1.N. S. J. Braithwaite, "Introduction to gas discharges," Plasma Sources Science and Technology, 9 (4), 517 (2000).
2.D. Pappas, "Status and potential of atmospheric plasma processing of materials," J. Vac. Sci. Technol. A, 29 (2), 17 (2011).
3.C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B-Atomic Spectroscopy, 61 (1), 2-30 (2006).
4.D. Mariotti and R. M. Sankaran, "Microplasmas for nanomaterials synthesis," Journal of Physics D-Applied Physics, 43 (32), 21 (2010).
5.K. Tachibana, "Current status of microplasma research," IEEJ Trans. Electr. Electron. Eng., 1 (2), 145-155 (2006).
6.L. L. Lin and Q. Wang, "Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis," Plasma Chem. Plasma Process., 35 (6), 925-962 (2015).
7.K. H. Becker, K. H. Schoenbach and J. G. Eden, "Microplasmas and applications," Journal of Physics D-Applied Physics, 39 (3), R55-R70 (2006).
8.F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang and M. G. Kong, "Microplasmas: Sources, particle kinetics, and biomedical applications," Plasma Process. Polym., 5 (4), 322-344 (2008).
9.S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki and N. Mason, "The 2012 Plasma Roadmap," Journal of Physics D-Applied Physics, 45 (25)(2012).
10.D. Mariotti, "Nonequilibrium and effect of gas mixtures in an atmospheric microplasma," Applied Physics Letters, 92 (15), 151505 (2008).
11.D. Staack, B. Farouk, A. Gutsol and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge," Plasma Sources Science and Technology, 14 (4), 700 (2005).
12.A. Bogaerts, E. Neyts, R. Gijbels and J. van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B-Atomic Spectroscopy, 57 (4), 609-658 (2002).
13.P. Bruggeman and C. Leys, "Non-thermal plasmas in and in contact with liquids," Journal of Physics D-Applied Physics, 42 (5)(2009).
14.J. Kędzierski, J. Engemann, M. Teschke and D. Korzec, presented at the Solid State Phenomena, 2005 (unpublished).
15.N. Jiang, A. Ji and Z. Cao, "Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism," Journal of Applied Physics, 106 (1), 013308 (2009).
16.K. H. Schoenbach and K. Becker, "20 years of microplasma research: a status report," Eur. Phys. J. D, 70 (2), 22 (2016).
17.Z. Cao, J. L. Walsh and M. G. Kong, "Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment," Applied Physics Letters, 94 (2), 021501 (2009).
18.B. Vojak, S.-J. Park, C. Wagner, J. Eden, R. Koripella, J. Burdon, F. Zenhausern and D. Wilcox, "Multistage, monolithic ceramic microdischarge device having an active length of∼ 0.27 mm," Applied Physics Letters, 78 (10), 1340-1342 (2001).
19.K. H. Schoenbach, A. El-Habachi, W. Shi and M. Ciocca, "High-pressure hollow cathode discharges," Plasma Sources Science and Technology, 6 (4), 468 (1997).
20.R. M. Sankaran, D. Holunga, R. C. Flagan and K. P. Giapis, "Synthesis of Blue Luminescent Si Nanoparticles Using Atmospheric-Pressure Microdischarges," Nano Letters, 5 (3), 537-541 (2005).
21.D. Mariotti, A. C. Bose and K. Ostrikov, "Atmospheric-microplasma-assisted nanofabrication: Metal and metal–oxide nanostructures and nanoarchitectures," IEEE Transactions on Plasma Science, 37 (6), 1027-1033 (2009).
22.F. Kenji, H. Yuko, I. Toshio and H. Akira, "Protective Agent-free Preparation of Gold Nanoplates and Nanorods in Aqueous HAuCl4 Solutions Using Gas–Liquid Interface Discharge," Chemistry Letters, 36 (9), 1088-1089 (2007).
23.K. S. Siow, L. Britcher, S. Kumar and H. J. Griesser, "Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - A review," Plasma Process. Polym., 3 (6-7), 392-418 (2006).
24.Y. J. Yang, M. Y. Tsai, W. C. Liang, H. Y. Chen and C. C. Hsu, "Ultra-Low-Cost and Flexible Paper-Based Microplasma Generation Devices for Maskless Patterning of Poly(ethylene oxide)-like Films," Acs Applied Materials & Interfaces, 6 (15), 12550-12555 (2014).
