跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/12 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃非紅
研究生(外文):Fei-Hung Huang
論文名稱:結合微電漿產生單元之氧化鋅氣體感測裝置之建立
論文名稱(外文):Development of a Zinc Oxide Gas Sensing Device with an Integrated Microplasmas Generation Unit
指導教授:徐振哲
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:125
中文關鍵詞:氣體感測器氧化鋅微電漿
外文關鍵詞:gas sensorzinc oxide (ZnO)microplasma
相關次數:
  • 被引用被引用:1
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
常壓微電漿系統由於不需要真空設備、放電體積小且具有高電子密度卻未與環境達熱平衡而溫度較低,而可提供一反應性高、消耗功率低、局部處理可能性、低溫的製程,並且其電極設計組合自由度高,而成為備受矚目之常壓電漿系統。本研究為結合微電漿產生單元與氣體感測元件之裝置:使用氧化鋅之半導體特性作為電導式氣體感測元件,並藉由微電漿放電之位置同時為氧化鋅前驅物沉積處,當微電漿產生時即可對前驅物進行就地處理之特性,於低溫下使前驅物轉化為氧化鋅,而提供一當裝置不耐高溫時之氧化鋅製程選擇。
本研究之微電漿產生單元屬於介電質放電型微電漿,其裝置是由一「金屬—介電質—金屬」之雙面銅箔基板製備而成,藉由碳粉轉印技術使電極圖案具有高設計自由度,並且於約略半小時內即可完成。當於介電質兩側的電極施加高壓交流電時,可於常壓下,在電極邊緣且於另一側有電極的位置產生微電漿。由於可自行定義雙面銅箔基板上的電極圖案,可經由設計電極的排列,將微電漿產生單元與氣體感測元件整合於一裝置上。於雙面銅箔基板之兩金屬面共有三個獨立的電極,其中一面有兩個電極,另一面則為一個電極;位於同一面的兩個電極之間,以一寬度為200 μm的間隙隔開,此間隙之另一面為電極。於間隙處以噴霧法沉積氧化鋅之前驅物後,當微電漿產生於間隙兩旁的電極、並擴散至間隙之間時,則可對沉積的前驅物進行處理,使其轉化為氧化鋅,作為本研究中之氣體感測元件。
本研究之氧化鋅氣體感測元件以對乙醇蒸汽之感測作為測試代表,可藉由調整電漿處理時間、產生電漿時的氣氛、電極圖案的設計等方式來改變或優化氧化鋅氣體感測裝置之感測表現。當使用指叉狀電極設計之裝置時,以空氣下產生之微電漿進行處理10分鐘後,可偵測濃度範圍約為100至16000 ppm之乙醇蒸汽,此時之氧化鋅氣體感測元件之電阻範圍約為100 MΩ至100 GΩ,將氣體感測表現與掃描式電子顯微鏡之能量發散譜儀對微電漿處理後之元素分析結果對照後,證實了經微電漿處理後可將原沉積之前驅物硝酸鋅轉化為半導體氧化鋅。
Atmospheric microplasma system has numerous advantages, for example, the operation under atmospheric pressure avoids the use of vacuum equipment, the small discharge volume with high electron density and reactivity provides the capability of local treatment and low power consumption, the characteristic of non-thermal equilibrium plasma offers us an option of low temperature process, etc. Therefore, atmospheric microplasma system becomes one of the most attractive plasma systems operated under atmospheric pressure. In this thesis, we integrate the microplasmas generation unit (MGU) with the gas-sensing element on one device. The gas-sensing element is zinc oxide (ZnO), which is widely used as conductometric gas sensors based on its semiconducting property. In this device, the discharge location of microplasmas is also the deposition position of the precursor film of ZnO, thus the MGU provides on-site treatment of the precursor film and converts the film to ZnO film with low processing temperature. This process enables ZnO film fabrication even when the device or substrate suffer from the disability of low temperature tolerance.
