跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳子明
研究生(外文):Tzu-Ming Chen
論文名稱:結合滲透蒸發提升生質柴油程序中預酯化反應
論文名稱(外文):Pervaporation assisted pre-esterification in a biodiesel process
指導教授:吳紀聖
指導教授(外文):Chi-Sheng Wu
口試委員:童國倫李明哲
口試委員(外文):Kuo-Lun TungMing-Jer Lee
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:滲透蒸發預酯化反應生質柴油薄膜反應器
外文關鍵詞:PervaporationPre-esterificationBiodieselMembrane Reactor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今我們的生活與石化燃料息息相關,面對未來全球石油供應短缺以及環境議題,替代能源的需求因此成為了一門重要課題。生質柴油為一普遍的生質能,其具有潔淨、再生性的特質,且燃燒性質近似於石化柴油,因此可以作為柴油燃料的替代品亦或與一般燃料混合。
為了克服一般因為油料中自由脂肪酸於鹼觸媒生產生質柴油時所遇到的皂化和水解問題,學者們提出預酯化-轉酯化之兩步驟式生產生質柴油之方法,本研究則在探討第一步驟的預酯化反應。有別於一般文獻上多採取小分子酸來進行預酯化反應而有失模擬真正生質柴油中的自由脂肪酸,我們設計了一合併式反應-滲透蒸發模組,透過己酸、丙醇預酯化反應以及有無結合滲透蒸發作為比較,根據勒沙特列原理,藉由不斷地將產物水移除,有利於反應向產物端進行,進而增加自由脂肪酸的轉化率。結果顯示Crosslinking PI薄膜的高度親水性。我們也針對不同的反應物初始醇/酸莫耳數比(M)、反應溫度、膜面積/反應溶液體積(S/V)比進行探討以尋求最佳條件。與未結合滲透蒸發相比,結果顯示在初始丙醇/己酸莫耳數比= 1.39、反應溫度70℃、5 wt % Amberlyst 15觸媒用量下,結合滲透蒸發可以在12小時內提升約3 %轉化率。而使用0.05 wt % 硫酸觸媒結合滲透蒸發則可以在9小時內提升約6 %轉化率。
Nowadays, our life is intimately linked with fossil fuels. With more and more concerns about oil shortage and environmental issues, seeking for alternative energy turns out to be crucial. Biodiesel is a kind of general biofuel, and it is clean, renewable and has combustion properties like petroleum-based diesel.
In order to overcome the saponification and hydrolysis problems of producing biodiesel by using alkaline catalysts which is usually caused by free fatty acid (FFA) contained in raw oil. A two-step method, pre-esterification followed by transesterification, is proposed. In our study, we focused on the first step: pre-esterification. In most literatures, small acid molecular compounds were used to perform the pre-esterification reactions, which is different from the main FFA component in the raw oil. We designed a reactor consisting of a pervaporation module. The esterifications of n-propanol and caproic acid were performed with/without pervaporation for comparison. By means of continuously removing the water from the solution via prevaporation, the overall reaction favors the product side, thus further to enhance the conversion of caproic acid based on Le Chatelier principle. The results showed the hydrophilic property of Crosslinking PI membrane. We also investigated various parameters including initial molar ratio of n-propanol to caproic acid (M), reaction temperature, ratio of effective membrane area to the reaction solution volume (S/V) to search the optimal condition. Compared with no pervaporation, the results showed that the conversion was enhanced 3 % at 70℃, using 5 wt % Amberlyst 15 catalyst and M= 1.39 by pervaporation in 12 hours. Instead of Amberlyst 15, the conversion was enhanced 6 % when 0.05 wt % sulfuric acid catalyst was used with pervaporation in 9 hours.
