(54.236.58.220) 您好!臺灣時間:2021/03/08 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:袁勝威
研究生(外文):Sheng-Wei Yuan
論文名稱:利用熱分析儀量測對羥基苯甲醛分別與對羥基苯甲酸乙酯、對羥基苯甲酸甲酯以及對羥基苯甲酸丙酯混合之二成份有機混合物的固液相平衡
論文名稱(外文):Solid-Liquid Equilibrium Measurements of 4-Hydroxybenzaldehyde Plus Ethyl-4-hydroxybenzoate or Methyl-4-hydroxybenzoate or Propyl-4-hydroxybenzoate Binary Organic Mixtures Using DSC
指導教授:陳延平陳延平引用關係
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:DSC雙成分混合固液相平衡共熔點對羥基苯甲酸乙酯對羥基苯甲酸甲酯對羥基苯甲酸丙酯4-羥基苯甲醛
外文關鍵詞:DSCbinary mixturesolid-liquid equilibriumeutectic pointethyl-4-hydroxybenzoatemethyl-4-hydroxybenzoatepropyl-4-hydroxybenzoate4-hydroxybenzaldehyde
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在化學工業程序中,大部分的分離操作都需要合適的相平衡條件,才能成功分離或是讓操作程序具有經濟效益。如蒸餾程序中,混合物在液相與氣相的相平衡組成差異性必須要足夠大;萃取則需要液相與液相之間相平衡組成差異大才能進行;結晶程序分離發生在固相與液相之間之相平衡。在設計混合物分離程序前,必須對所選系統的相平衡行為先有了解。

本研究選用三組雙成份混合系統,分別為ethyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2)、methyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2)、propyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2),進行固液相平衡實驗量測。本研究將藥物以不同莫耳比例混合後填入液態鋁盤,接著送入差式掃描量熱儀進行加熱與數據量測,由儀器所匯出之熱流曲線分析混合物的相變化行為。由不同組成的各種相變化溫度,我們繪製出三組雙成分混合物之固液相平衡圖。從熱流曲線以及相平衡圖觀察本研究的混合行為均屬於簡單共熔相平衡,相圖上具有一個共熔點。所選用的藥品組合均有化學反應中反應物與生成物之關係,因此本研究可提供工業上結晶分離程序之應用。

由量測到之DSC曲線圖以及相平衡圖得知,本研究選擇之混合物相圖均屬於簡單共熔型,具有一個共熔點。由相圖觀察,ethyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2) 之共熔組成為x1=0.46,共熔溫度為84.1 oC;混合系統methyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2) 之共熔組成為x1=0.46,共熔溫度為84.9 oC,混合系統propyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2)之共熔組成為x1=0.59,共熔溫度為71.5 oC

簡單共熔固-液相平衡中,共熔點為純化分離操作之極限,亦是複合相轉化材料最佳的混合比例。除了直接從相圖觀察外,為了減少繁瑣的實驗點量測又不希望失去準確性,本研究利用共熔點比例法推斷所選系統之共熔點組成,結果顯示共熔點轉化比例對組成做圖為線性關係,並且得到的共熔點組成與直接從相圖觀察之結果相近。當混合物組成接近共熔點時,量測到的DSC圖譜之共熔波峰與液化波峰重疊甚多難以區分,實驗誤差大,因此一般希望減少靠近共熔點之實驗量測。由實驗結果得知,即使減少實驗量測點,共熔點轉化比例法也有良好的預測結果。
In chemical industry, most of the separation operation needs a proper phase equilibrium condition for their success or economical interest. For example, the composition difference between liquid phase and vapor phase most be significant in distillation operation. In extraction, the composition in every liquid phase most differ from each other enough. Crystallization separation occurs with equilibrium between solid phase and liquid phase. Hence, we need to know the phase equilibrium for the design of separation operation.