25.B. Mitra, B. Levey and Y. B. Gianchandani, "Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing," IEEE Transactions on Plasma Science, 36 (4), 1913-1924 (2008).
26.V. Karanassios, "Microplasmas for chemical analysis: analytical tools or research toys?," Spectrochimica Acta Part B-Atomic Spectroscopy, 59 (7), 909-928 (2004).
27.X. Yuan, J. Tang and Y. X. Duan, "Microplasma Technology and Its Applications in Analytical Chemistry," Appl. Spectrosc. Rev., 46 (7), 581-605 (2011).
28.X. Quan, S. Chen, B. Platzer, J. Chen and M. Gfrerer, "Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector," Spectrochimica Acta Part B: Atomic Spectroscopy, 57 (1), 189-199 (2002).
29.J. M. Symonds, A. S. Galhena, F. M. Fernández and T. M. Orlando, "Microplasma Discharge Ionization Source for Ambient Mass Spectrometry," Analytical Chemistry, 82 (2), 621-627 (2010).
30.G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol and A. Brooks, "Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air," Plasma Chem. Plasma Process., 26 (4), 425-442 (2006).
31.K. Becker, A. Koutsospyros, S.-M. Yin, C. Christodoulatos, N. Abramzon, J. Joaquin and G. Brelles-Marino, "Environmental and biological applications of microplasmas," Plasma physics and controlled fusion, 47 (12B), B513 (2005).
32.A. Koutsospyros, S. M. Yin, C. Christodoulatos and K. Becker, "Destruction of hydrocarbons in non-thermal, ambient-pressure, capillary discharge plasmas," Int. J. Mass Spectrom., 233 (1–3), 305-315 (2004).
33.X.-d. Wang and O. S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors (2013–2015)," Analytical Chemistry, (2015).
34.D. James, S. M. Scott, Z. Ali and W. T. O''Hare, "Chemical sensors for electronic nose systems," Microchimica Acta, 149 (1-2), 1-17 (2005).
35.S. J. Patil, A. V. Patil, C. G. Dighavkar, K. S. Thakare, R. Y. Borase, S. J. Nandre, N. G. Deshpande and R. R. Ahire, "Semiconductor metal oxide compounds based gas sensors: A literature review," Front. Mater. Sci., 9 (1), 14-37 (2015).
36.R. Kumar, O. Al-Dossary, G. Kumar and A. Umar, "Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review," Nano-Micro Lett., 7 (2), 97-120 (2015).
37.A. Wei, L. H. Pan and W. Huang, "Recent progress in the ZnO nanostructure-based sensors," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 176 (18), 1409-1421 (2011).
38.E. Comini, "Metal oxide nano-crystals for gas sensing," Analytica Chimica Acta, 568 (1-2), 28-40 (2006).
39.M. E. Franke, T. J. Koplin and U. Simon, "Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?," Small, 2 (1), 36-50 (2006).
40.N. Barsan, D. Koziej and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B-Chemical, 121 (1), 18-35 (2007).
41.N. Yamazoe, G. Sakai and K. Shimanoe, "Oxide Semiconductor Gas Sensors," Catalysis Surveys from Asia, 7 (1), 63-75 (2003).
42.H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sensors and Actuators B-Chemical, 192, 607-627 (2014).
43.A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, "Detection of CO and O2 using tin oxide nanowire sensors," Advanced Materials, 15 (12), 997-1000 (2003).
44.P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song and Y.-T. Yu, "The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases," Sensors and Actuators B: Chemical, 165 (1), 133-142 (2012).
45.A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito and K. Kalantar-zadeh, "Characterization of ZnO nanobelt-based gas sensor for H-2, NO2, and hydrocarbon sensing," Ieee Sensors Journal, 7 (5-6), 919-924 (2007).
46.J. í. Janata, in Principles of Chemical Sensors, Springer US, Boston, MA, 2009, pp. 241-266.
47.Y. Hong, C.-H. Kim, J. Shin, K. Y. Kim, J. S. Kim, C. S. Hwang and J.-H. Lee, "Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate," Sensors and Actuators B: Chemical, 232, 653-659 (2016).
48.P. Feng, F. Shao, Y. Shi and Q. Wan, "Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors," Sensors, 14 (9), 17406-17429 (2014).
49.G. Faglia, C. Baratto, G. Sberveglieri, M. Zha and A. Zappettini, "Adsorption effects of NO 2 at ppm level on visible photoluminescence response of Sn O 2 nanobelts," Applied Physics Letters, 86 (1), 011923 (2005).
