘就可以使表面前進角從100度下降到20度,但是在反應6-9分鐘的區間,前進角數值從70-80度直接下降到20度,而非一個角度連續變化的過程。反應時玻璃與PDMS的距離越大,在相同照射條件下可以達到較小的前進角,表面更親水。
Our study was focus on the quantitative definition of surface hydrophilicity and hydrophobicity. Four kinds of materials have been chosen, and the surfaces underwent surface modification to enhance their hydrophilicity. Among the surface with different wettability, advancing contact angle of the surfaces ranges from 90.8 degree to 31.6 degree, while receding contact angle of the surfaces ranges from 58.2 degree to 0 degree. Two parts included in our study: observation of wetting phenomena of water droplet deposited on flat and patterned surfaces, and contact angle measurements.
Hydrophilicity and hydrophobicity are among the most important concepts in surface chemistry, and wettability phenomena has been studied for more than 200 years. Conventionally, 90 degree is considered as critical contact angle or, on the other word, quantitative definition of relative terms “hydrophilic” or “hydrophobic”. However, the critical contact angle still remain the subject of some debate in the literature. The most well-known definition is given by Vogler with which is 65 degree. In the experiment, we prepared surfaces with various wettability and modified their surface roughness by creating regular pillar-patterned structure. We observed the wetting phenomena of water droplet, and measured water advancing and receding contact angle. The data reveals that 65 degree given by Vogler does not fit the results, and there is no specific contact angle to precisely define whether the surface is either hydrophilic or hydrophobic. Upon examination of wetting transition and contact angle data between water and a variety of solid surfaces, an improved definition for hydrophilicity and hydrophobicity is proposed. A surface is hydrophobic when advancing contact angle is larger than 90 degree or receding contact angle larger than 55 degree, while a surface is hydrophilic when advancing contact angle lower than 35 degree.
Beside, for surfaces with advancing contact angle ranges from 35 to 55 degree, it was difficult for us to find material that contact angle could be stably measured and with high reproducibility. Therefore, we tried to modify PDMS surface by poly (acrylic acid) photografting polymerization. Hoping that their wettability could be varied in a continuous manner by adjusting UV exposure duration. Though the goal hasn’t been achieved, some surface properties after graft polymerization were provided: (1) surface roughness (Ra) lies in 0-3.5 nm indicates that the surface after modification is almost flat and homogenous. Therefore, the dimension would not change macroscopically if we applied the reaction to pillar-patterned structure surfaces. (2) With increasing exposure duration, receding contact angle dropped to 0 degree first, followed by decrease of advancing contact angle. (3) Lower monomer concentration leads to limit modification with advancing contact angle 80 degree. Further UV exposure would not leads to higher hydrophilicity. Under high monomer concentration, advancing contact angle could drop from 100 degree to 20 degree within 10 min exposure. But the change of contact angle was not in a continuous manner within 6-9 min exposure duration. (4) Under the same reaction condition, larger spacing distance between glass and PDMS surface resulted in lower advancing contact angle.
口試委員審定書 i
誌謝 iii
摘要 v
ABSTRACT vii
目 錄 xi
表目錄 xiv
圖目錄 xv
第一章 緒論 1
第二章 文獻回顧 3
2.1 濕潤行為簡介 3
2.1.1 理想表面的濕潤行為 3
2.1.2 非理想表面的濕潤行為 4
2.1.3 前進角、後退角與遲滯接觸角 5
2.2 表面親疏水性定義 9
2.3 濕潤行為觀察與轉換 14
2.4 材料親水性改質方法 19
2.4.1 親水PEO-PDMS製備 20
2.4.2 Norland紫外線UV光學固化膠表面製備 21
2.4.3 接枝聚合(Graft polymerization)製備法 21
第三章 實驗方法 29
3.1 實驗藥品 29
3.2 實驗裝置 30
3.3 實驗材料 30
3.4 實驗流程 31
3.4.1 負光阻(SU-8)母片製作及PDMS印章製造 31
3.4.2 軟壓法製作PET及Nylon 6,6柱狀結構表面 32
3.4.3 PEO-PDMS柱狀結構樣品置備 37
3.4.4 軟壓法製備NOA81柱狀結構樣品 37
3.4.5 以接枝聚合聚丙烯酸修飾PDMS之樣品(AA-g-PDMS)置備 37
3.4.6 埋針法接觸角測量系統及前進後退角測量 41
3.4.7 濕潤行為觀察 41
第四章 結果與討論 45
4.1 液滴在PET、nylon 6,6表面的濕潤行為 50
4.1.1 液滴在PET表面的濕潤行為觀察 50
4.1.2 埋針法及揮發法觀察PET結構表面的前進角、後退角 50
4.2 液滴在nylon 6,6表面的濕潤行為 58
4.2.1 液滴在nylon 6,6表面的濕潤行為觀察 58
4.2.2 埋針法及揮發法觀察nylon 6,6結構表面的前進角、後退角 58
4.3 液滴在PEOPDMS表面的濕潤行為 65
4.4 液滴在NOA81表面的濕潤行為 68
4.4.1 固化30分鐘、185/25奈米汞燈臭氧紫外光源照射的NOA81表面
68
4.4.2 固化40秒、185/254 nm汞燈臭氧紫外光源照射10分鐘的NOA81表面 69
4.4.3 固化30分鐘、工研院172 nm氙氣臭氧紫外光源照射10分鐘NOA81表面 70
4.5 綜合討論 85
4.6 液滴在接枝丙烯酸PDMS(AA-g-PDMS)表面上的濕潤現象 94
第五章 結論 111
參考文獻 115
(1) Berg, J. M.; Eriksson, L. T.; Claesson, P. M.; Borve, K. G. N., Three-component Langmuir-Blodgett films with a controllable degree of polarity. Langmuir 1994, 10, 1225-1234.