In this study, we choose three set of binary mixtures to perform the solid- liquid phase equilibrium. They are ethyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2)、methyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2)、propyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2) respectively. We filled the drugs in aluminum plate with different mole fraction and then heat the plate and measured data with differential scanning calorimetry. We analyzed the phase transition behavior with the heat flux curve output by the instrument. We sketch solid-liquid phase equilibrium diagram of these three binary mixtures with the phase change temperature against various compositions. From the heat flux curves and phase diagrams, we found that the system we chose belong to simple eutectic system. There is one eutectic point in each phase diagram. The components of every binary mixture we used have the relationship between reactant and product. This reveals that the experiment result in this study can supply a basis of separation operation design.
The phase diagram of our systems belong to simple eutectic phase equilibrium. The eutectic composition of ethyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2) binary mixture is x1=0.46 and eutectic temperature is 84.1 oC. The eutectic composition of methyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2) is x1=0.46 and eutectic temperature is 84.9 oC. The eutectic composition of propyl-4-hydroxybenzoate (1) + 4-hydroxybenzaldehyde (2) binary mixture is x1=0.59 and eutectic temperature is 71.5 oC
Eutectic composition is the limit of separation operation and also the favorable composition for complex phase change material. The eutectic phase transition wave and liquidus phase transition wave overlapped a lot when the mixing is near the eutectic composition. It causes the difficulty of the determination of phase transition temperature. In this study, we introduced eutectic transformation fraction to help us to determine eutectic point. The results showed that the eutectic point determined with this method matched the one observed on the phase diagram. And the results revealed that eutectic transformation fraction method can predict the eutectic point well despite the decreasing of experiment data.
口試委員會審定書…………………………………………………………………….I
誌謝…………………………………………………………………………………. II
摘要………………………………………………………………………………....... III
Abstract………………………………………………………………………………..V
目錄………………………………………………………………………………..…VII
表目錄…..………………………………………………………………………….…IX
圖目錄……….…………………………………………………………………… XI
第一章 緒論……………………………………………………………………………1
1-1 固液相平衡之重要性………………………………………………………..1
1-2 固液相平衡研究方法………………………………………………………3
1-3 研究動機……………………………………………………………………7
第二章DSC介紹、熱分析數學模式與雙成份系統固液相平衡…………10
2-1 DSC介紹…………………………………………………………………10
2-1-1熱流式DSC (Heat flux DSC)………………………………………10
2-1-2補償式DSC (Power compensation DSC)…………………………..11
2-2DSC之Thermal cell數學模式……………………………………………12
2-3 固液相平衡數學模式與雙成分簡單共熔相圖…………………………14
2-3-1固液相平衡數學模式…………………………………………14
2-3-2 Wilson 活性係數模式..........................18
2-3-3 雙成份混合物共熔相圖………………………………………..19
2-3-4 相轉化比例 (Fractional transformation)………………………20
第三章 實驗部分……………………………………………………………………28
3-1 實驗藥品……………………………………………………………………28
3-2 藥品配製…………………………………………………………………… 29
3-3 實驗儀器…………………………………………………………………… 30
3-4儀器參數校正………………………………………………………………32
3-5 實驗步驟…………………………………………………………………… 32
3-6數據數理............................................33
3-7影響實驗之因素……………………………………………………….34
3-7-1 顆粒大小與均勻度………………………………………………..34
3-7-2 試藥裝填重量………………………………………………………34
3-7-3 加熱速率之影響……………………………………………………35
3-7-4 水氣之影響…………………………………………………………35
第四章 結果討論 ……………………………………………………………………41
4-1 單一組成份之實驗量測數…………………………………………….41
4-2 對羥基苯甲酸乙酯 (1) + 4-羥基苯甲醛 (2)……………………………42
4-2-1雙成分混合物相圖...................................42
4-2-2 Wilson數學模式回歸分析結果………………………………….43
4-2-3 共熔點轉化比例法分析…….………………………………………43
4-3對羥基苯甲酸甲酯 (1) + 4-羥基苯甲醛 (2)……………………………… 44
4-3-1 雙成分混合物相圖…….……………………………………………44
4-3-2 Wilson數學模式回歸分析結果……….………………………..45
4-3-3 共熔點轉化比例法分析…………………………………………...45
4-4對羥基苯甲酸丙酯 (1) + 4-羥基苯甲醛 (2)……………………………..46
4-4-1 雙成分混合物相圖………………………………………………….46
4-4-2 Wilson數學模式回歸分析結果…………………………………47
4-4-3 共熔點轉化比例法分析…………………………………………….47
第五章 結論 …………………………………………………………………………79
第六章 參考文獻 ………………………………………………………………80
Antonio Gonzalez, J., and Domanska, U. (2001). Thermodynamics of mixtures containing a very strongly polar compound. Part I. Experimental phase equilibria (solid–liquid and liquid–liquid) for sulfolane + alkan-1-ols systems. Analysis of some mixtures including sulfolane in terms of disquac. Physical Chemistry Chemical Physics, 3(6), 1034-1042.