50.A. K. Bal, A. Singh and R. K. Bedi, "Electrical and optical ethanol sensitivity of thermally oxidized zinc oxide films," Thin Solid Films, 518 (23), 7107-7112 (2010).
51.U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, 98 (4), 103 (2005).
52.Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," J. Phys.-Condes. Matter, 16 (25), R829-R858 (2004).
53.A. Kolodziejczak-Radzimska and T. Jesionowski, "Zinc Oxide-From Synthesis to Application: A Review," Materials, 7 (4), 2833-2881 (2014).
54.A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on Progress in Physics, 72 (12), 29 (2009).
55.Y. F. Dong, Z. Q. Fang, D. C. Look, D. R. Doutt, G. Cantwell, J. Zhang, J. J. Song and L. J. Brillson, "Defects at oxygen plasma cleaned ZnO polar surfaces," Journal of Applied Physics, 108 (10), 4 (2010).
56.A. Janotti and C. G. Van de Walle, "Oxygen vacancies in ZnO," Applied Physics Letters, 87 (12), 3 (2005).
57.L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO - nanostructures, defects, and devices," Materials Today, 10 (5), 40-48 (2007).
58.C. G. Van de Walle, "Hydrogen as a cause of doping in zinc oxide," Physical Review Letters, 85 (5), 1012-1015 (2000).
59.S. Lee, S. Bang, J. Park, S. Park, W. Jeong and H. Jeon, "The effect of oxygen remote plasma treatment on ZnO TFTs fabricated by atomic layer deposition," physica status solidi (a), 207 (8), 1845-1849 (2010).
60.A. B. Djurisic, A. M. C. Ng and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Prog. Quantum Electron., 34 (4), 191-259 (2010).
61.T. Ive, T. Ben‐Yaacov, A. Murai, H. Asamizu, C. Van de Walle, U. Mishra, S. DenBaars and J. Speck, "Metalorganic chemical vapor deposition of ZnO (0001) thin films on GaN (0001) templates and ZnO (0001) substrates," physica status solidi (c), 5 (9), 3091-3094 (2008).
62.S. Pati, P. Banerji and S. Majumder, "MOCVD grown ZnO thin film gas sensors: Influence of microstructure," Sensors and Actuators A: Physical, 213, 52-58 (2014).
63.J. J. Wu and S. C. Liu, "Low‐Temperature Growth of Well‐Aligned ZnO Nanorods by Chemical Vapor Deposition," Advanced Materials, 14 (3), 215-218 (2002).
64.K. Haga, F. Katahira and H. Watanabe, "Preparation of ZnO films by atmospheric pressure chemical-vapor deposition using zinc acetylacetonate and ozone," Thin solid films, 343, 145-147 (1999).
65.C. M. Hsu, H. C. Li, S. T. Lien, J. Z. Chen, I. C. Cheng and C. C. Hsu, "Deposition of ZnO Thin Films by an Atmospheric Pressure Plasma Jet-Assisted Process: The Selection of Precursors," Ieee Transactions on Plasma Science, 43 (2), 670-674 (2015).
66.Y. Ito, O. Sakai and K. Tachibana, "Study of plasma enhanced chemical vapor deposition of ZnO films by non-thermal plasma jet at atmospheric pressure," Thin Solid Films, 518 (13), 3513-3516 (2010).
67.S. Vallejos, F. Di Maggio, T. Shujah and C. Blackman, "Chemical Vapour Deposition of Gas Sensitive Metal Oxides," Chemosensors, 4 (1), 18 (2016).
68.P. S. Patil, "Versatility of chemical spray pyrolysis technique," Materials Chemistry and Physics, 59 (3), 185-198 (1999).
69.S. Studenikin, N. Golego and M. Cocivera, "Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution," Journal of Applied Physics, 83 (4), 2104-2111 (1998).
70.S. A. Studenikin, N. Golego and M. Cocivera, "Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis," Journal of Applied Physics, 84 (4), 2287-2294 (1998).
71.M. Krunks and E. Mellikov, "Zinc oxide thin films by the spray pyrolysis method," Thin Solid Films, 270 (1-2), 33-36 (1995).
72.F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade and M. Miki-Yoshida, "Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis," Thin Solid Films, 350 (1-2), 192-202 (1999).
73.C. Messaoudi, D. Sayah and M. Abd‐lefdil, "Transparent conducting undoped and indium‐doped zinc oxide films prepared by spray pyrolysis," physica status solidi (a), 151 (1), 93-97 (1995).