(2) Yoon, R.-H.; Flinn, D. H.; Rabinovich, Y. I., Hydrophobic Interactions between Dissimilar Surfaces. Journal of Colloid and Interface Science 1997, 185, 363-370.
(3) Vogler, E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 1998, 74, 69-117.
(4) Busscher, H.; Van Pelt, A.; De Boer, P.; De Jong, H.; Arends, J., The effect of surface roughening of polymers on measured contact angles of liquids. Colloids and Surfaces 1984, 9, 319-331.
(5) Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K., Super-water-repellent fractal surfaces. Langmuir 1996, 12, 2125-2127.
(6) Shibuichi, S.; Onda, T.; Satoh, N.; Tsujii, K., Super water-repellent surfaces resulting from fractal structure. The Journal of Physical Chemistry 1996, 100, 19512-19517.
(7) Guo, C. W.; Wang, S. T.; Liu, H.; Feng, L.; Song, Y. L.; Jiang, L., Wettability alteration of polymer surfaces produced by scraping. J Adhes Sci Technol 2008, 22, 395-402.
(8) Law, K. Y., Water-surface interactions and definitions for hydrophilicity, hydrophobicity and superhydrophobicity. Pure Appl. Chem. 2015, 87, 759-765.
(9) Ruiz-Cabello, F. J. M.; Rodríguez-Valverde, M. A.; Cabrerizo-Vílchez, M. A., Equilibrium contact angle or the most-stable contact angle? Advances in Colloid and Interface Science 2014, 206, 320-327.
(10) Young, T., An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 1805, 95, 65-87.
(11) Cassie, A.; Baxter, S., Wettability of porous surfaces. Transactions of the Faraday society 1944, 40, 546-551.
(12) Marmur, A., Contact Angle Hysteresis on Heterogeneous Smooth Surfaces. Journal of Colloid and Interface Science 1994, 168, 40-46.
(13) Marmur, A., Equilibrium contact angles: theory and measurement. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 116, 55-61.
(14) Marmur, A., Contact-angle hysteresis on heterogeneous smooth surfaces: theoretical comparison of the captive bubble and drop methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998, 136, 209-215.
(15) Marmur, A., Thermodynamic aspects of contact angle hysteresis. Advances in Colloid and Interface Science 1994, 50, 121-141.
(16) Promraksa, A.; Chuang, Y. C.; Chen, L. J., Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. Journal of Colloid and Interface Science 2014, 418, 8-19.
(17) Zhang, H.; Li, W.; Fang, G., A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces. Applied Surface Science 2012, 258, 2707-2716.
(18) Nietz, A. H., Molecular orientation at surfaces of solids I. Measurement of contact angle and the work of adhesion of organic substances for water. Journal of physical chemistry 1928, 32, 255-269.
(19) Johnson, R. E.; Dettre, R. H., Contact Angle Hysteresis. In Contact Angle, Wettability, and Adhesion, AMERICAN CHEMICAL SOCIETY: 1964; Chapter 7, pp 112-135.
(20) Dorrer, C.; Ruhe, J., Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel''s model and beyond. Langmuir 2008, 24, 1959-1964.
(21) Verplanck, N.; Coffinier, Y.; Thomy, V.; Boukherroub, R., Wettability Switching Techniques on Superhydrophobic Surfaces. Nanoscale Research Letters 2007, 2, 577.
(22) Gao, L.; McCarthy, T. J., Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization. Langmuir 2008, 24, 9183-9188.