Bernardes, C. E. S., and da Piedade, M. E. M. (2008). Energetics of the O-H bond and of intramolecular hydrogen bonding in HOC6H4C(O)Y (Y = h, CH3, CH2CH=CH2, C=CH, CH2F, NH2, NHCH3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds. Journal of Physical Chemistry A, 112(40), 10029-10039.
Boudouh, I., González, J. A., Djemai, I., and Barkat, D. (2017). Solid-liquid equilibria of eicosane, tetracosane or biphenyl + 1-octadecanol, or + 1-eicosanol mixtures. Fluid Phase Equilibria, 442, 28-37.
Boudouh, I., Hafsaoui, S. L., Mahmoud, R., and Barkat, D. (2016). Measurement and prediction of solid–liquid phase equilibria for systems containing biphenyl in binary solution with long-chain n-alkanes. Journal of Thermal Analysis and Calorimetry, 125(2), 793-801.
Chen, Y. P., Tang, M., and Kuo, J. C. (2005). Solid-liquid equilibria for binary mixtures of N-phenylacetamide with 4-aminoacetophenone, 3-hydroxyacetophenone and 4-hydroxyacetophenone. Fluid Phase Equilibria, 232(1-2), 182-188
Cabaleiro, D., Gracia-Fernández, C., and Lugo, L. (2014). (Solid+liquid) phase equilibria and heat capacity of (diphenyl ether+biphenyl) mixtures used as thermal energy storage materials. The Journal of Chemical Thermodynamics, 74, 43-50.
Clas, S.-D., Dalton, C. R., and Hancock, B. C. (1999). Differential scanning calorimetry: applications in drug development. Pharmaceutical Science & Technology Today, 2(8), 311-320.
Diarce, G., Corro-Martínez, E., Quant, L., Campos–Celador, Á., and García–Romero, A. (2016). The sodium nitrate–urea binary mixture as a phase change material for medium temperature thermal energy storage. Part I: Determination of the phase diagram and main thermal properties. Solar Energy Materials and Solar Cells, 157, 1065-1075.
Ding, M. S. (2004). Liquid-solid phase equilibria and thermodynamic modeling for binary organic carbonates. Journal of Chemical and Engineering Data, 49(2), 276-282.
Domanska, U., Groves, F. R., and McLaughlin, E. (1993). Solid liquid-phase equilibria of binary and ternary mixtures of benzene and polynuclear aromatic-compounds. Journal of Chemical and Engineering Data, 38(1), 88-94.
Domanska, U., and Hofman, T. (1985). Correlations for the solubility of normal alkanoic acids and ortho-toluic acid in binary solvent mixtures. Journal of Solution Chemistry, 14(7), 531-547.
Domańska, U., and Morawski, P. (2004). Solid + liquid equilibria of (n-alkane + cyclohexane) mixtures at high pressures. Fluid Phase Equilibria, 218(1), 57-68.