74.P. Pushparajah, A. K. Arof and S. Radhakrishna, "Physical properties of spray pyrolysed pure and doped ZnO thin films," Journal of Physics D: Applied Physics, 27 (7), 1518 (1994).
75.J. Hu, T. W. Odom and C. M. Lieber, "Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes," Accounts of Chemical Research, 32 (5), 435-445 (1999).
76.Y. S. Zhang, K. Yu, D. S. Jiang, Z. Q. Zhu, H. R. Geng and L. Q. Luo, "Zinc oxide nanorod and nanowire for humidity sensor," Applied Surface Science, 242 (1-2), 212-217 (2005).
77.J. Elias, R. Tena-Zaera and C. Lévy-Clément, "Electrochemical deposition of ZnO nanowire arrays with tailored dimensions," Journal of Electroanalytical Chemistry, 621 (2), 171-177 (2008).
78.T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wöhrle, K. Funabiki, M. Matsui, H. Miura and H. Yanagi, "Electrodeposition of Inorganic/Organic Hybrid Thin Films," Advanced Functional Materials, 19 (1), 17-43 (2009).
79.J. H. Lee, K. H. Ko and B. O. Park, "Electrical and optical properties of ZnO transparent conducting films by the sol-gel method," J. Cryst. Growth, 247 (1-2), 119-125 (2003).
80.Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, "Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer," Advanced Materials, 23 (14), 1679-1683 (2011).
81.K. Baba, C. Lazzaroni, O. Brinza and M. Nikravech, "Effect of zinc nitrate concentration on structural and optical properties of ZnO thin films deposited by Spray Plasma device," Thin Solid Films, 558, 62-66 (2014).
82.K. Baba, C. Lazzaroni and M. Nikravech, "Growth of ZnO Thin Films by Spray Plasma Technique: Correlation Between Spectroscopic Measurements and Film Properties," Plasma Chem. Plasma Process., 34 (6), 1433-1446 (2014).
83.K. Baba, C. Lazzaroni and M. Nikravech, "ZnO and Al doped ZnO thin films deposited by Spray Plasma: Effect of the growth time and Al doping on microstructural, optical and electrical properties," Thin Solid Films, 595, 129-135 (2015).
84.H.-W. Ra and Y.-H. Im, "Effect of chemically reactive species on properties of ZnO nanowires exposed to oxygen and hydrogen plasma," Nanotechnology, 19 (48), 485710 (2008).
85.D. M. Lee, J. K. Kim, J. C. Hao, H. K. Kim, J. S. Yoon and J. M. Lee, "Effects of annealing and plasma treatment on the electrical and optical properties of spin-coated ITZO films," Journal of Alloys and Compounds, 583, 535-538 (2014).
86.J. H. Bang, H. S. Uhm, W. Kim and J. S. Park, "Effects of additive gases and plasma post-treatment on electrical properties and optical transmittance of ZnO thin films," Thin Solid Films, 519 (5), 1568-1572 (2010).
87.A. Talukder, J. Pokharel, M. Shrestha and Q. H. Fan, "Improving electrical properties of sol-gel derived zinc oxide thin films by plasma treatment," Journal of Applied Physics, 120 (15), 7 (2016).
88.J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang and P. K. Chu, "Effects of Hydrogen Plasma Treatment on the Electrical and Optical Properties of ZnO Films: Identification of Hydrogen Donors in ZnO," ACS Applied Materials & Interfaces, 2 (6), 1780-1784 (2010).
89.S. Lee, J. W. Peng and C. Y. Ho, "Reversible tuning of ZnO optical band gap by plasma treatment," Materials Chemistry and Physics, 131 (1-2), 211-215 (2011).
90.Y. Nose, T. Yoshimura, A. Ashida, T. Uehara and N. Fujimura, "Low temperature formation of highly resistive ZnO films using nonequilibrium N-2/O-2 plasma generated near atmospheric pressure," Thin Solid Films, 616, 415-418 (2016).
91.Y. Nose, T. Yoshimura, A. Ashida, T. Uehara and N. Fujimura, "Novel chemical vapor deposition process of ZnO films using nonequilibrium N2 plasma generated near atmospheric pressure with small amount of O2 below 1%," Journal of Applied Physics, 119 (17), 175302 (2016).
92.Z. Bai, C. Xie, M. Hu, S. Zhang and D. Zeng, "Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor," Materials Science and Engineering: B, 149 (1), 12-17 (2008).