(23) Law, K. Y., Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014, 5, 686-688.
(24) Samuel, B.; Zhao, H.; Law, K.-Y., Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces. The Journal of Physical Chemistry C 2011, 115, 14852-14861.
(25) Drelich, J.; Chibowski, E.; Meng, D. D.; Terpilowski, K., Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7, 9804-9828.
(26) Jennissen, H. P., On the origin of the imaginary part of complex contact angles. Materialwissenschaft und Werkstofftechnik 2015, 46, 786-795.
(27) Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.
(28) de Gennes, P. G., Wetting: statics and dynamics. Reviews of Modern Physics 1985, 57, 827-863.
(29) Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y., The Lowest Surface Free Energy Based on −CF3 Alignment. Langmuir 1999, 15, 4321-4323.
(30) Koch, K.; Bhushan, B.; Barthlott, W., Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 2008, 4, 1943-1963.
(31) Bico, J.; Thiele, U.; Quéré, D., Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 206, 41-46.
(32) Park, C. I.; Jeong, H. E.; Lee, S. H.; Cho, H. S.; Suh, K. Y., Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. Journal of Colloid and Interface Science 2009, 336, 298-303.
(33) Öner, D.; McCarthy, T. J., Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 2000, 16, 7777-7782.
(34) Courbin, L.; Denieul, E.; Dressaire, E.; Roper, M.; Ajdari, A.; Stone, H. A., Imbibition by polygonal spreading on microdecorated surfaces. Nat Mater 2007, 6, 661-664.
(35) Fadeev, A. Y.; McCarthy, T. J., Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 1999, 15, 3759-3766.
(36) Bain, C. D.; Whitesides, G. M., A study by contact angle of the acid-base behavior of monolayers containing. omega.-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading. Langmuir 1989, 5, 1370-1378.
(37) Sugimura, H.; Hozumi, A.; Kameyama, T.; Takai, O., Organosilane self-assembled monolayers formed at the vapour/solid interface. Surface and Interface Analysis 2002, 34, 550-554.
(38) Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. Academic press: 2013.
(39) Ejaz, M.; Yamamoto, S.; Ohno, K.; Tsujii, Y.; Fukuda, T., Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the langmuir− blodgett and atom transfer radical polymerization techniques. Macromolecules 1998, 31, 5934-5936.
(40) Kumar, N.; Ravikumar, M. N. V.; Domb, A. J., Biodegradable block copolymers. Advanced Drug Delivery Reviews 2001, 53, 23-44.
(41) Park, K.; Shim, H. S.; Dewanjee, M. K.; Eigler, N. L., In vitro and in vivo studies of PEO-grafted blood-contacting cardiovascular prostheses. Journal of Biomaterials Science, Polymer Edition 2000, 11, 1121-1134.
(42) Elbert, D. L.; Hubbell, J. A., Surface treatments of polymers for biocompatibility. Annual Review of Materials Science 1996, 26, 365-394.
(43) Patrito, N.; McCague, C.; Chiang, S.; Norton, P. R.; Petersen, N. O., Photolithographically patterned surface modification of poly (dimethylsiloxane) via UV-initiated graft polymerization of acrylates. Langmuir 2006, 22, 3453-3455.
(44) Hu, S.; Ren, X.; Bachman, M.; Sims, C. E.; Li, G.; Allbritton, N., Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical chemistry 2002, 74, 4117-4123.
(45) Schneider, M. H.; Willaime, H.; Tran, Y.; Rezgui, F.; Tabeling, P., Wettability patterning by UV-initiated graft polymerization of poly (acrylic acid) in closed microfluidic systems of complex geometry. Analytical chemistry 2010, 82, 8848-8855.
(46) O''Hare, L.-A.; Leadley, S.; Parbhoo, B., Surface physicochemistry of corona-discharge-treated polypropylene film. Surface and Interface Analysis 2002, 33, 335-342.
(47) Strobel, M.; Jones, V.; Lyons, C. S.; Ulsh, M.; Kushner, M. J.; Dorai, R.; Branch, M. C., A Comparison of Corona-Treated and Flame-Treated Polypropylene Films. Plasmas and Polymers 2003, 8, 61-95.
(48) Farris, S.; Pozzoli, S.; Biagioni, P.; Duó, L.; Mancinelli, S.; Piergiovanni, L., The fundamentals of flame treatment for the surface activation of polyolefin polymers – A review. Polymer 2010, 51, 3591-3605.
(49) Efimenko, K.; Wallace, W. E.; Genzer, J., Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment. Journal of Colloid and Interface Science 2002, 254, 306-315.
