跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳姵雯
研究生(外文):Pei-Wen Chen
論文名稱:銀奈米顆粒與銀線之製備及銀懸浮液及其透明導電薄膜之開發
論文名稱(外文):Fabrication of Silver Suspension and Transparent Conductive Thin Film Based on Silver Nanowire/Nanoparticle
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:140
中文關鍵詞:奈米銀線奈米銀顆粒多元醇方法靜電紡絲法導電薄膜滴降式塗佈噴霧式塗佈旋轉塗佈
外文關鍵詞:silver nanowiresilver nanoparticlepolyol processelectrospinningconductive thin filmdrop castingspray coatingspin coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米銀線或銀顆粒具有良好的導電性、導熱性以及光學性質,其分散液製備之導電薄膜可被廣泛應用於先進電子產品或是噴墨列印之領域上。本研究乃開發出兩種系統以製備透明導電薄膜,一種是水相奈米銀線穩定懸浮液,利用化學合成法、多元醇方式合成高產量且高轉化率的奈米銀線,將奈米銀線分散於添加微量的分散劑中形成穩定的奈米銀線懸浮液中;其二為係利用單軸靜電紡絲所製備奈米銀顆粒,並在未額外添加分散劑下即製備出水相奈米銀顆粒穩定懸浮液,並藉由上述分散液製備具有良好透明性之導電薄膜。
本研究第一部分為合成奈米銀線和奈米銀顆粒,其一利用多元醇方法合成出高產率之奈米銀線,並探討合成奈米銀線之變因—成核溫度、成長(最終合成)溫度、聚乙烯吡咯烷酮(PVP)與硝酸銀之莫耳比、硝酸銀之注射速率以及氯化鈉和溴化鉀之濃度。藉由調整上述之合成參數,以掃描式電子顯微鏡觀察銀之表面形態,並探討出銀之相關形貌之機制模擬。結果顯示成功合成出大量長徑比大於300之奈米銀線,其中直徑約40 nm、長為12-15 μm;其二利用單軸靜電紡絲法製備銀電紡纖維,再透過預退火處理並回溶於水,則形成直徑約60奈米的銀顆粒懸浮液。
傳統上,由於銀之密度太大,使得奈米銀線仍然難以懸浮於有機/無機溶劑中。分散劑的挑選在奈米銀線懸浮上為極重要的因素之一。本文第二部分,係開發一創新且簡單之配方製備出高分子分散劑/奈米銀線之穩定水相懸浮液,藉由添加微量高分子型的分散劑聚乙烯亞胺(PEI)或聚乙烯吡咯烷酮(PVP)或是BYK型號410分散劑與奈米銀線之作用力以懸浮具高密度的奈米銀線,將其穩定地均勻懸浮於水相中。此外,在不同的pH值與界面電位的變化下的高分子分散奈米銀線之懸浮行為,發現分散劑的高分子鏈段的伸展收縮結構明顯受pH值影響,因而影響奈米銀線的懸浮行為。
本研究第三個部分,係開發一簡易且實用之方式製備可撓性高分子/奈米銀線導電薄膜或是高分子分散劑/奈米銀顆粒導電薄膜。在奈米銀線方面,藉由添加分散劑及高分子乳膠,並利用磁石攪拌將奈米銀線均勻分散於水相中,再透過兩種不同的製膜方式(滴降式塗佈及噴霧式塗佈)以製備出導電薄膜。在奈米銀顆粒方面,因水性懸浮液中已存在分散劑,直接利用旋轉塗佈製備出透明導電薄膜。除此之外,也藉由調整噴霧式塗佈製膜參數(加熱溫度、噴霧次數及奈米銀線懸浮液濃度)以及旋轉塗佈製膜參數(旋轉速率及旋轉時間)改變導電薄膜厚度與奈米銀線/銀顆粒構成之網狀結構,來提升導電薄膜之透明度。上述方法提供一簡易、實際且有效率的製程,用於製備具良好導電性及高透明度之導電薄膜,並展現其可應用於電子元件的發展或是噴墨列印領域之潛力。
Silver nanowires and silver nanoparticles have received considerable attention due to their electrical, optimal and thermal properties used in various applications such as conductive thin film since bulk silver (Ag) has the highest thermal and electrical conductivity among all metals. Two methods were developed in this research to fabricate transparent conductive thin films from stable silver-nanowire or silver-nanoparticle suspensions. Chemical method was applied to synthesize silver nanowires; whereas electrospinning method was used to prepare silver nanoparticles.