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究目的 5
Chapter 2 文獻回顧 7
2.1 滲透蒸發原理 7
2.2 滲透蒸發質傳機制 8
2.2.1 Solution-Diffusion model 8
2.2.2 Pore-flow model 10
2.3 滲透蒸發的發展 12
2.4 Hansen 溶解度參數 13
2.5 滲透蒸發的應用 15
2.5.1 有機溶液脫水 15
2.5.2 混合溶液中移除有機物 17
2.5.3 有機-有機分離 18
2.6 酯化反應結合滲透蒸發 19
2.7 生質柴油之觸媒 23
Chapter 3 實驗方法 26
3.1 實驗藥品與器材 26
3.1.1 實驗藥品 26
3.1.2 氣體 26
3.1.3 器材 27
3.2 薄膜特性檢測及分析原理 28
3.2.1 接觸角量測儀(Contact Angle Meter) 28
3.2.2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 29
3.2.3 能量分散光譜儀(Energy dispersive spectrometer, EDS) 30
3.2.4 熱重示差同步掃描分析儀(Thermogravimetry/Differential Thermal Analysis Thermoanalyzer, TG-DTA) 32
3.2.5 氣相層析儀-火焰離子偵測器(Gas Chromatograph-Flame Ionization Detector, GC-FID) 33
3.3 滲透蒸發薄膜反應器 35
3.4 實驗步驟 37
3.4.1 滲透蒸發實驗步驟 37
3.4.2 預酯化結合滲透蒸發實驗步驟 38
3.4.3 預酯化產物分析 39
Chapter 4 薄膜特性分析結果與討論 46
4.1 接觸角(Contact angle)分析 46
4.2 場發射掃描式電子顯微鏡(FE-SEM)/能量分散光譜儀(EDS) 48
4.3 熱重分析(TGA) 51
Chapter 5 滲透蒸發分離實驗結果與討論 52
Chapter 6 預酯化反應結合滲透蒸發實驗結果與討論 56
6.1 不同反應溫度的影響 56
6.2 不同醇/酸莫耳數比(M)的影響 66
6.3 不同薄膜面積/反應溶液體積(S/V)的影響 75
6.4 不同酸觸媒的影響 81
Chapter 7 結論 87
REFERENCE 90
個人小傳 94
1.E. Lotero, Y. J. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce and J. G. Goodwin, Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44 (2005) 5353-5363.
2.I. E. Agency, Key world energy statistics2016, p. 6.
3.D. Y. C. Leung, X. Wu and M. K. H. Leung, A review on biodiesel production using catalyzed transesterification. Applied Energy, 87 (2010) 1083-1095.
4.M. K. Lam, K. T. Lee and A. R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv, 28 (2010) 500-18.
5.B. Freedman, E. H. Pryde and T. L. Mounts, Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society, 61 (1984) 1638-1643.
6.G. Jyoti, A. Keshav and J. Anandkumar, Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. Journal of Engineering, 2015 (2015) 1-24.
7.X. Feng and R. Y. M. Huang, Liquid Separation by Membrane Pervaporation: A Review. Industrial & Engineering Chemistry Research, 36 (1997) 1048-1066.
8.P. D. Chapman, T. Oliveira, A. G. Livingston and K. Li, Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 318 (2008) 5-37.
9.R. M. Waldburger and F. Widmer, Membrane reactors in chemical production processes and the application to the pervaporation-assisted esterification. Chemical Engineering & Technology, 19 (1996) 117-126.
10.P. Shao and R. Y. M. Huang, Polymeric membrane pervaporation. Journal of Membrane Science, 287 (2007) 162-179.
11.P. Sukitpaneenit, T.-S. Chung and L. Y. Jiang, Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol–water separation. Journal of Membrane Science, 362 (2010) 393-406.
12.P. A. Kober, Pervaporation, perstillation and percrystallization. Journal of Membrane Science, 100 (1995) 61-64.
13.L. Farber, Applications of Pervaporation. Science, 82 (1935) 158.
14.R. Binning, R. Lee, J. Jennings and E. Martin, Separation of Liquid Mixtures by Permeation. Industrial & Engineering Chemistry, 53 (1961) 45-50.
15.王大銘, 滲透蒸發技術之發展. 國立臺灣大學工程學刊, (2002) 頁119-127.
16.R. Y. M. Huang and X. Feng, Pervaporation separation process : history,development and separation applications. 1993, Chemical Institute of Canada: Canadian Chemical News.
17.M. Buckley-Smith, The Use of Solubility Parameters to Select Membrane Materials for Pervaporation of Organic Mixtures (Thesis, Doctor of Philosophy (PhD)). 2006, The University of Waikato. Chapter 2, 45-49.
18.M. Mulder, Basic Principles of Membrane Technology. Second Edition. Kluwer Academic Publishers, 1996, Chapter 6, p. 336.
19.A. Krasiński, P. Wierzba, A. Grudzień, H. Hajmowicz, K. Zawada and L. Synoradzki, Pervaporation applied for dewatering of reaction mixture during esterification. Chemical and Process Engineering, 37 (2016) 121-131.
