跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊霖
研究生(外文):Chun-Lin Huang
論文名稱:利用分子動力學模擬探討二氧化碳水合物在純水和海水中的性質
論文名稱(外文):Exploring the Properties of Carbon Dioxide Hydrate in Pure Water and Seawater via Molecular Dynamics Simulation
指導教授:林祥泰
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:69
中文關鍵詞:二氧化碳水合物二氧化矽分子動力學模擬溶解度擴散係數融解熱
外文關鍵詞:carbon dioxide hydratesilicamolecular dynamics simulationsolubilitydiffusivitydissociation heat
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣體水合物是由客體氣體分子和水,在高溫低壓下所形成的白色結晶固體。由於甲烷水合物豐富地存在世界各地的大陸棚以及海底沉積物中,因此甲烷水合物被視為一種極具有發展潛力的新興能源。近幾年有科學家提出水合物的新應用,將溫室氣體二氧化碳封存在水合物中,以減緩溫室效應,因此二氧化碳水合物的研究越來越被重視。
在本研究中,我們使用分子動力學模擬方法研究二氧化碳水合物在純水和海水中的熱力學性質,本研究中模擬的水合物相關性質包括二氧化碳在水相中的溶解度、二氧化碳在水相中的擴散係數、二氧化碳水合物的熔點、融解熱以及水籠子填滿率。結果顯示在溶解度的研究方面,模擬值比實驗值大約30%;在擴散係數的模擬中,模擬值大約為實驗值的一半;在60大氣壓下,熔點的模擬值為283.5K,和實驗值283.1K非常接近;在60atm,283K下的,二氧化碳水合物融解熱的模擬值約為45.30kJ/mol CO2,比實驗值小了約13%;在填滿率的模擬,大水籠子的填滿率較小水籠子高,並且溫度約接近熔點,大水籠子填滿率越高。
加入海水後,結果顯示氯化鈉的存在降低了二氧化碳在水中的擴散係數和溶解度,和實驗上所觀察到的一致,對二氧化碳水合物則是有抑制劑的作用,也實驗所觀察到的雷同。
Clathrate hydrate are non-stoichiometric crystalline compounds composed of water and gas molecules, such as methane and carbon dioxide, in which guest gas molecules are trapped inside the hydrogen bonded cages composed of host water molecules. Methane hydrate is regarded as a potential energy resource because of its significant amount of methane gas inside the hydrate deposits in nature. Some scientists propose a new method to exploit methane from methane hydrate and to trap CO2 inside hydrate simultaneously, which can make use of methane and lower the concentration of CO2, the green house gas. As a result, the studies of CO2 hydrate draw lots of attention recently.
Molecular Dynamics simulation is a useful tool to study gas hydrate under microscopic view. In this work, we use molecular dynamics simulation to study the properties of CO2 hydrate in water and 3.5 wt% sodium chloride solution. We measure solubility and diffusivity of CO2 molecules in water. In addition, we measure melting point, dissociation heat and growth occupancy of CO2 hydrate. The simulation result of solubility is larger than experimental result by about 30%, and simulation diffusivity is about half of the experimental result. The simulation melting point under 60 atm is 283.5 K, which is close to the experimental result of 283.1K. The simulation dissociation heat under 60 atm is 45.30 kJ/ mol CO2, which is smaller than experimental result by about 13%, and the variation is caused by the intrinsic property of water force filed. The occupancy of big water cages is larger than that of small water cage, and the occupancy of big cage is larger as temperature is higher.
The existence of sodium chloride decrease solubility and diffusivity of CO2 in water phase, which is in agreement with experimental result. In addition, sodium chloride acts as an inhibitor in our simulation, as same as in experiments.