Three divided sections were contained in this thesis. In the first section, we demonstrated a parametric study on self-seeding polyol synthesis of optimal Ag nanowires. The effects of synthesizing temperature, molar ratio of poly(vinylpyrrolidone) (PVP) to silver nitrate, injecting rate of silver nitrate, concentrations of sodium chloride and potassium bromide, and stirring rate on the morphology of Ag nanostructures were examined. The morphologies of nanostructures and aspect ratio on synthesis parameters were shown via scanning electron microscopy (SEM) images. Ag nanowires were optimally synthesized by polyol process with a high aspect ratio of over than 300, where the average diameter and length were 40 nm and 12-15 μm, respectively. In terms of silver nanoparticle, single-jet electrospinning nethod was used to fabricate silver electrospun fibers, and the fibers were pre-annealed, and these fibers were re-disperded in water to form the stable silver nanoparticle suspension with the assistance of PVP from fibers.
Traditionally, Ag nanowires were hardly suspended in polar or nonpolar solvents owing to their high density. In the second section, some innovative and facile formulas were proposed to prepare the water-based stable Ag nanowire suspensions with the addition of dispersive agent such as polyethylenimine (PEI), poly(vinylpyrrolidone) (PVP) and BYK-410 as suspending agent. When adding a little amount of polymers, polymer served as dispersion that associated with Ag nanowire, thus changing the interaction between Ag nanowires. We also examined the effect of pH values and zeta potential on the suspended behaviors of the polymer-bound Ag nanowire in aqueous solutions.
The last section, a practical and general approach is described to fabricate the conductive thin films. Ag nanowires were dispersed stably in aqueous phase by the addition of dispersive agent under homogenization and Ag nanoparticles were dispersed in water phase then followed by three distinct processes including drop casting, spray coating and spin coating. Through the above-mentioned methods, good electrical and optical properties of prepared polymer-bound Ag nanowires/nanoparticles conductive thin films were performed. The proposed method provided a simple and practical approach for the fabrication of the conductive thin films with excellent transparency and showed the significant potential to apply in electronic fields generally.
Abstract I
中文摘要 IV
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 簡介 1
1.1 前言 1
1.2 研究動機與目標 2
第二章 原理及文獻回顧 3
2.1 透明電極材料之簡介 3
2.2 奈米銀線之簡介 8
2.2.1 奈米銀線之合成 8
2.2.2 薄膜中奈米銀線網絡之製備 14
2.2.3 奈米銀線薄膜之特性 15
2.2.4 奈米銀線薄膜之應用 17
2.3 靜電紡絲技術 19
2.3.1 靜電紡絲歷史發展 19
2.3.2 靜電紡絲原理 20
2.3.3 靜電紡絲參數 21
2.3.4 靜電紡絲應用 28
2.4 膠體穩定機制 29
第三章 研究方法 33
3.1 實驗藥品 33
3.2 實驗儀器 38
3.3 實驗步驟 41
3.3.1 奈米銀線及奈米銀顆粒之製備 41
3.3.2 奈米銀線懸浮液之製備 48
3.3.3 奈米銀顆粒懸浮液之製備 50
3.3.4 製備透明導電薄膜於奈米銀線系統 50
3.3.5 製備透明導電薄膜於奈米銀顆粒系統 52
3.4 材料鑑定與分析 54
3.4.1奈米銀線、奈米銀纖維及奈米銀纖維表面形態觀察 54
3.4.2 X光能量分散光譜儀之元素分析 54
3.4.3 X光繞射儀分析金屬晶體結構 55
3.4.4奈米銀線及銀顆粒之穩定懸浮測試 55
3.4.5霍氏轉換紅外線光譜儀(Fourier-Transform Infrared Spectrometer, FTIR)定性分析 55
3.4.6 熱裂解溫度與金屬含量檢測 56
3.4.7 界面電位分析 56
3.4.8 導電薄膜片電阻之量測 57
3.4.9 薄膜厚度之測定 58
3.4.10 薄膜穿透率之測定 58
3.4.11 薄膜潤濕性之測定 58
第四章 結果與討論 59
4.1 高產率奈米銀線之合成 59
4.1.1 最適化奈米銀線之形貌 59
4.1.2 奈米銀線成長機制 64
4.1.3 奈米銀線合成參數之研究 77
4.1.4 奈米銀線組成分析 95
4.2 奈米銀線懸浮液之分散性 98
4.2.1 添加聚乙烯亞胺(PEI)奈米銀線懸浮液之懸浮性結果 98
4.2.2 添加聚乙烯吡咯烷酮(PVP)奈米銀線懸浮液之懸浮性結果 100
4.2.3 添加市售分散劑(BYK-410)奈米銀線懸浮液之懸浮性結果 101
4.3 奈米銀線導電薄膜之開發 103
4.3.1 PEI結合奈米銀線之導電薄膜 104
4.3.2 PVP結合奈米銀線之導電薄膜 105
4.3.3 BYK結合奈米銀線之導電薄膜 106
4.3.4 BYK結合奈米銀線之可撓式透明導電薄膜 111
4.4利用單軸電紡製備奈米銀棒/顆粒 118
4.4.1 奈米纖維之形態 118
4.4.2 奈米銀棒/顆粒之鑑定 121
4.4.3 奈米銀棒/顆粒懸浮液之分散性 125
4.4.4 奈米銀顆粒之透明導電薄膜 126
第五章 結論 129
參考文獻 131
1.Langley, D., et al., Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology, 2013. 24(45): p. 452001.