In this thesis, the MGU is classified as the dielectric-barrier-discharge (DBD)-type microplasma system. The device was fabricated by double-sided copper clad laminate (CCL), which consists of two copper laminates with one insulting layer between. Through toner transfer process, we are capable to design and fabricate the electrodes’ patterns, as we desire. While the high voltages (AC) are applied across the dielectric layer, microplasmas breakdown along the edge of the electrodes under atmospheric pressure. Because of the capability of user-defined electrode patterns on CCL, we can integrate the MGU with the gas-sensing element on one device. We placed one pair of electrodes on one side of the CCL and one electrode on the other side. The paired electrodes on the same side of the CCL were separated by a 200-μm-wide gap from each other; moreover, on the other side of the gap was electrode. After spraying zinc nitrate, the precursor of ZnO, over the gap for deposition of the precursor film, microplasmas generated along the edge of electrodes and diffuse to the gap, and microplasma post-treatment converted the film to ZnO. Therefore, the film could be treated as a gas-sensing element.
In this thesis, ethanol vapor was the representative gas for the test of gas sensing performance. We changed the microplasma post-treatment time, the ambient for plasma generation, the pattern design of electrodes, etc., to alter or modify the sensing performance. For example, when we used the pattern of interdigitated electrodes and the microplasmas generate under ambient air, for only 10 minutes of microplasma treatment, the sensor detected around 100 to 16000 ppm ethanol vapor with the resistance ranging from about 100 MΩ to 100 GΩ. Besides, comparing the gas sensing performances with the results of element analysis by energy dispersive spectrometer of scanning electron microscope, we concluded that the precursor films successfully transform to semiconductor ZnO.
致謝 I
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 XI
表目錄 XVII
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第 2 章 文獻回顧 3
2.1 電漿簡介 3
2.1.1 電漿產生機制與反應1 3
2.1.2 崩潰電壓與白仙定律 5
2.1.3 熱平衡與非熱平衡電漿3 8
2.1.4 低壓與常壓電漿系統 10
2.2 常壓微電漿系統 11
2.2.1 微電漿系統之簡介4-9 11
2.2.2 微電漿系統之種類 13
2.2.3 微電漿系統之應用 19
2.3 金屬氧化物氣體感測器 21
2.3.1 氣體感測器之簡介 21
2.3.2 金屬氧化物氣體感測器之工作原理 24
2.3.3 金屬氧化物氣體感測器之形式與其量測方法38 28
2.4 氧化鋅氣體感測器 32
2.4.1 氧化鋅之性質與應用 32
2.4.2 常見氧化鋅膜之製程 35
2.4.3 電漿處理對氧化鋅性質之影響 40
2.4.4 氧化鋅氣體感測器之發展 43
第 3 章 實驗設備與架構 51
3.1 結合微電漿產生單元之氧化鋅氣體感測裝置之製備 51
3.1.1 銅箔基板微電漿產生單元之製備 51
3.1.2 結合微電漿產生單元之氧化鋅氣體感測裝置之電極設計 53
3.1.3 氧化鋅膜製備 55
3.2 電漿檢測 57
3.2.1 電性檢測 57
3.2.2 電漿放光光譜 59
3.3 氧化鋅氣體感測之實驗裝置與設備 60
3.4 氧化鋅膜檢測分析設備 65
3.5 化學藥品 66
第 4 章 實驗結果與討論 67
4.1 銅箔基板微電漿產生單元之特性分析 67
4.1.1 電漿電性檢測 67
4.1.2 電漿放光光譜 72
4.2 氧化鋅膜檢測分析結果 75
4.2.1 沉積膜的微結構與元素分析 75
4.2.2 沉積膜的晶格結構分析 85
4.3 結合微電漿產生單元之氧化鋅氣體感測裝置之氣體感測表現 89
4.3.1 電漿處理對氧化鋅氣體感測裝置之氣體感測表現影響 89
4.3.2 電極設計對氧化鋅氣體感測裝置之氣體感測表現影響 92
4.3.3 氧化鋅氣體感測裝置之氣體感測表現分析 95
4.3.4 電漿氣氛對氧化鋅氣體感測裝置之氣體感測表現影響 106
第 5 章 結論與未來展望 111
第 6 章 參考文獻 113
1.N. S. J. Braithwaite, "Introduction to gas discharges," Plasma Sources Science and Technology, 9 (4), 517 (2000).
2.D. Pappas, "Status and potential of atmospheric plasma processing of materials," J. Vac. Sci. Technol. A, 29 (2), 17 (2011).
3.C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B-Atomic Spectroscopy, 61 (1), 2-30 (2006).
4.D. Mariotti and R. M. Sankaran, "Microplasmas for nanomaterials synthesis," Journal of Physics D-Applied Physics, 43 (32), 21 (2010).
