|
1.Strobel, T.A., et al., Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chemical Physics Letters, 2009. 478(4–6): p. 97-109. 2.Kvenvolden, K.A. and B.W. Rogers, Gaia''s breath - global methane exhalations. Mar. Pet. Geol., 2005. 22(4): p. 579-590. 3.Swamy, V., et al., A thermodynamic assessment of silica phase diagram. Journal of Geophysical Research: Solid Earth, 1994. 99(B6): p. 11787-11794. 4.Toukmaji, A.Y. and J.A. Board Jr, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92. 5.Module, F., Material Studio 6.0. Accelrys Inc., San Diego, CA, 2011. 6.Wu, J.-Y. and S.-T. Lin, Influence of the Additive Tetrahydrofuran on the Growth and Nucleation of Methane Hydrate via Molecular Dynamics Simulations. 2015, National Taiwan University. p. 35-37. 7.Sell, A., et al., Measurement of CO2 Diffusivity for Carbon Sequestration: A Microfluidic Approach for Reservoir-Specific Analysis. Environmental Science & Technology, 2013. 47(1): p. 71-78. 8.Diamond, L.W., Stability of CO2 clathrate hydrate + CO2 liquid + CO2 vapour + aqueous KCl-NaCl solutions: Experimental determination and application to salinity estimates of fluid inclusions ∗. Geochimica et Cosmochimica Acta, 1992. 56(1): p. 273-280. 9.Belgodere, C., et al., Experimental determination of CO2 diffusion coefficient in aqueous solutions under pressure at room temperature via Raman spectroscopy: impact of salinity (NaCl). Journal of Raman Spectroscopy, 2015. 46(10): p. 1025-1032. 10.Hikita, H., et al., Diffusivities of carbon dioxide in aqueous mixed electrolyte solutions. The Chemical Engineering Journal, 1979. 17(1): p. 77-80. 11.Vanbeest, B.W.H., G.J. Kramer, and R.A. Vansanten, FORCE-FIELDS FOR SILICAS AND ALUMINOPHOSPHATES BASED ON ABINITIO CALCULATIONS. Phys. Rev. Lett., 1990. 64(16): p. 1955-1958. 12.Sloan, E.D., Clathrate Hydrates of Natural Gases, Second Edition, Revised and Expanded. 1998: Taylor & Francis. 13.Duan, Z., et al., An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Marine Chemistry, 2006. 98(2–4): p. 131-139. 14.Anderson, G.K., Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation. Journal of Chemical Thermodynamics, 2003. 35(7): p. 1171-1183. 15.Kvenvolden, K.A., Gas hydrates—geological perspective and global change. Reviews of Geophysics, 1993. 31(2): p. 173-187. 16.Haq, B.U., Methane in the Deep Blue Sea. Science, 1999. 285(5427): p. 543-544. 17.Boswell, R. and T.S. Collett, Current perspectives on gas hydrate resources. Energy & environmental science, 2011. 4(4): p. 1206-1215. 18.Chatti, I., et al., Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management, 2005. 46(9-10): p. 1333-1343. 19.Davies, S.R., et al., Hydrate plug dissociation. Aiche Journal, 2006. 52(12): p. 4016-4027. 20.Gornitz, V. and I. Fung, POTENTIAL DISTRIBUTION OF METHANE HYDRATES IN THE WORLDS OCEANS. Global Biogeochemical Cycles, 1994. 8(3): p. 335-347. 21.Dickens, G.R., C. Paull, and P. Wallace, Direct measurement ofin situ methane quantities in a large gas hydrate reservoir. Nature, 1997. 385: p. 426-428. 22.Kvenvolden, K.A., Gas hydrates-geological perspective and global change. REVIEWS OF GEOPHYSICS-RICHMOND VIRGINIA THEN WASHINGTON-, 1993. 31: p. 173-173. 23.Kuuskraa, V., S.H. Stevens, and K.D. Moodhe, Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States. 2013. 24.Chen, L., et al., Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan. Journal of Asian Earth Sciences, 2014. 92: p. 245-253. 25.Chong, Z.R., et al., Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 2016. 162: p. 1633-1652. 26.Veluswamy, H.P., et al., An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy, 2017. 188: p. 190-199. 27.Veluswamy, H.P., et al., Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel, 2016. 182: p. 907-919. 28.Babu, P., H.W.N. Ong, and P. Linga, A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. Energy, 2016. 94: p. 431-442. 29.Nambiar, A., P. Babu, and P. Linga, CO2 capture using the clathrate hydrate process employing cellulose foam as a porous media. Can. J. Chem., 2015. 93(8): p. 808-814. 30.Wang, Y., X. Lang, and S. Fan, Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas. Journal of Energy Chemistry, 2013. 22(1): p. 39-47. 31.Koh, D.-Y., et al., Energy-efficient natural gas hydrate production using gas exchange. Applied Energy, 2016. 162: p. 114-130. 32.Wedepohl, K.C.C.i.K.H., Handbook of Geochemistry, vol. II-2. 1970. 33.Flörke, O.W., et al., Silica, in Ullmann''s Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA. 34.Adeyemo, A., et al., Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. International Journal of Greenhouse Gas Control, 2010. 