2.Kumar, A. and C. Zhou, The race to replace tin-doped indium oxide: which material will win? ACS nano, 2010. 4(1): p. 11-14.
3.Blake, P., et al., Graphene-based liquid crystal device. arXiv preprint arXiv:0803.3031, 2008.
4.Reina, A., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 2008. 9(1): p. 30-35.
5.Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology, 2008. 3(5): p. 270-274.
6.Kim, U., et al., A transparent and stretchable graphene-based actuator for tactile display. Nanotechnology, 2013. 24(14): p. 145501.
7.Barnes, T.M., et al., Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Advanced Energy Materials, 2012. 2(3): p. 353-360.
8.Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 2010. 5(8): p. 574-578.
9.Hu, L., et al., Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS nano, 2010. 4(5): p. 2955-2963.
10.Bandaru, P.R., Electrical properties and applications of carbon nanotube structures. Journal of nanoscience and nanotechnology, 2007. 7(4-1): p. 1239-1267.
11.Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific american, 2000. 283(6): p. 62-69.
12.Rowell, M.W., et al., Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters, 2006. 88(23): p. 233506.
13.Lim, T.H., K.W. Oh, and S.H. Kim, Self-assembly supramolecules to enhance electrical conductivity of polyaniline for a flexible organic solar cells anode. Solar Energy Materials and Solar Cells, 2012. 101: p. 232-240.
14.Aronggaowa, B., et al., Transparent conductive films fabricated from polythiophene nanofibers composited with conventional polymers. Polymers, 2013. 5(4): p. 1325-1338.
15.Elschner, A. and W. Lövenich, Solution-deposited PEDOT for transparent conductive applications. MRS bulletin, 2011. 36(10): p. 794-798.
16.Wang, P.-C., et al., Transparent electrodes based on conducting polymers for display applications. Displays, 2013. 34(4): p. 301-314.
17.Rathmell, A.R., et al., The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced materials, 2010. 22(32): p. 3558-3563.
18.Guo, H., et al., Copper nanowires as fully transparent conductive electrodes. Scientific reports, 2013. 3: p. 2323.
19.Nam, V.B. and D. Lee, Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review. Nanomaterials, 2016. 6(3): p. 47.
20.Lee, M.-S., et al., High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano letters, 2013. 13(6): p. 2814-2821.
21.Mayousse, C., et al., Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS. Nano Research, 2014. 7(3): p. 315.
22.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
23.Fievet, F., J. Lagier, and M. Figlarz, Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. Mrs Bulletin, 1989. 14(12): p. 29-34.
24.Sun, Y. and Y. Xia, Large‐Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self‐Seeding, Polyol Process. Advanced Materials, 2002. 14(11): p. 833-837.
25.Yunus, M., E. Suharyadi, and K. Triyana, Effect of Stirring rate on The Synthesis Silver Nanowires using Polyvinyl Alcohol as A Capping Agent by Polyol Process. International Journal on Advanced Science, Engineering and Information Technology, 2016. 6(3): p. 365-369.
26.Song, J., et al., Direct electrospinning of Ag/polyvinylpyrrolidone nanocables. Nanoscale, 2011. 3(12): p. 4966-4971.
27.Chen, C., et al., Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology, 2006. 17(15): p. 3933.
28.Tang, X. and M. Tsuji, Syntheses of silver nanowires in liquid phase. 2010: INTECH Open Access Publisher.
29.Korte, K.E., S.E. Skrabalak, and Y. Xia, Rapid synthesis of silver nanowires through a CuCl-or CuCl 2-mediated polyol process. Journal of Materials Chemistry, 2008. 18(4): p. 437-441.