5.K. Tachibana, "Current status of microplasma research," IEEJ Trans. Electr. Electron. Eng., 1 (2), 145-155 (2006).
6.L. L. Lin and Q. Wang, "Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis," Plasma Chem. Plasma Process., 35 (6), 925-962 (2015).
7.K. H. Becker, K. H. Schoenbach and J. G. Eden, "Microplasmas and applications," Journal of Physics D-Applied Physics, 39 (3), R55-R70 (2006).
8.F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang and M. G. Kong, "Microplasmas: Sources, particle kinetics, and biomedical applications," Plasma Process. Polym., 5 (4), 322-344 (2008).
9.S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki and N. Mason, "The 2012 Plasma Roadmap," Journal of Physics D-Applied Physics, 45 (25)(2012).
10.D. Mariotti, "Nonequilibrium and effect of gas mixtures in an atmospheric microplasma," Applied Physics Letters, 92 (15), 151505 (2008).
11.D. Staack, B. Farouk, A. Gutsol and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge," Plasma Sources Science and Technology, 14 (4), 700 (2005).
12.A. Bogaerts, E. Neyts, R. Gijbels and J. van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B-Atomic Spectroscopy, 57 (4), 609-658 (2002).
13.P. Bruggeman and C. Leys, "Non-thermal plasmas in and in contact with liquids," Journal of Physics D-Applied Physics, 42 (5)(2009).
14.J. Kędzierski, J. Engemann, M. Teschke and D. Korzec, presented at the Solid State Phenomena, 2005 (unpublished).
15.N. Jiang, A. Ji and Z. Cao, "Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism," Journal of Applied Physics, 106 (1), 013308 (2009).
16.K. H. Schoenbach and K. Becker, "20 years of microplasma research: a status report," Eur. Phys. J. D, 70 (2), 22 (2016).
17.Z. Cao, J. L. Walsh and M. G. Kong, "Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment," Applied Physics Letters, 94 (2), 021501 (2009).
18.B. Vojak, S.-J. Park, C. Wagner, J. Eden, R. Koripella, J. Burdon, F. Zenhausern and D. Wilcox, "Multistage, monolithic ceramic microdischarge device having an active length of∼ 0.27 mm," Applied Physics Letters, 78 (10), 1340-1342 (2001).
19.K. H. Schoenbach, A. El-Habachi, W. Shi and M. Ciocca, "High-pressure hollow cathode discharges," Plasma Sources Science and Technology, 6 (4), 468 (1997).
20.R. M. Sankaran, D. Holunga, R. C. Flagan and K. P. Giapis, "Synthesis of Blue Luminescent Si Nanoparticles Using Atmospheric-Pressure Microdischarges," Nano Letters, 5 (3), 537-541 (2005).
21.D. Mariotti, A. C. Bose and K. Ostrikov, "Atmospheric-microplasma-assisted nanofabrication: Metal and metal–oxide nanostructures and nanoarchitectures," IEEE Transactions on Plasma Science, 37 (6), 1027-1033 (2009).
22.F. Kenji, H. Yuko, I. Toshio and H. Akira, "Protective Agent-free Preparation of Gold Nanoplates and Nanorods in Aqueous HAuCl4 Solutions Using Gas–Liquid Interface Discharge," Chemistry Letters, 36 (9), 1088-1089 (2007).
23.K. S. Siow, L. Britcher, S. Kumar and H. J. Griesser, "Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - A review," Plasma Process. Polym., 3 (6-7), 392-418 (2006).
24.Y. J. Yang, M. Y. Tsai, W. C. Liang, H. Y. Chen and C. C. Hsu, "Ultra-Low-Cost and Flexible Paper-Based Microplasma Generation Devices for Maskless Patterning of Poly(ethylene oxide)-like Films," Acs Applied Materials & Interfaces, 6 (15), 12550-12555 (2014).
25.B. Mitra, B. Levey and Y. B. Gianchandani, "Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing," IEEE Transactions on Plasma Science, 36 (4), 1913-1924 (2008).
26.V. Karanassios, "Microplasmas for chemical analysis: analytical tools or research toys?," Spectrochimica Acta Part B-Atomic Spectroscopy, 59 (7), 909-928 (2004).
27.X. Yuan, J. Tang and Y. X. Duan, "Microplasma Technology and Its Applications in Analytical Chemistry," Appl. Spectrosc. Rev., 46 (7), 581-605 (2011).