Farahani, B. V., Rajabi, F. H., Hosseindoust, B., and Zenooz, N. (2010). DSC Study of Solid-Liquid Equilibria for Energetic Binary Mixtures of Methylnitramine with 2,4-Dinitro-2,4-diazapentane and 2,4-Dinitro-2,4-diazahexane. Journal of Phase Equilibria and Diffusion, 31(6), 536-541.
Fornaro, O., and Palacio, H. A. (2009). Study of dilute Al–Cu solidification by cooling curve analysis. Journal of Materials Science, 44(16), 4342-4347.
Gmehling, J., Li, J. D., and Schiller, M. (1993). A modified unifac model .2. present parameter matrix and results for different thermodynamic properties. Industrial & engineering chemistry research, 32(1), 178-193.
Gowda, R. R., and Chakraborty, D. (2011). Ceric Ammonium Nitrate Catalyzed Oxidation of Aldehydes and Alcohols. Chinese Journal of Chemistry, 29(11), 2379-2384.
Hemminger, W. F., and Sarge, S. M. (1991). The base-line construction and its influence on the measurement of heat with differential scanning calorimretes. Journal of Thermal Analysis, 37(7), 1455-1477.
Heuvel, H. M., and Lind, K. (1970). Computerized analysis and correction of differential scanning calorimetric data for effects due to thermal lag and heat capacity changes. Analytical Chemistry, 42(9), 1044-&.
Huang, C. C., & Chen, Y. P. (2000). Measurements and model prediction of the solid-liquid equilibria of organic binary mixtures. Chemical Engineering Science, 55(16), 3175-3185
Jakob, A., Joh, R., Rose, C., and Gmehling, J. (1996). Solid-liquid equilibria in binary mixtures of organic compounds (vol 113, pg 117, 1995). Fluid Phase Equilibria, 119(1-2), 235-235.
Jamil, A., Kousksou, T., Zeraouli, Y., and Dumas, J. P. (2008). Liquidus temperatures determination of the dispersed binary system. Thermochimica Acta, 471(1-2), 1-6.
Jamil, A., Kousksou, T., Zeraouli, Y., Gibout, S., and Dumas, J. P. (2006). Simulation of the thermal transfer during an eutectic melting of a binary solution. Thermochimica Acta, 441(1), 30-34.
Kahl, G., Scholl-Paschinger, E., and Lang, A. (2001). Phase transitions and critical behaviour of binary liquid mixtures. Monatshefte Fur Chemie, 132(11), 1413-1432.
Kareem, H. S., Ariffin, A., Nordin, N., Heidelberg, T., Abdul-Aziz, A., Kong, K. W., and Yehye, W. A. (2015). Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3,4,5-trimethoxy benzyl moiety. Eur J Med Chem, 103, 497-505.
Kousksou, T., Jamil, A., Zeraouli, Y., and Dumas, J. P. (2007). Equilibrium liquidus temperatures of binary mixtures from differential scanning calorimetry. Chemical Engineering Science, 62(23), 6516-6523.
Li, J. Q., Wang, Z., Bao, Y., and Wang, J. K. (2013). Solid-Liquid Phase Equilibrium and Mixing Properties of Cloxacillin Benzathine in Pure and Mixed Solvents. Industrial & engineering chemistry research, 52(8), 3019-3026.
Lide, D. R., Ed. (2003), Handbook of Chemistry and Physics; 84th Ed., CRC Press: NY
Matsuoka, M., and Ozawa, R. (1989). Determination of solid-liquid phase-equilibria of binary organic-systems by differential scanning calorimetry. Journal of Crystal Growth, 96(3), 596-604.
Mekki-Berrada, A., Bennici, S., Dubois, J. L., and Auroux, A. (2013). Experimental Solid-Liquid Phase Equilibria of a Methyl Ester/Amide/Nitrile Ternary System by DSC. Journal of the American Oil Chemists Society, 90(11), 1621-1627.
Mullin, J. W. (1979). ‘Crystallization’ in Kirk-Othmer. Encyclopedia of Chemical Techonology, Volume 7, 3rd edition, John Wiley & New York.