30.Johan, M.R., et al., Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl 2 and NaCl) polyol process. Journal of Nanomaterials, 2014. 2014: p. 54.
31.Lai, X., et al., Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires. Journal of nanoparticle research, 2014. 16(3): p. 2272.
32.Coskun, S., B. Aksoy, and H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Crystal Growth & Design, 2011. 11(11): p. 4963-4969.
33.Sun, Y., et al., Crystalline silver nanowires by soft solution processing. Nano letters, 2002. 2(2): p. 165-168.
34.Sun, Y., et al., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials, 2002. 14(11): p. 4736-4745.
35.Tsuji, M., et al., Crystal structures and growth mechanisms of Au@ Ag core− shell nanoparticles prepared by the microwave− polyol method. Crystal growth & design, 2006. 6(8): p. 1801-1807.
36.Caswell, K., C.M. Bender, and C.J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters, 2003. 3(5): p. 667-669.
37.Hu, J.Q., et al., A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials, 2004. 14(2): p. 183-189.
38.Chen, C., et al., Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films. RSC Advances, 2017. 7(4): p. 1936-1942.
39.Menamparambath, M.M., et al., Silver nanowires decorated with silver nanoparticles for low-haze flexible transparent conductive films. Scientific reports, 2015. 5.
40.Li, B., et al., Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano letters, 2015. 15(10): p. 6722-6726.
41.Liu, C.-H. and X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale research letters, 2011. 6(1): p. 75.
42.Lee, J.-Y., et al., Solution-processed metal nanowire mesh transparent electrodes. Nano letters, 2008. 8(2): p. 689-692.
43.Lee, J.-Y., et al., Semitransparent organic photovoltaic cells with laminated top electrode. Nano letters, 2010. 10(4): p. 1276-1279.
44.Hardin, B.E., et al., Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells. Organic Electronics, 2011. 12(6): p. 875-879.
45.Ding, H., et al., Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films. RSC Advances, 2016. 6(10): p. 8096-8102.
46.Chung, C.-H., et al., Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices. Nano Research, 2012. 5(11): p. 805-814.
47.Leem, D.S., et al., Efficient organic solar cells with solution‐processed silver nanowire electrodes. Advanced Materials, 2011. 23(38): p. 4371-4375.
48.Chang, Y.-H., Y.-C. Lu, and K.-S. Chou, Diameter control of silver nanowires by chloride ions and its application as transparent conductive coating. Chemistry Letters, 2011. 40(12): p. 1352-1353.
49.Tenent, R.C., et al., Ultrasmooth, Large‐Area, High‐Uniformity, Conductive Transparent Single‐Walled‐Carbon‐Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying. Advanced materials, 2009. 21(31): p. 3210-3216.
50.Lu, Y. and K. Chou, Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology, 2010. 21(21): p. 215707.
51.Scardaci, V., et al., Spray deposition of highly transparent, low‐resistance networks of silver nanowires over large areas. Small, 2011. 7(18): p. 2621-2628.
52.Kim, T., et al., Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS applied materials & interfaces, 2013. 5(3): p. 788-794.
53.De, S., et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS nano, 2009. 3(7): p. 1767-1774.
54.Serway, R.A., Principles of Physics . Fort Worth, Texas; London: Saunders College Pub. 1998, ISBN 0-03-020457-7.
55.Kang, M.G. and L.J. Guo, Nanoimprinted semitransparent metal electrodes and their application in organic light‐emitting diodes. Advanced Materials, 2007. 19(10): p. 1391-1396.
56.Mutiso, R.M., et al., Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. ACS nano, 2013. 7(9): p. 7654-7663.
57.Bergin, S.M., et al., The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 2012. 4(6): p. 1996-2004.
58.Wang, L., M. Kamal, and A. Rey, Light transmission and haze of polyethylene blown thin films. Polymer Engineering & Science, 2001. 41(2): p. 358-372.
59.Chih-Hung, T., et al., Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells. Organic Electronics, 2011. 12(12): p. 2003-2011.
60.Xia, Y., et al., One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 2003. 15(5): p. 353-389.
61.Pham, V.P., et al., Cyclic chlorine trap-doping for transparent, conductive, thermally stable and damage-free graphene. Nanoscale, 2014. 6(24): p. 15301-15308.
62.Morgenstern, F.S., et al., Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Applied Physics Letters, 2011. 99(18): p. 242.
63.Lim, J.-W., et al., Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells. Solar Energy Materials and Solar Cells, 2012. 105: p. 69-76.
64.Gaynor, W., J.-Y. Lee, and P. Peumans, Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS nano, 2009. 4(1): p. 30-34.