20.R. Guo, X. Fang, H. Wu and Z. Jiang, Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane. Journal of Membrane Science, 322 (2008) 32-38.
21.H. Wu, X. Li, M. Nie, B. Li and Z. Jiang, Integral PVA-PES Composite Membranes by Surface Segregation Method for Pervaporation Dehydration of Ethanol. Chinese Journal of Chemical Engineering, 19 (2011) 855-862.
22.C.-H. Kang, Y.-F. Lin, Y.-S. Huang, K.-L. Tung, K.-S. Chang, J.-T. Chen, W.-S. Hung, K.-R. Lee and J.-Y. Lai, Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures. Journal of Membrane Science, 438 (2013) 105-111.
23.S. P. Dharupaneedi, R. V. Anjanapura, J. M. Han and T. M. Aminabhavi, Functionalized Graphene Sheets Embedded in Chitosan Nanocomposite Membranes for Ethanol and Isopropanol Dehydration via Pervaporation. Industrial & Engineering Chemistry Research, 53 (2014) 14474-14484.
24.B. Liang, W. Zhan, G. Qi, S. Lin, Q. Nan, Y. Liu, B. Cao and K. Pan, High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J. Mater. Chem. A, 3 (2015) 5140-5147.
25.A. Hasanoğlu, Y. Salt, S. Keleşer, S. Özkan and S. Dinçer, Pervaporation separation of organics from multicomponent aqueous mixtures. Chemical Engineering and Processing: Process Intensification, 46 (2007) 300-306.
26.P. Garg, R. P. Singh, L. K. Pandey and V. Choudhary, Pervaporative studies using polyimide-filled PDMS membrane. Journal of Applied Polymer Science, 115 (2010) 1967-1974.
27.J. Liu, J. Chen, X. Zhan, M. Fang, T. Wang and J. Li, Preparation and characterization of ZSM-5/PDMS hybrid pervaporation membranes: Laboratory results and pilot-scale performance. Separation and Purification Technology, 150 (2015) 257-267.
28.B. Smitha, D. Suhanya, S. Sridhar and M. Ramakrishna, Separation of organic-organic mixtures by pervaporation - a review. Journal of Membrane Science, 241 (2004) 1-21.
29.A. Ibrahim and Y. S. Lin, Pervaporation Separation of Organic Mixtures by MOF-5 Membranes. Industrial & Engineering Chemistry Research, 55 (2016) 8652-8658.
30.Gürkan Sin (Denmark), Henrique Matos (Portugal) and P. Lutze(Germany), TECHNICAL REPORT: Annex IX Energy Efficient Separation System. 2013, Industrial Energy-related Technologies and Systems (IETS). 3.
31.K. C. S. Figueiredo, V. M. M. Salim and C. P. Borges, Ethyl Oleate Production by Means of Pervaporation-Assisted Esterification Using Heterogeneous Catalysis. Brazilian Journal of Chemical Engineering, 27 (2010) 609-617.
32.Y. Han, E. Lv, L. Ma, J. Lu, K. Chen and J. Ding, Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol. Energy Conversion and Management, 106 (2015) 1379-1386.
33.B. Sarkar, S. Sridhar, K. Saravanan and V. Kale, Preparation of fatty acid methyl ester through temperature gradient driven pervaporation process. Chemical Engineering Journal, 162 (2010) 609-615.
34.Q. L. Liu, Z. B. Zhang and H. F. Chen, Study on the coupling of esterification with pervaporation. Journal of Membrane Science, 182 (2001) 173-181.
35.W. Zhang, W. Qing, N. Chen, Z. Ren, J. Chen and W. Sun, Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes. Journal of Membrane Science, 451 (2014) 285-292.
36.J. Ma, M. Zhang, L. Lu, X. Yin, J. Chen and Z. Jiang, Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan–TEOS hybrid membranes. Chemical Engineering Journal, 155 (2009) 800-809.
37.A. P. Rathod, K. L. Wasewar and S. S. Sonawane, Enhancement of Esterification Reaction by Pervaporation Reactor: An Intensifying Approach. Procedia Engineering, 51 (2013) 330-334.
38.E. Sert and F. S. Atalay, n-Butyl acrylate production by esterification of acrylic acid with n-butanol combined with pervaporation. Chemical Engineering and Processing: Process Intensification, 81 (2014) 41-47.
39.A. Penkova, G. Polotskaya and A. Toikka, Pervaporation composite membranes for ethyl acetate production. Chemical Engineering and Processing: Process Intensification, 87 (2015) 81-87.