(50) Waddell, E. A.; Shreeves, S.; Carrell, H.; Perry, C.; Reid, B. A.; McKee, J., Surface modification of Sylgard 184 polydimethylsiloxane by 254nm excimer radiation and characterization by contact angle goniometry, infrared spectroscopy, atomic force and scanning electron microscopy. Applied Surface Science 2008, 254, 5314-5318.
(51) Shyichuk, A. V.; White, J. R.; Craig, I. H.; Syrotynska, I. D., Comparison of UV-degradation depth-profiles in polyethylene, polypropylene and an ethylene–propylene copolymer. Polymer Degradation and Stability 2005, 88, 415-419.
(52) Hozumi, A.; Shirahata, N.; Nakanishi, Y.; Asakura, S.; Fuwa, A., Wettability control of a polymer surface through 126 nm vacuum ultraviolet light irradiation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2004, 22, 1309-1314.
(53) Abate, A. R.; Thiele, J.; Weinhart, M.; Weitz, D. A., Patterning microfluidic device wettability using flow confinement. Lab on a Chip 2010, 10, 1774-1776.
(54) Wang, L.; Sun, B.; Ziemer, K. S.; Barabino, G. A.; Carrier, R. L., Chemical and physical modifications to poly (dimethylsiloxane) surfaces affect adhesion of Caco‐2 cells. Journal of biomedical materials research Part A 2010, 93, 1260-1271.
(55) Hong, S. M.; Kim, S. H.; Kim, J. H.; Hwang, H. I. In Hydrophilic surface modification of PDMS using atmospheric RF plasma, Journal of physics: conference series, IOP Publishing: 2006; p 656.
(56) Dhruv, H. D., Controlling nonspecific adsorption of proteins at bio-interfaces for biosensor and biomedical applications. Utah State University: 2009.
(57) Yu, K.; Han, Y. C., A stable PEO-tethered PDMS surface having controllable wetting property by a swelling-deswelling process. Soft Matter 2006, 2, 705-709.
(58) Yao, M.; Fang, J., Hydrophilic PEO-PDMS for microfluidic applications. Journal of Micromechanics and Microengineering 2012, 22, 025012.
(59) Bartolo, D.; Degré, G.; Nghe, P.; Studer, V., Microfluidic stickers. Lab on a Chip 2008, 8, 274-279.
(60) Sollier, E.; Murray, C.; Maoddi, P.; Di Carlo, D., Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip 2011, 11, 3752-3765.
(61) Levaché, B.; Azioune, A.; Bourrel, M.; Studer, V.; Bartolo, D., Engineering the surface properties of microfluidic stickers. Lab on a Chip 2012, 12, 3028-3031.
(62) Uchida, E.; Uyama, Y.; Ikada, Y., A novel method for graft polymerization onto poly(ethylene terephthalate) film surface by UV irradiation without degassing. Journal of Applied Polymer Science 1990, 41, 677-687.
(63) Uchida, E.; Uyama, Y.; Ikada, Y., Surface graft polymerization of acrylamide onto poly(ethylene terephthalate) film by UV irradiation. Journal of Polymer Science Part A: Polymer Chemistry 1989, 27, 527-537.
(64) Uchida, E.; Uyama, Y.; Ikada, Y., Surface graft polymerization of ionic monomers onto poly(ethylene terephthalate) by UV-irradiation without degassing. Journal of Applied Polymer Science 1993, 47, 417-424.
(65) Uyama, Y.; Tadokoro, H.; Ikada, Y., Surface lubrication of polymer films by photoinduced graft polymerization. Journal of Applied Polymer Science 1990, 39, 489-498.
(66) Richey, T.; Iwata, H.; Oowaki, H.; Uchida, E.; Matsuda, S.; Ikada, Y., Surface modification of polyethylene balloon catheters for local drug delivery. Biomaterials 2000, 21, 1057-1065.
(67) Wang, Y.; Lai, H.-H.; Bachman, M.; Sims, C. E.; Li, G.; Allbritton, N. L., Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask. Analytical chemistry 2005, 77, 7539-7546.
(68) Schneider, M. H.; Tran, Y.; Tabeling, P., Benzophenone absorption and diffusion in poly (dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir 2011, 27, 1232-1240.
(69) Forsberg, P. S.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J., Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 2009, 26, 860-865.
(70) 楊詠茹; Yang, Y.-J. 利用數值方法模擬親疏水表面接觸角之研究
Modeling the Wetting Behavior of Heterogeneous Patterned Surface by Numerical Method.
(71) Dorrer, C.; Rühe, J., Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel''s model and beyond. Langmuir 2008, 24, 1959-1964
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