致謝-i
中文摘要-ii
ABSTRACT-iii
CONTENTS-iv
LIST OF FIGURES-vii
LIST OF TABLES-ix
Chapter 1 Introduction-1
1.1 Clathrate Hydrates-1
1.2 Structures of Clathrate Hydrates-2
1.3 Applications of Clathrate Hydrates-4
1.4 Silica-6
1.5 Motivations-8
Chapter 2 Theory-10
2.1 Molecular Dynamics Simulation-10
2.2 Integration of Equation of Motion-12
2.3 Force Field-12
2.3.1 Non-bond terms-13
2.3.2 Valance terms-15
2.4 Ensemble-16
2.5 Temperature Thermostat-17
2.6 Pressure Barostat-17
Chapter 3 Computational Detail-19
3.1 Models-19
3.1.1 Models for solubility-19
3.1.2 Models for diffusivity-20
3.1.3 Models for melting point-21
3.1.4 Models for dissociation heat-22
3.1.5 Models for growth occupancy-23
3.1.6 Models for crystalline alpha-quartz-24
3.2 The Settings of Simulation-25
3.3 Force Field-26
3.4 Analysis Tool-29
3.4.1 Hydrogen bond identification-29
3.4.2 Cage identification and hydrate structure determination-30
3.4.3 Diffusivity calculation-32
Chapter 4 Results and Discussions-33
4.1 Properties of CO2 Hydrate33
4.1.1 Solubility-33
4.1.2 Diffusivity35
4.1.3 Melting point-36
4.1.4 Dissociation heat-38
4.1.5 Growth occupancy-40
4.2 Properties of CO2 Hydrate in NaCl Solution-42
4.2.1 Solubility-42
4.2.2 Diffusivity-44
4.2.3 Melting point-46
4.3 Properties of Silica-48
4.3.1 Single crystalline alpha-quartz-48
4.3.2 Single crystalline silica and water-55
4.3.3 Amorphous silica-61
Chapter 5 Conclusions-63
References-65
1.Strobel, T.A., et al., Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chemical Physics Letters, 2009. 478(4–6): p. 97-109.
2.Kvenvolden, K.A. and B.W. Rogers, Gaia''s breath - global methane exhalations. Mar. Pet. Geol., 2005. 22(4): p. 579-590.
3.Swamy, V., et al., A thermodynamic assessment of silica phase diagram. Journal of Geophysical Research: Solid Earth, 1994. 99(B6): p. 11787-11794.
4.Toukmaji, A.Y. and J.A. Board Jr, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92.
5.Module, F., Material Studio 6.0. Accelrys Inc., San Diego, CA, 2011.
6.Wu, J.-Y. and S.-T. Lin, Influence of the Additive Tetrahydrofuran on the Growth and Nucleation of Methane Hydrate via Molecular Dynamics Simulations. 2015, National Taiwan University. p. 35-37.
7.Sell, A., et al., Measurement of CO2 Diffusivity for Carbon Sequestration: A Microfluidic Approach for Reservoir-Specific Analysis. Environmental Science & Technology, 2013. 47(1): p. 71-78.
8.Diamond, L.W., Stability of CO2 clathrate hydrate + CO2 liquid + CO2 vapour + aqueous KCl-NaCl solutions: Experimental determination and application to salinity estimates of fluid inclusions ∗. Geochimica et Cosmochimica Acta, 1992. 56(1): p. 273-280.
9.Belgodere, C., et al., Experimental determination of CO2 diffusion coefficient in aqueous solutions under pressure at room temperature via Raman spectroscopy: impact of salinity (NaCl). Journal of Raman Spectroscopy, 2015. 46(10): p. 1025-1032.
10.Hikita, H., et al., Diffusivities of carbon dioxide in aqueous mixed electrolyte solutions. The Chemical Engineering Journal, 1979. 17(1): p. 77-80.
11.Vanbeest, B.W.H., G.J. Kramer, and R.A. Vansanten, FORCE-FIELDS FOR SILICAS AND ALUMINOPHOSPHATES BASED ON ABINITIO CALCULATIONS. Phys. Rev. Lett., 1990. 64(16): p. 1955-1958.
12.Sloan, E.D., Clathrate Hydrates of Natural Gases, Second Edition, Revised and Expanded. 1998: Taylor & Francis.
13.Duan, Z., et al., An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Marine Chemistry, 2006. 98(2–4): p. 131-139.