28.X. Quan, S. Chen, B. Platzer, J. Chen and M. Gfrerer, "Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector," Spectrochimica Acta Part B: Atomic Spectroscopy, 57 (1), 189-199 (2002).
29.J. M. Symonds, A. S. Galhena, F. M. Fernández and T. M. Orlando, "Microplasma Discharge Ionization Source for Ambient Mass Spectrometry," Analytical Chemistry, 82 (2), 621-627 (2010).
30.G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol and A. Brooks, "Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air," Plasma Chem. Plasma Process., 26 (4), 425-442 (2006).
31.K. Becker, A. Koutsospyros, S.-M. Yin, C. Christodoulatos, N. Abramzon, J. Joaquin and G. Brelles-Marino, "Environmental and biological applications of microplasmas," Plasma physics and controlled fusion, 47 (12B), B513 (2005).
32.A. Koutsospyros, S. M. Yin, C. Christodoulatos and K. Becker, "Destruction of hydrocarbons in non-thermal, ambient-pressure, capillary discharge plasmas," Int. J. Mass Spectrom., 233 (1–3), 305-315 (2004).
33.X.-d. Wang and O. S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors (2013–2015)," Analytical Chemistry, (2015).
34.D. James, S. M. Scott, Z. Ali and W. T. O''Hare, "Chemical sensors for electronic nose systems," Microchimica Acta, 149 (1-2), 1-17 (2005).
35.S. J. Patil, A. V. Patil, C. G. Dighavkar, K. S. Thakare, R. Y. Borase, S. J. Nandre, N. G. Deshpande and R. R. Ahire, "Semiconductor metal oxide compounds based gas sensors: A literature review," Front. Mater. Sci., 9 (1), 14-37 (2015).
36.R. Kumar, O. Al-Dossary, G. Kumar and A. Umar, "Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review," Nano-Micro Lett., 7 (2), 97-120 (2015).
37.A. Wei, L. H. Pan and W. Huang, "Recent progress in the ZnO nanostructure-based sensors," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 176 (18), 1409-1421 (2011).
38.E. Comini, "Metal oxide nano-crystals for gas sensing," Analytica Chimica Acta, 568 (1-2), 28-40 (2006).
39.M. E. Franke, T. J. Koplin and U. Simon, "Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?," Small, 2 (1), 36-50 (2006).
40.N. Barsan, D. Koziej and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B-Chemical, 121 (1), 18-35 (2007).
41.N. Yamazoe, G. Sakai and K. Shimanoe, "Oxide Semiconductor Gas Sensors," Catalysis Surveys from Asia, 7 (1), 63-75 (2003).
42.H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sensors and Actuators B-Chemical, 192, 607-627 (2014).
43.A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, "Detection of CO and O2 using tin oxide nanowire sensors," Advanced Materials, 15 (12), 997-1000 (2003).
44.P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song and Y.-T. Yu, "The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases," Sensors and Actuators B: Chemical, 165 (1), 133-142 (2012).
45.A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito and K. Kalantar-zadeh, "Characterization of ZnO nanobelt-based gas sensor for H-2, NO2, and hydrocarbon sensing," Ieee Sensors Journal, 7 (5-6), 919-924 (2007).
46.J. í. Janata, in Principles of Chemical Sensors, Springer US, Boston, MA, 2009, pp. 241-266.
47.Y. Hong, C.-H. Kim, J. Shin, K. Y. Kim, J. S. Kim, C. S. Hwang and J.-H. Lee, "Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate," Sensors and Actuators B: Chemical, 232, 653-659 (2016).
48.P. Feng, F. Shao, Y. Shi and Q. Wan, "Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors," Sensors, 14 (9), 17406-17429 (2014).
49.G. Faglia, C. Baratto, G. Sberveglieri, M. Zha and A. Zappettini, "Adsorption effects of NO 2 at ppm level on visible photoluminescence response of Sn O 2 nanobelts," Applied Physics Letters, 86 (1), 011923 (2005).
50.A. K. Bal, A. Singh and R. K. Bedi, "Electrical and optical ethanol sensitivity of thermally oxidized zinc oxide films," Thin Solid Films, 518 (23), 7107-7112 (2010).
51.U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, 98 (4), 103 (2005).
52.Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," J. Phys.-Condes. Matter, 16 (25), R829-R858 (2004).