Nicoli, S., Bilzi, S., Santi, P., Caira, M. R., Li, J., and Bettini, R. (2008). Ethyl-Paraben and Nicotinamide Mixtures: Apparent Solubility, Thermal Behavior and X-Ray Structure of the 1:1 Co-Crystal. Journal of Pharmaceutical Sciences, 97(11), 4830-4839.
Ohgiya, T., and Nishiyama, S. (2004). A simple deprotection of triflate esters of phenol derivatives. Tetrahedron Letters, 45(33), 6317-6320.
Owen, C., James, K., Sampson, L., and Ahmed, S. (2003). Synthesis and biochemical evaluation of some novel benzoic acid based esters as potential inhibitors of oestrone sulphatase. J Pharm Pharmacol, 55(1), 85-93.
Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G. (1999), Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice- hall Inc.: Englewood Cliffs, NJ
Poling, B.E., Prausnitz, J.M., O`Connell, J.P. (2001), The Properties of Gases and Liquid, 5th ed., The McGraw-Hill Companies, Inc.: New York, 4.33-4.35
Rai, R. N., Ramasamy, P., and Lan, C. W. (2002). Synthesis and crystal growth of binary organic NLO material UNBA. Journal of Crystal Growth, 235(1-4), 499-504.
Reddi, R. S. B., Kumar Satuluri, V. S. A., and Rai, R. N. (2011). Solid–liquid equilibrium, thermal and physicochemical studies of organic eutectics. Journal of Thermal Analysis and Calorimetry, 107(1), 183-188.
Renon, H., and Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. Aiche Journal, 14(1), 135-&.
Sangster, J. (1999). Phase Diagrams and Thermodynamic Properties of Binary Systems of Drugs. Journal of Physical and Chemical Reference Data, 28(4), 889-930.
Sharma, A., Tyagi, V. V., Chen, C. R., and Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318-345.
Sharma, B. L., Kant, R., Sharma, R., and Tandon, S. (2003). Deviations of binary organic eutectic melt systems. Materials Chemistry and Physics, 82(1), 216-224.
Shin, S. H., Jeong, I.-Y., Jeong, Y.-S., and Park, S.-J. (2014). Solid–liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol. Fluid Phase Equilibria, 376, 105-110.
Takiyama, H., Suzuki, H., Uchida, H., and Matsuoka, M. (2002). Determination of solid-liquid phase equilibria by using measured DSC curves. Fluid Phase Equilibria, 194, 1107-1117.
Tamura, K., Kasuga, T., and Nakagawa, T. (2016). Phase behavior and solid–liquid equilibria of aliphatic and aromatic carboxylic acid mixtures. Fluid Phase Equilibria, 420, 24-29.
Tanaka, Y., and Kawakami, M. (1996). Solid-liquid phase equilibria in binary (benzene, cyclohexane plus n-tetradecane, n-hexadecane) systems at temperatures 230-323 K and pressures up to 120 MPa. Fluid Phase Equilibria, 125(1-2), 103-114.
Wang, Y. L., and Chen, A. M. (2008). Enantioenrichment by crystallization. Organic Process Research & Development, 12(2), 282-290.
Wassvik, C. M., Holmen, A. G., Draheim, R., Artursson, P., and Bergstrom, C. A. S. (2008). Molecular characteristics for solid-state limited solubility. Journal of Medicinal Chemistry, 51(10), 3035-3039.
Wei, D., Han, S., and Wang, B. (2014). Solid–liquid phase equilibrium study of binary mixtures of n-octadecane with capric, and lauric acid as phase change materials (PCMs). Fluid Phase Equilibria, 373, 84-88.
Wei, D. W., Han, S. N., and Shen, X. (2016). Solid-liquid phase equilibria of (n-octadecane with myristic, and palmitic acid) binary mixtures used as phase change materials (PCMs). Journal of Chemical Thermodynamics, 101, 7-11.