65.Celle, C., et al., Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, 2012. 5(6): p. 427-433.
66.Kim, T., et al., Uniformly interconnected silver‐nanowire networks for transparent film heaters. Advanced Functional Materials, 2013. 23(10): p. 1250-1255.
67.Simonato, J.-P., et al. Transparent film heaters based on silver nanowire random networks. in MRS Proceedings. 2012. Cambridge Univ Press.
68.Yu, Z., et al., Highly flexible silver nanowire electrodes for shape‐memory polymer light‐emitting diodes. Advanced Materials, 2011. 23(5): p. 664-668.
69.Li, L., et al., Efficient Flexible Phosphorescent Polymer Light‐Emitting Diodes Based on Silver Nanowire‐Polymer Composite Electrode. Advanced Materials, 2011. 23(46): p. 5563-5567.
70.Coskun, S., E.S. Ates, and H.E. Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology, 2013. 24(12): p. 125202.
71.Lee, J., et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 2012. 4(20): p. 6408-6414.
72.Madaria, A.R., A. Kumar, and C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 2011. 22(24): p. 245201.
73.Mayousse, C., et al., Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology, 2013. 24(21): p. 215501.
74.Hu, W., et al., Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Applied Physics Letters, 2013. 102(8): p. 38.
75.Rayleigh, L., XX. On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1882. 14(87): p. 184-186.
76.Cooley, J.F., Apparatus for electrically dispersing fluids. 1902, Google Patents.
77.Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69.
78.Kiyohiko, H., Process for manufacturing artificial silk and other filaments by applying electric current. 1929, Google Patents.
79.Anton, F., Process and apparatus for preparing artificial threads. 1934, Google Patents.
80.Taylor, G. Disintegration of water drops in an electric field. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1964. The Royal Society.
81.Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996. 7(3): p. 216.
82.Athira, K., P. Sanpui, and K. Chatterjee, Fabrication of Poly (Caprolactone) Nanofibers by Electrospinning. Journal of Polymer and Biopolymer Physics Chemistry, 2014. 2(4): p. 62-66.
83.Lin, J., B. Ding, and J. Yu, Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS applied materials & interfaces, 2010. 2(2): p. 521-528.
84.Fong, H., I. Chun, and D. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592.
85.Baumgarten, P.K., Electrostatic spinning of acrylic microfibers. Journal of colloid and interface science, 1971. 36(1): p. 71-79.
86.Kim, C., et al., Self‐Sustained Thin Webs Consisting of Porous Carbon Nanofibers for Supercapacitors via the Electrospinning of Polyacrylonitrile Solutions Containing Zinc Chloride. Advanced materials, 2007. 19(17): p. 2341-2346.
87.Katti, D.S., et al., Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004. 70(2): p. 286-296.
88.Deitzel, J.M., et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42(1): p. 261-272.
89.Lee, J.S., et al., Role of molecular weight of atactic poly (vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 2004. 93(4): p. 1638-1646.
90.Yuan, X., et al., Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004. 53(11): p. 1704-1710.
91.Megelski, S., et al., Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 2002. 35(22): p. 8456-8466.
92.Casper, C.L., et al., Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 2004. 37(2): p. 573-578.
93.Wang, C., et al., Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules, 2007. 40(22): p. 7973-7983.
94.Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
95.Christian, P., et al., Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008. 17(5): p. 326-343.
96.Napper, D.H., Colloid stability. Industrial & Engineering Chemistry Product Research and Development, 1970. 9(4): p. 467-477.
97.Hamaker, H., The London—van der Waals attraction between spherical particles. physica, 1937. 4(10): p. 1058-1072.
98.Verwey, E.J.W., J.T.G. Overbeek, and J.T.G. Overbeek, Theory of the stability of lyophobic colloids. 1999: Courier Corporation.
99.Visser, J., On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Advances in colloid and interface science, 1972. 3(4): p. 331-363.
100.Derjaguin, B., Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR, 1941. 14: p. 633-662.
101.Speight, J.G., Lange''s handbook of chemistry. Vol. 1. 2005: McGraw-Hill New York.
102.Xia, X., et al., Recent developments in shape-controlled synthesis of silver nanocrystals. The Journal of Physical Chemistry C, 2012. 116(41): p. 21647-21656.
103.LuisaáForesti, M., Bromide electrosorption on the low-index faces of silver. Journal of the Chemical Society, Faraday Transactions, 1996. 92(20): p. 3747-3756.
104.Sun, Y., et al., Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano letters, 2003. 3(7): p. 955-960.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