53.A. Kolodziejczak-Radzimska and T. Jesionowski, "Zinc Oxide-From Synthesis to Application: A Review," Materials, 7 (4), 2833-2881 (2014).
54.A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on Progress in Physics, 72 (12), 29 (2009).
55.Y. F. Dong, Z. Q. Fang, D. C. Look, D. R. Doutt, G. Cantwell, J. Zhang, J. J. Song and L. J. Brillson, "Defects at oxygen plasma cleaned ZnO polar surfaces," Journal of Applied Physics, 108 (10), 4 (2010).
56.A. Janotti and C. G. Van de Walle, "Oxygen vacancies in ZnO," Applied Physics Letters, 87 (12), 3 (2005).
57.L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO - nanostructures, defects, and devices," Materials Today, 10 (5), 40-48 (2007).
58.C. G. Van de Walle, "Hydrogen as a cause of doping in zinc oxide," Physical Review Letters, 85 (5), 1012-1015 (2000).
59.S. Lee, S. Bang, J. Park, S. Park, W. Jeong and H. Jeon, "The effect of oxygen remote plasma treatment on ZnO TFTs fabricated by atomic layer deposition," physica status solidi (a), 207 (8), 1845-1849 (2010).
60.A. B. Djurisic, A. M. C. Ng and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Prog. Quantum Electron., 34 (4), 191-259 (2010).
61.T. Ive, T. Ben‐Yaacov, A. Murai, H. Asamizu, C. Van de Walle, U. Mishra, S. DenBaars and J. Speck, "Metalorganic chemical vapor deposition of ZnO (0001) thin films on GaN (0001) templates and ZnO (0001) substrates," physica status solidi (c), 5 (9), 3091-3094 (2008).
62.S. Pati, P. Banerji and S. Majumder, "MOCVD grown ZnO thin film gas sensors: Influence of microstructure," Sensors and Actuators A: Physical, 213, 52-58 (2014).
63.J. J. Wu and S. C. Liu, "Low‐Temperature Growth of Well‐Aligned ZnO Nanorods by Chemical Vapor Deposition," Advanced Materials, 14 (3), 215-218 (2002).
64.K. Haga, F. Katahira and H. Watanabe, "Preparation of ZnO films by atmospheric pressure chemical-vapor deposition using zinc acetylacetonate and ozone," Thin solid films, 343, 145-147 (1999).
65.C. M. Hsu, H. C. Li, S. T. Lien, J. Z. Chen, I. C. Cheng and C. C. Hsu, "Deposition of ZnO Thin Films by an Atmospheric Pressure Plasma Jet-Assisted Process: The Selection of Precursors," Ieee Transactions on Plasma Science, 43 (2), 670-674 (2015).
66.Y. Ito, O. Sakai and K. Tachibana, "Study of plasma enhanced chemical vapor deposition of ZnO films by non-thermal plasma jet at atmospheric pressure," Thin Solid Films, 518 (13), 3513-3516 (2010).
67.S. Vallejos, F. Di Maggio, T. Shujah and C. Blackman, "Chemical Vapour Deposition of Gas Sensitive Metal Oxides," Chemosensors, 4 (1), 18 (2016).
68.P. S. Patil, "Versatility of chemical spray pyrolysis technique," Materials Chemistry and Physics, 59 (3), 185-198 (1999).
69.S. Studenikin, N. Golego and M. Cocivera, "Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution," Journal of Applied Physics, 83 (4), 2104-2111 (1998).
70.S. A. Studenikin, N. Golego and M. Cocivera, "Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis," Journal of Applied Physics, 84 (4), 2287-2294 (1998).
71.M. Krunks and E. Mellikov, "Zinc oxide thin films by the spray pyrolysis method," Thin Solid Films, 270 (1-2), 33-36 (1995).
72.F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade and M. Miki-Yoshida, "Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis," Thin Solid Films, 350 (1-2), 192-202 (1999).
73.C. Messaoudi, D. Sayah and M. Abd‐lefdil, "Transparent conducting undoped and indium‐doped zinc oxide films prepared by spray pyrolysis," physica status solidi (a), 151 (1), 93-97 (1995).
74.P. Pushparajah, A. K. Arof and S. Radhakrishna, "Physical properties of spray pyrolysed pure and doped ZnO thin films," Journal of Physics D: Applied Physics, 27 (7), 1518 (1994).