14.Anderson, G.K., Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation. Journal of Chemical Thermodynamics, 2003. 35(7): p. 1171-1183.
15.Kvenvolden, K.A., Gas hydrates—geological perspective and global change. Reviews of Geophysics, 1993. 31(2): p. 173-187.
16.Haq, B.U., Methane in the Deep Blue Sea. Science, 1999. 285(5427): p. 543-544.
17.Boswell, R. and T.S. Collett, Current perspectives on gas hydrate resources. Energy & environmental science, 2011. 4(4): p. 1206-1215.
18.Chatti, I., et al., Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management, 2005. 46(9-10): p. 1333-1343.
19.Davies, S.R., et al., Hydrate plug dissociation. Aiche Journal, 2006. 52(12): p. 4016-4027.
20.Gornitz, V. and I. Fung, POTENTIAL DISTRIBUTION OF METHANE HYDRATES IN THE WORLDS OCEANS. Global Biogeochemical Cycles, 1994. 8(3): p. 335-347.
21.Dickens, G.R., C. Paull, and P. Wallace, Direct measurement ofin situ methane quantities in a large gas hydrate reservoir. Nature, 1997. 385: p. 426-428.
22.Kvenvolden, K.A., Gas hydrates-geological perspective and global change. REVIEWS OF GEOPHYSICS-RICHMOND VIRGINIA THEN WASHINGTON-, 1993. 31: p. 173-173.
23.Kuuskraa, V., S.H. Stevens, and K.D. Moodhe, Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States. 2013.
24.Chen, L., et al., Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan. Journal of Asian Earth Sciences, 2014. 92: p. 245-253.
25.Chong, Z.R., et al., Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 2016. 162: p. 1633-1652.
26.Veluswamy, H.P., et al., An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy, 2017. 188: p. 190-199.
27.Veluswamy, H.P., et al., Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel, 2016. 182: p. 907-919.
28.Babu, P., H.W.N. Ong, and P. Linga, A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. Energy, 2016. 94: p. 431-442.
29.Nambiar, A., P. Babu, and P. Linga, CO2 capture using the clathrate hydrate process employing cellulose foam as a porous media. Can. J. Chem., 2015. 93(8): p. 808-814.
30.Wang, Y., X. Lang, and S. Fan, Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas. Journal of Energy Chemistry, 2013. 22(1): p. 39-47.
31.Koh, D.-Y., et al., Energy-efficient natural gas hydrate production using gas exchange. Applied Energy, 2016. 162: p. 114-130.
32.Wedepohl, K.C.C.i.K.H., Handbook of Geochemistry, vol. II-2. 1970.
33.Flörke, O.W., et al., Silica, in Ullmann''s Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
34.Adeyemo, A., et al., Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. International Journal of Greenhouse Gas Control, 2010. 4(3): p. 478-485.
35.Bai, D.S., et al., How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate. Scientific Reports, 2015. 5: p. 12.
36.Bagherzadeh, S.A., et al., Molecular Modeling of the Dissociation of Methane Hydrate in Contact with a Silica Surface. Journal of Physical Chemistry B, 2012. 116(10): p. 3188-3197.
37.Liang, S., D. Rozmanov, and P.G. Kusalik, Crystal growth simulations of methane hydrates in the presence of silica surfaces. Physical Chemistry Chemical Physics, 2011. 13(44): p. 19856-19864.
38.Liang, S. and P.G. Kusalik, The nucleation of gas hydrates near silica surfaces. Can. J. Chem., 2015. 93(8): p. 791-798.
39.Bai, D., et al., Microsecond Molecular Dynamics Simulations of the Kinetic Pathways of Gas Hydrate Formation from Solid Surfaces. Langmuir, 2011. 27(10): p. 5961-5967.
40.Lindahl, E., B. Hess, and D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, 2001. 7(8): p. 306-317.
41.Van Der Spoel, D., et al., GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 2005. 26(16): p. 1701-1718.
42.Berendsen, H.J.C., D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 1995. 91(1): p. 43-56.