40.S. Korkmaz, Y. Salt, A. Hasanoglu, S. Ozkan, I. Salt and S. Dincer, Pervaporation membrane reactor study for the esterification of acetic acid and isobutanol using polydimethylsiloxane membrane. Applied Catalysis A: General, 366 (2009) 102-107.
41.A. Hasanoğlu, Y. Salt, S. Keleşer and S. Dinçer, The esterification of acetic acid with ethanol in a pervaporation membrane reactor. Desalination, 245 (2009) 662-669.
42.M. Zhang, L. Chen, Z. Jiang and J. Ma, Effects of Dehydration Rate on the Yield of Ethyl Lactate in a Pervaporation-Assisted Esterification Process. Industrial & Engineering Chemistry Research, 54 (2015) 6669-6676.
43.M.-H. Zhu, Z.-J. Feng, X.-M. Hua, H.-l. Hu, S.-L. Xia, N. Hu, Z. Yang, I. Kumakiri, X. S. Chen and H. Kita, Application of a mordenite membrane to the esterification of acetic acid and alcohol using sulfuric acid catalyst. Microporous and Mesoporous Materials, 233 (2016) 171-176.
44.B. Torabi and E. Ameri, Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chemical Engineering Journal, 288 (2016) 461-472.
45.J. V. Gerpen, Biodiesel processing and production. Fuel Processing Technology, 86 (2005) 1097-1107.
46.Y. Zhang, Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89 (2003) 1-16.
47.M. Tariq, S. Ali and N. Khalid, Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable and Sustainable Energy Reviews, 16 (2012) 6303-6316.
48.F. Ma, L. D. Clements and M. A. Hanna, The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Transactions of the Asae, 41 (1998) 1261-1264.
49.P. Zhang, Z. Chang, D. Wang, B. J. Blamo and W. Li, Effect of Water Content on Product Distribution of Base-Catalyzed Transesterification. Waste and Biomass Valorization, 8 (2016) 95-102.
50.G. Corro, N. Tellez, E. Ayala and A. Marinez-Ayala, Two-step biodiesel production from Jatropha curcas crude oil using SiO2·HF solid catalyst for FFA esterification step. Fuel, 89 (2010) 2815-2821.
51.A. S. Reshad, D. Panjiara, P. Tiwari and V. V. Goud, Two-step process for production of methyl ester from rubber seed oil using barium hydroxide octahydrate catalyst: Process optimization. Journal of Cleaner Production, 142 (2017) 3490-3499.
52.Y. Yuan and T. R. Lee, Contact Angle and Wetting Properties. 51 (2013) 3-34.
53.羅聖全, 研發奈米科技的基本工具之一,電子顯微鏡介紹 – SEM. 2004: http://www.materialsnet.com.tw/eng/index.aspx.
54.A. M. M. R. Facility, Scanning Electron Microscopy. 2013: http://www.ammrf.org.au/myscope/sem/practice/principles/layout.php.
55.T. I. Service, X–ray spectra – continuous and characteristic X–ray spectra, R. G, Editor, http://www.readorrefer.in/article/X---ray-spectra-----continuous-and-characteristic-X---ray-spectra_2935/.
56.C. A. SCIENCE, Injection techniques and principles. 2017: http://www.chromedia.org/chromediawaxtrapp=wlqdcDsHonOvmOlIEcCvBC&subNav=rwhpbjDsHonOvmOlIEcCvBCyC.
57.S. H. University, Gas Chromatography.
58.D. A. A. Zuend, AIOMFAC. 2012.
59.D. R. Lide, CRC Handbook of Chemistry and Physics. 85th Edition 2005, Chapter 6, p. 986.
60.I. M. Smallwood, Handbook of organic solvent properties1996, Section 2, p. 69.
61.C. M. Hansen, HANSEN SOLUBILITY PARAMETERS A User''s Handbook. Second Edition 2007, Chapter 10, Appendix A, p. 181-182,503.
62.S. Lux, T. Winkler, M. Körbler and M. Siebenhofer, Assessment of pervaporative separation of methyl acetate and methanol using organophilic membranes. Chemical Engineering Science, 158 (2017) 500-508.
63.V. S. Chandane, A. P. Rathod and K. L. Wasewar, Enhancement of esterification conversion using pervaporation membrane reactor. Resource-Efficient Technologies, 2 (2016) S47-S52.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top