75.J. Hu, T. W. Odom and C. M. Lieber, "Chemistry and Physics in One Dimension:  Synthesis and Properties of Nanowires and Nanotubes," Accounts of Chemical Research, 32 (5), 435-445 (1999).
76.Y. S. Zhang, K. Yu, D. S. Jiang, Z. Q. Zhu, H. R. Geng and L. Q. Luo, "Zinc oxide nanorod and nanowire for humidity sensor," Applied Surface Science, 242 (1-2), 212-217 (2005).
77.J. Elias, R. Tena-Zaera and C. Lévy-Clément, "Electrochemical deposition of ZnO nanowire arrays with tailored dimensions," Journal of Electroanalytical Chemistry, 621 (2), 171-177 (2008).
78.T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wöhrle, K. Funabiki, M. Matsui, H. Miura and H. Yanagi, "Electrodeposition of Inorganic/Organic Hybrid Thin Films," Advanced Functional Materials, 19 (1), 17-43 (2009).
79.J. H. Lee, K. H. Ko and B. O. Park, "Electrical and optical properties of ZnO transparent conducting films by the sol-gel method," J. Cryst. Growth, 247 (1-2), 119-125 (2003).
80.Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, "Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer," Advanced Materials, 23 (14), 1679-1683 (2011).
81.K. Baba, C. Lazzaroni, O. Brinza and M. Nikravech, "Effect of zinc nitrate concentration on structural and optical properties of ZnO thin films deposited by Spray Plasma device," Thin Solid Films, 558, 62-66 (2014).
82.K. Baba, C. Lazzaroni and M. Nikravech, "Growth of ZnO Thin Films by Spray Plasma Technique: Correlation Between Spectroscopic Measurements and Film Properties," Plasma Chem. Plasma Process., 34 (6), 1433-1446 (2014).
83.K. Baba, C. Lazzaroni and M. Nikravech, "ZnO and Al doped ZnO thin films deposited by Spray Plasma: Effect of the growth time and Al doping on microstructural, optical and electrical properties," Thin Solid Films, 595, 129-135 (2015).
84.H.-W. Ra and Y.-H. Im, "Effect of chemically reactive species on properties of ZnO nanowires exposed to oxygen and hydrogen plasma," Nanotechnology, 19 (48), 485710 (2008).
85.D. M. Lee, J. K. Kim, J. C. Hao, H. K. Kim, J. S. Yoon and J. M. Lee, "Effects of annealing and plasma treatment on the electrical and optical properties of spin-coated ITZO films," Journal of Alloys and Compounds, 583, 535-538 (2014).
86.J. H. Bang, H. S. Uhm, W. Kim and J. S. Park, "Effects of additive gases and plasma post-treatment on electrical properties and optical transmittance of ZnO thin films," Thin Solid Films, 519 (5), 1568-1572 (2010).
87.A. Talukder, J. Pokharel, M. Shrestha and Q. H. Fan, "Improving electrical properties of sol-gel derived zinc oxide thin films by plasma treatment," Journal of Applied Physics, 120 (15), 7 (2016).
88.J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang and P. K. Chu, "Effects of Hydrogen Plasma Treatment on the Electrical and Optical Properties of ZnO Films: Identification of Hydrogen Donors in ZnO," ACS Applied Materials & Interfaces, 2 (6), 1780-1784 (2010).
89.S. Lee, J. W. Peng and C. Y. Ho, "Reversible tuning of ZnO optical band gap by plasma treatment," Materials Chemistry and Physics, 131 (1-2), 211-215 (2011).
90.Y. Nose, T. Yoshimura, A. Ashida, T. Uehara and N. Fujimura, "Low temperature formation of highly resistive ZnO films using nonequilibrium N-2/O-2 plasma generated near atmospheric pressure," Thin Solid Films, 616, 415-418 (2016).
91.Y. Nose, T. Yoshimura, A. Ashida, T. Uehara and N. Fujimura, "Novel chemical vapor deposition process of ZnO films using nonequilibrium N2 plasma generated near atmospheric pressure with small amount of O2 below 1%," Journal of Applied Physics, 119 (17), 175302 (2016).
92.Z. Bai, C. Xie, M. Hu, S. Zhang and D. Zeng, "Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor," Materials Science and Engineering: B, 149 (1), 12-17 (2008).