Weidlich, U., and Gmehling, J. (1987). A modified unifac model .1. prediction of vle, he, and gamma-infinity. Industrial & engineering chemistry research, 26(7), 1372-1381.
Wilson, G. M. (1964). VAPOR-LIQUID EQUILIBRIUM .11. NEW EXPRESSION FOR EXCESS FREE ENERGY OF MIXING. Journal of the American Chemical Society, 86(2), 127-&.
Xie, Y., Du, C., Cong, Y., Wang, J., Han, S., and Zhao, H. (2016). Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by 1,8-dinitronaphthalene and 1,5-dinitronaphthalene and N-methyl-2-pyrrolidone. The Journal of Chemical Thermodynamics, 101, 363-371.
Yang, M., Narita, T., Tanaka, Y., Sotani, T., and Matsuo, S. (2003). Solid-liquid phase equilibria in binary (1-octanol plus n-alkane) mixtures under high-pressure part 2. (1-octanol plus n-octane, n-dodecane) systems. Fluid Phase Equilibria, 204(1), 55-64.
吳宇浩. (2004). 利用熱分析儀量測N-Phenylacetamide + 4-Aminoacetophenone、3-Hydroxyacetopenone、4-Hydroxyacetophenone二成份有機混合物之固液相平衡. 國立台灣大學化學工程研究所碩士論文.
許世杰. (2002). 間氯酚與對氯酚之固液相平衡研究. 國立中央大學化學工程與材料工程研究所碩士論文
蔡榮贊. (2004). 利用熱分析儀測量2-Methylbenzoic Acid + 3-Methylbenzoic Acid, 2-Methoxybenzoic Acid + 3-Methylbenzoic Acid, N-Phenylacetamide + Benzamide 二成份混合物之固液相平衡. 國立台灣大學化學工程研究所碩士論文.
黃呈加. (2000). 固相-液相與固相-超臨界相平衡的實驗方法與理論研究. 國立台灣大學化學工程學研究所博士學位論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 利用熱分析儀量測N-Phenylacetamide+4-Aminoacetophenone,3-Hydroxyacetophenone,4-Hydroxyacetophenone二成分有機混合物之固液相平衡
2. 間氯酚與對氯酚之固液相平衡研究
3. 固相-液相與固相-超臨界相平衡的實驗方法與理論研究
4. 利用熱分析儀測量2-MethylbenzoicAcid+3-MethylbenzoicAcid,2-MethoxybenzoicAcid+3-MethylbenzoicAcid,N-Phenylacetamide+Benzamide二成份混合物之固液相平衡
5. 分離沸點相近之2-甲氧基酚與1,2-二甲氧基苯混合物的固液相平衡研究
6. 利用熱分析儀測量同分異構有機物之固液相平衡
7. 測量苯甲酸、戊二酸、庚二酸、辛二酸、壬二酸、癸二酸之二成份固液相平衡
8. 苯甲酸、己二酸、庚二酸、戊二酸、3-甲基戊二酸、2,2-二甲基丁二酸、2,3-二甲基丁二酸之二成份固液相平衡
9. 丁二酸、己二酸、辛二酸、壬二酸、癸二酸、 3-甲基戊二酸、2,2-二甲基丁二酸、 2,3-二甲基丁二酸之二成份固液相平衡
10. 丙二酸與戊二酸、辛二酸、壬二酸、癸二酸、 3-甲基戊二酸、2,2-二甲基丁二酸、 2,3-二甲基丁二酸之二成份固液相平衡
11. 順丁烯二酸、丙二酸、庚二酸、壬二酸、 癸二酸、2,2-二甲基丁二酸、2,3-二甲基丁二酸、3-甲基戊二酸之兩成份固液相平衡
12. 己二酸、庚二酸、辛二酸、壬二酸、癸二酸、 2,3-二甲基丁二酸之二成份固液相平衡
13. 礫間接觸氧化技術應用於處理苯甲酸酯類之研究
14. 相變化材料熱性質之研究
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