93.G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Vasiliev, M. Ivanov, A. Cornet, J. Morante, A. Cabot and J. Arbiol, "In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors," Sensors and Actuators B-Chemical, 99 (2-3), 297-303 (2004).
94.L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, H. Li and Z. Zhu, "Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets," Sensors and Actuators B: Chemical, 161 (1), 209-215 (2012).
95.F.-S. Tsai and S.-J. Wang, "Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets," Sensors and Actuators B: Chemical, 193, 280-287 (2014).
96.M. Penza, C. Martucci and G. Cassano, "NO x gas sensing characteristics of WO 3 thin films activated by noble metals (Pd, Pt, Au) layers," Sensors and Actuators B: Chemical, 50 (1), 52-59 (1998).
97.H. Tian, H. Fan, H. Guo and N. Song, "Solution-based synthesis of ZnO/carbon nanostructures by chemical coupling for high performance gas sensors," Sensors and Actuators B-Chemical, 195, 132-139 (2014).
98.B. Behera and S. Chandra, "An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology," Sensors and Actuators B: Chemical, 229, 414-424 (2016).
99.N. Han, L. Y. Chai, Q. Wang, Y. J. Tian, P. Y. Deng and Y. F. Chen, "Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO," Sensors and Actuators B-Chemical, 147 (2), 525-530 (2010).
100.S. Roso, F. Güell, P. R. Martínez-Alanis, A. Urakawa and E. Llobet, "Synthesis of ZnO nanowires and impacts of their orientation and defects on their gas sensing properties," Sensors and Actuators B: Chemical, 230, 109-114 (2016).
101.Z. Q. Zheng, J. D. Yao, B. Wang and G. W. Yang, "Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices," Scientific Reports, 5, 8 (2015).
102.Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, 84 (18), 3654-3656 (2004).
103.L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang and S. Wang, "ZnO nanorod gas sensor for ethanol detection," Sensors and Actuators B-Chemical, 162 (1), 237-243 (2012).
104.M. Kaur, S. Kailasaganapathi, N. Ramgir, N. Datta, S. Kumar, A. K. Debnath, D. K. Aswal and S. K. Gupta, "Gas dependent sensing mechanism in ZnO nanobelt sensor," Applied Surface Science, 394, 258-266 (2017).
105.H.-E. Wagner, R. Brandenburg, K. Kozlov, A. Sonnenfeld, P. Michel and J. Behnke, "The barrier discharge: basic properties and applications to surface treatment," Vacuum, 71 (3), 417-436 (2003).
106.Y.-H. Lee and G.-Y. Yeom, "Properties and applications of a modified dielectric barrier discharge generated at atmospheric pressure," Japanese journal of applied physics, 44 (2R), 1076 (2005).
107.V. M. Donnelly, "Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy," Journal of Physics D-Applied Physics, 37 (19), R217-R236 (2004).
108.K. H. Stern, "High temperature properties and decomposition of inorganic salts part 3, nitrates and nitrites," Journal of Physical and Chemical Reference Data, 1, 747-772 (1972).
109.許峻銘(2014)。利用常壓噴射式電漿製備氧化物薄膜及其性質之研究。國立臺灣大學化學工程研究所碩士學位論文。110.A. Ma, F. Rousseau, F. Donsanti, D. Lincot and D. Morvan, "Deposition of ZnO thin films from aqueous solution in a low power plasma reactor," Surface & Coatings Technology, 276, 186-194 (2015).
111.N. M. Vuong, D. Kim and H. Kim, "Surface gas sensing kinetics of a WO3 nanowire sensor: Part 2—Reducing gases," Sensors and Actuators B: Chemical, 224, 425-433 (2016).
112.N. M. Vuong, D. Kim and H. Kim, "Surface gas sensing kinetics of a WO3 nanowire sensor: part 1—oxidizing gases," Sensors and Actuators B: Chemical, 220, 932-941 (2015).
113.S. O''Brien, M. G. Nolan, M. Çopuroglu, J. A. Hamilton, I. Povey, L. Pereira, R. Martins, E. Fortunato and M. Pemble, "Zinc oxide thin films: Characterization and potential applications," Thin Solid Films, 518 (16), 4515-4519 (2010).
114.F. Chaabouni, M. Abaab and B. Rezig, "Metrological characteristics of ZNO oxygen sensor at room temperature," Sensors and Actuators B: Chemical, 100 (1), 200-204 (2004).