93.G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Vasiliev, M. Ivanov, A. Cornet, J. Morante, A. Cabot and J. Arbiol, "In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors," Sensors and Actuators B-Chemical, 99 (2-3), 297-303 (2004).
94.L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, H. Li and Z. Zhu, "Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets," Sensors and Actuators B: Chemical, 161 (1), 209-215 (2012).
95.F.-S. Tsai and S.-J. Wang, "Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets," Sensors and Actuators B: Chemical, 193, 280-287 (2014).
96.M. Penza, C. Martucci and G. Cassano, "NO x gas sensing characteristics of WO 3 thin films activated by noble metals (Pd, Pt, Au) layers," Sensors and Actuators B: Chemical, 50 (1), 52-59 (1998).
97.H. Tian, H. Fan, H. Guo and N. Song, "Solution-based synthesis of ZnO/carbon nanostructures by chemical coupling for high performance gas sensors," Sensors and Actuators B-Chemical, 195, 132-139 (2014).
98.B. Behera and S. Chandra, "An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology," Sensors and Actuators B: Chemical, 229, 414-424 (2016).
99.N. Han, L. Y. Chai, Q. Wang, Y. J. Tian, P. Y. Deng and Y. F. Chen, "Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO," Sensors and Actuators B-Chemical, 147 (2), 525-530 (2010).
100.S. Roso, F. Güell, P. R. Martínez-Alanis, A. Urakawa and E. Llobet, "Synthesis of ZnO nanowires and impacts of their orientation and defects on their gas sensing properties," Sensors and Actuators B: Chemical, 230, 109-114 (2016).
101.Z. Q. Zheng, J. D. Yao, B. Wang and G. W. Yang, "Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices," Scientific Reports, 5, 8 (2015).
102.Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, 84 (18), 3654-3656 (2004).
103.L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang and S. Wang, "ZnO nanorod gas sensor for ethanol detection," Sensors and Actuators B-Chemical, 162 (1), 237-243 (2012).
104.M. Kaur, S. Kailasaganapathi, N. Ramgir, N. Datta, S. Kumar, A. K. Debnath, D. K. Aswal and S. K. Gupta, "Gas dependent sensing mechanism in ZnO nanobelt sensor," Applied Surface Science, 394, 258-266 (2017).
105.H.-E. Wagner, R. Brandenburg, K. Kozlov, A. Sonnenfeld, P. Michel and J. Behnke, "The barrier discharge: basic properties and applications to surface treatment," Vacuum, 71 (3), 417-436 (2003).
106.Y.-H. Lee and G.-Y. Yeom, "Properties and applications of a modified dielectric barrier discharge generated at atmospheric pressure," Japanese journal of applied physics, 44 (2R), 1076 (2005).
107.V. M. Donnelly, "Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy," Journal of Physics D-Applied Physics, 37 (19), R217-R236 (2004).
108.K. H. Stern, "High temperature properties and decomposition of inorganic salts part 3, nitrates and nitrites," Journal of Physical and Chemical Reference Data, 1, 747-772 (1972).
109.許峻銘(2014)。利用常壓噴射式電漿製備氧化物薄膜及其性質之研究。國立臺灣大學化學工程研究所碩士學位論文。
110.A. Ma, F. Rousseau, F. Donsanti, D. Lincot and D. Morvan, "Deposition of ZnO thin films from aqueous solution in a low power plasma reactor," Surface & Coatings Technology, 276, 186-194 (2015).
111.N. M. Vuong, D. Kim and H. Kim, "Surface gas sensing kinetics of a WO3 nanowire sensor: Part 2—Reducing gases," Sensors and Actuators B: Chemical, 224, 425-433 (2016).
112.N. M. Vuong, D. Kim and H. Kim, "Surface gas sensing kinetics of a WO3 nanowire sensor: part 1—oxidizing gases," Sensors and Actuators B: Chemical, 220, 932-941 (2015).
113.S. O''Brien, M. G. Nolan, M. Çopuroglu, J. A. Hamilton, I. Povey, L. Pereira, R. Martins, E. Fortunato and M. Pemble, "Zinc oxide thin films: Characterization and potential applications," Thin Solid Films, 518 (16), 4515-4519 (2010).
114.F. Chaabouni, M. Abaab and B. Rezig, "Metrological characteristics of ZNO oxygen sensor at room temperature," Sensors and Actuators B: Chemical, 100 (1), 200-204 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