4(3): p. 478-485. 35.Bai, D.S., et al., How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate. Scientific Reports, 2015. 5: p. 12. 36.Bagherzadeh, S.A., et al., Molecular Modeling of the Dissociation of Methane Hydrate in Contact with a Silica Surface. Journal of Physical Chemistry B, 2012. 116(10): p. 3188-3197. 37.Liang, S., D. Rozmanov, and P.G. Kusalik, Crystal growth simulations of methane hydrates in the presence of silica surfaces. Physical Chemistry Chemical Physics, 2011. 13(44): p. 19856-19864. 38.Liang, S. and P.G. Kusalik, The nucleation of gas hydrates near silica surfaces. Can. J. Chem., 2015. 93(8): p. 791-798. 39.Bai, D., et al., Microsecond Molecular Dynamics Simulations of the Kinetic Pathways of Gas Hydrate Formation from Solid Surfaces. Langmuir, 2011. 27(10): p. 5961-5967. 40.Lindahl, E., B. Hess, and D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, 2001. 7(8): p. 306-317. 41.Van Der Spoel, D., et al., GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 2005. 26(16): p. 1701-1718. 42.Berendsen, H.J.C., D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 1995. 91(1): p. 43-56. 43.Hess, B., et al., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 2008. 4(3): p. 435-447. 44.Hoover, W.G., CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS. Physical Review A, 1985. 31(3): p. 1695-1697. 45.Kittel, C.H.K., Thermal Physics, 2nd 1980, San Francisco: W.H. Freeman and Company. P 31. 46.Landau, L.D.L., E.M., Statistical Physics. Pergamon Press. 1980. 47.Berendsen, H.J.C., et al., MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH. Journal of Chemical Physics, 1984. 81(8): p. 3684-3690. 48.Berendsen, H.J.C., Transport Properties Computed by Linear Response through Weak Coupling to a Bath, in Computer Simulation in Materials Science, M. Meyer and V. Pontikis, Editors. 1991, Springer Netherlands. p. 139-155. 49.Parrinello, M. and A. Rahman, POLYMORPHIC TRANSITIONS IN SINGLE-CRYSTALS - A NEW MOLECULAR-DYNAMICS METHOD. Journal of Applied Physics, 1981. 52(12): p. 7182-7190. 50.Eargle, J., D. Wright, and Z. Luthey-Schulten, Multiple Alignment of protein structures and sequences for VMD. Bioinformatics, 2006. 22(4): p. 504-506. 51.Stone, J.E., J. Gullingsrud, and K. Schulten, A system for interactive molecular dynamics simulation, in Proceedings of the 2001 symposium on Interactive 3D graphics. 2001, ACM. p. 191-194. 52.Stone, J.E. and U.o.M.-.-R.G. School, An Efficient Library for Parallel Ray Tracing and Animation: A Thesis Presented to the Faculty of the Graduate School of the University of Missouri-Rolla in Partial Fulfillment of Requirements for the Degree of Master of Science in Computer Science. 1998: University of Missouri-Rolla. 53.Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling, 1996. 14(1): p. 33-38. 54.Abascal, J., et al., A potential model for the study of ices and amorphous water: TIP4P/Ice. The Journal of chemical physics, 2005. 122: p. 234511. 55.Kaminski, G.A., et al., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 2001. 105(28): p. 6474-6487. 56.Luzar, A. and D. Chandler, Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. The Journal of chemical physics, 1993. 98(10): p. 8160-8173. 57.Wu, J.-Y., et al., Molecular Dynamics Study on the Growth Mechanism of Methane plus Tetrahydrofuran Mixed Hydrates. The Journal of Physical Chemistry C, 2015. 119(34): p. 19883-19890. 58.趙紘毅, 以分子動力學模擬探討甲烷水合物之自我保護效應, in 化學工程學研究所. 2015, 國立臺灣大學: 台北市. p. 72. 59.Bozzo, A.T., et al., PROPERTIES OF HYDRATES OF CHLORINE AND CARBON-DIOXIDE. Desalination, 1975. 16(3): p. 303-320. 60.Yoon, J.H., et al., Rigorous approach to the prediction of the heat of dissociation of gas hydrates. Ind. Eng. Chem. Res., 2003. 42(5): p. 1111-1114. 61.Udachin, K.A., C.I. Ratcliffe, and J.A. Ripmeester, Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. Journal of Physical Chemistry B, 2001. 105(19): p. 4200-4204. 62.Uchida, T., et al., Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide. Journal of Crystal Growth, 1999. 204(3): p. 348-356. 63.Ripmeester, J.A. and C.I. Ratcliffe, The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest. Energy & fuels, 1998. 12(2): p. 197-200. 64.Portier, S. and C. Rochelle, Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 °C and from 1 to 300 bar: Application to the Utsira Formation at Sleipner. Chemical Geology, 2005. 217(3–4): p. 187-199. 65.Lee, S.H. and P.J. Rossky, A COMPARISON OF THE STRUCTURE AND DYNAMICS OF LIQUID WATER AT HYDROPHOBIC AND HYDROPHILIC SURFACES - A MOLECULAR-DYNAMICS SIMULATION STUDY. Journal of Chemical Physics, 1994. 100(4): p. 3334-3345.
|