43.Hess, B., et al., GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 2008. 4(3): p. 435-447.
44.Hoover, W.G., CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS. Physical Review A, 1985. 31(3): p. 1695-1697.
45.Kittel, C.H.K., Thermal Physics, 2nd 1980, San Francisco: W.H. Freeman and Company. P 31.
46.Landau, L.D.L., E.M., Statistical Physics. Pergamon Press. 1980.
47.Berendsen, H.J.C., et al., MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH. Journal of Chemical Physics, 1984. 81(8): p. 3684-3690.
48.Berendsen, H.J.C., Transport Properties Computed by Linear Response through Weak Coupling to a Bath, in Computer Simulation in Materials Science, M. Meyer and V. Pontikis, Editors. 1991, Springer Netherlands. p. 139-155.
49.Parrinello, M. and A. Rahman, POLYMORPHIC TRANSITIONS IN SINGLE-CRYSTALS - A NEW MOLECULAR-DYNAMICS METHOD. Journal of Applied Physics, 1981. 52(12): p. 7182-7190.
50.Eargle, J., D. Wright, and Z. Luthey-Schulten, Multiple Alignment of protein structures and sequences for VMD. Bioinformatics, 2006. 22(4): p. 504-506.
51.Stone, J.E., J. Gullingsrud, and K. Schulten, A system for interactive molecular dynamics simulation, in Proceedings of the 2001 symposium on Interactive 3D graphics. 2001, ACM. p. 191-194.
52.Stone, J.E. and U.o.M.-.-R.G. School, An Efficient Library for Parallel Ray Tracing and Animation: A Thesis Presented to the Faculty of the Graduate School of the University of Missouri-Rolla in Partial Fulfillment of Requirements for the Degree of Master of Science in Computer Science. 1998: University of Missouri-Rolla.
53.Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling, 1996. 14(1): p. 33-38.
54.Abascal, J., et al., A potential model for the study of ices and amorphous water: TIP4P/Ice. The Journal of chemical physics, 2005. 122: p. 234511.
55.Kaminski, G.A., et al., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 2001. 105(28): p. 6474-6487.
56.Luzar, A. and D. Chandler, Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. The Journal of chemical physics, 1993. 98(10): p. 8160-8173.
57.Wu, J.-Y., et al., Molecular Dynamics Study on the Growth Mechanism of Methane plus Tetrahydrofuran Mixed Hydrates. The Journal of Physical Chemistry C, 2015. 119(34): p. 19883-19890.
58.趙紘毅, 以分子動力學模擬探討甲烷水合物之自我保護效應, in 化學工程學研究所. 2015, 國立臺灣大學: 台北市. p. 72.
59.Bozzo, A.T., et al., PROPERTIES OF HYDRATES OF CHLORINE AND CARBON-DIOXIDE. Desalination, 1975. 16(3): p. 303-320.
60.Yoon, J.H., et al., Rigorous approach to the prediction of the heat of dissociation of gas hydrates. Ind. Eng. Chem. Res., 2003. 42(5): p. 1111-1114.
61.Udachin, K.A., C.I. Ratcliffe, and J.A. Ripmeester, Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. Journal of Physical Chemistry B, 2001. 105(19): p. 4200-4204.
62.Uchida, T., et al., Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide. Journal of Crystal Growth, 1999. 204(3): p. 348-356.
63.Ripmeester, J.A. and C.I. Ratcliffe, The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest. Energy & fuels, 1998. 12(2): p. 197-200.
64.Portier, S. and C. Rochelle, Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 °C and from 1 to 300 bar: Application to the Utsira Formation at Sleipner. Chemical Geology, 2005. 217(3–4): p. 187-199.
65.Lee, S.H. and P.J. Rossky, A COMPARISON OF THE STRUCTURE AND DYNAMICS OF LIQUID WATER AT HYDROPHOBIC AND HYDROPHILIC SURFACES - A MOLECULAR-DYNAMICS SIMULATION STUDY. Journal of Chemical Physics, 1994. 100(4): p. 3334-3345.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