|
Abraham, M. A., & Sunol, A. K., Supercritical Fluids: Extraction and Pollution Prevention: p69, ACS symposium series, 1997. Alam, M. A., Al-Jenoobi, F. I., & Al-mohizea, A. M., Commercially bioavailable proprietary technologies and their marketed products, Drug Discov. Today, 18 (2013) 936-949. Amidon, G. L., Lennernas, H., Shah V. P., & Crison J. R., A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res., 12 (1995) 413-420. Babu, N. J., & Nangia, A., Solubility Advantage of Amorphous Drugs and Pharmaceutical Cocrystals, Cryst. Growth Des., 11 (2011) 2662–2679. Bahrami, M., & Ranjbarian, S., Production of micro- and nano-composite particles by supercritical carbon dioxide. J. Supercrit. Fluid, 40 (2007) 263-283. Balak, D. M. W., Arani, S. F., Hajdarbegovic, E., Hagemans, C. A. F., Bramer, W. M., Thio, H. B., & Neumann, H. A. M., Efficacy, effectiveness and safety of fumaric acid esters in the treatment of psoriasis: a systematic review of randomized and observational studies, Brit. J. Dermatol., 175 (2016) 250–262. Bartle, K. D., Clifford, A. A., Jafar, S. A., & Shilstone, G. F., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide, J. Phys. Chem. Ref. Data, 20 (1991) 713-756. Bond, A. D., Pharmaceutical Salts and Co-crystals (Editors: Wouters, J., & Quéré, L.), Chapter 2, RSC Drug Discovery Series No. 16, UK, 2012. Boonnoun, P., Nerome, H., Machmudah, S., Goto, M., & Shotipruk, A., Supercritical anti-solvent micronization of marigold-derived lutein dissolved in dichloromethane and ethanol, J. Supercrit. Fluid, 77 (2013) 103-109. Cansell, F., Aymonier, C., & Loppinet-Serani, A., Review on materials science and supercritical fluids, Curr. Opin. Solid St. M., 7 (2003) 331-340. Castaneda-Acosta, J., Cain, A. W., Fischer, N. H., & Knopf, F. C., Extraction of Bioactive Sesquiterpene Lactones from Magnolia grandiflora Using Supercritical Carbon Dioxide and Near-Critical Propane, J. Agric. Food Chem., 43 (1995) 63–68. Chatterjee, M., Sato, M., Kawanami, H., Ishizaka, T., Yokoyama, T., & Suzuki, T., Hydrogenation of aniline to cyclohexylamine in supercritical carbon dioxide: Significance of phase behaviour, Appl. Catal. A-Gen., 396 (2011) 186–193. Chen, Y. M., Lin, P. C., Tang, M., & Chen Y. P., Solid solubility of antilipemic agents and micronization of gemfibrozil in supercritical carbon dioxide, J. Supercrit. Fluid, 52 (2010a) 175-182. Chen, Y. M., Tang, M., & Chen, Y. P., Recrystallization and micronization of sulfathiazole by applying the supercritical antisolvent technology, Chem. Eng. J., 165 (2010b) 358-364. Chimowitz, E. H., & Pennisi, K. J., Process Synthesis Concepts for Supercritical Gas Extraction in the Crossover Region, AICHE J., 32 (1986) 1665-1676. Chrastil, J., Solubility of solids and liquids in supercritical gases, J. Phys. Chem., 86 (1982) 3016-3021. Christov, M., & Dohrn, R., High pressure fluid-phase equilibria: experimental methods and systems investigated (1994-1999), Fluid Phase Equilibr., 202 (2002) 153-218. Costa, P., Manuel, J., & Lobo, S., Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 13 (2001) 123-133. Cuadra, I. A., Cabañas, A., Cheda, J. A. R., Martínez-Casado, F. J., & Pando, C., Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent, Chem. Eng. J., 303 (2016) 238–251. Desiriaju, G. R., Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis, Angew. Chem. Int. Edit., 1995, 34:2311-2327. Dohrn, R., & Brunner, G., High pressure fluid-phase equilibria: experimental methods and systems investigated (1988-1993), Fluid Phase Equilibr., 106 (1995) 213-282. Dohrn, R., Peper, S., & Fonseca J. M. S., High-pressure fluid-phase equilibria: experimental methods and systems investigated (2000-2004), Fluid Phase Equilibr., 288 (2010) 1-54. Esfandiari, N., & Ghoreishi, S. M., Synthesis of 5-Fluorouracil nanoparticles via supercritical gas antisolvent process, J. Supercrit. Fluid, 84 (2013) 205–210 Esmaeilzadeh F., Goodarznia I., Supercritical extraction of phenanthrene in the crossover region, J. Chem. Eng. Data, 50 (2005) 49-51. Fonseca, J. M. S., Dohrn, R., & Peper, S., High-pressure fluid phase equilibria: Experimental methods and systems investigated (2005–2008), Fluid Phase Equilibr., 300 (2011) 1–69. Fornari, R., Alessi, P., & Kikic, I., High pressure fluid phase equilibria: experimental methods and systems investiaged (1978-1987), Fluid Phase Equilibr., 57 (1990) 1-33. Galia, A., Argentino, A., Scialdone, O., & Filardo, G., A new simple static method for the determination of solubilities of condensed compounds in supercritical fluids, J. Superit. Fluid, 24 (2002) 7-17. Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., & Richon, D., Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide, Ind. Eng. Chem. Res., 50 (2011) 221-226. Gurdial, G. S., & Foster, N. R., Solubility of o-hydroxybenzoic acid in supercritical carbon dioxide, Ind. Eng. Chem. Res., 30 (1991) 575-580. Hendeles, L., Weinberger, M., Milavetz, G., Hill, M., & Vaughan, L., Food-Induced “Dose-Dumping” from a Once-a-Day Theophylline Product as a Cause of Theophylline Toxicity, Chest, 87 (1985) 758-765. Hiendrawan, S., Veriansyah, B., Widjojokusumo, E., Soewandhi, S. N., Wikarsa, S., & Tjandrawinata, R. R., Pharmaceutical Salts of Carvedilol: Polymorphism and Physicochemical Properties, Int. J. Pharm. Pharm. Sci., 8 (2016) 89–98. Jasco analytic instruments, Rapid peptide separation by supercritical fluid chromatography, SFC Application note, 8-9, http://www.jasco.com.br/imagem/catalogos/aplicacoes/cromatografia/sfc_01.pdf King, J. W., & Williams, L. L., Utilization of critical fluids in processing semiconductors and their related materials, Curr. Opin. Solid St. M., 7 (2003) 413-424. Knapp, H., Doring, R., Olellrich, L., Plocker, U., & Prausnitz, J. M., Vapor-liquid equilibria for mixture of low boiling substances, Dechema Chem. Data Series VI, 1981. Kurnlk, R. T.; Holla, S. J., & Reid, R. C., Solubility of solids in supercritical carbon dioxide and ethylene, J. Chem. Eng. Data, 26 (1981) 47-51. Lee, L. S.; Huand, J. F., & Zhu O. X.,Solubilities of Solid Benzoic Acid, Phenanthrene, and 2,3-Dimethylhexane in Supercritical Carbon Dioxide, J. Chem. Eng. Data, 46 (2001) 1156-1159. Lee, L. Y., Wang, C. H., & Smith, K. A., Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel, J. Controlled Release, 125 (2008) 96-106. Leon, S., & Andrew, Y., Applied Biopharmaceutics and Pharmacokinetics, 4th Edition, McGraw-Hill, 1999. Lin, H. M., Ho, C. C., & Lee, M. J., Solubilities of disperse dyes of blue 79:1, red 82 and modified yellow 119 in supercritical carbon dioxide and nitrous oxide, J. Supercrit. fluid, 32 (2004) 105-114. Lin, P. C., Su, C. S., Tang, M., & Chen, Y.P., Micronization of ethosuximide using the rapid expansion of supercriticalsolution (RESS) process, J. Supercrit. fluid, 72 (2012) 84– 89. Loth, H., & Hemgesberg, E., Properties and dissolution of drugs micronized by crystallization from supercritical gases, Int. J. Pharm., 32 (1986) 265-267. Martin, A., & Cocero, M. J., Micronization processes with supercritical fluids: fundamentals and mechanism, Adv. Drug Deliv. Rev., 60 (2008) 339-350. Mendez-Santiago, J., & Teja, A. S., The solubility of solids in supercritical fluids, Fluid Phase Equilibr., 158-160 (1999) 501-510. Montes, A., Bendel, A., Kürti, R., Gordillo, M. D., Pereyra, C., & Martínez, de la Ossa, E. J., Processing naproxen with supercritical CO2, J. Supercrit. Fluid, 75 (2013) 21–29. Mosharraf, M., & Nystrom, C., The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs, Int. J. Pharm., 122 (1995) 35-47. Nejad, S. J., Abolghasemi, H., & Moosavian, M. A., Prediction of solute solubility in supercritical carbon dioxide: A novel semi-empirical model, Chem. Eng. Res. Des., 88 (2010) 893-898. Neurohr, C., Erriguible, A., Laugier, S., & Subra-Paternault, P., Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxen-nicotinamide, Chem. Eng. J., 303 (2016) 238–251. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/. Noroozi, J., & Paluch, A. S., Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study, J. Phys. Chem. B, 121 (2017) 1660–1674. Padrela, L., Rodrigues, M. A., Velaga, S. P., Matos, H. A., & de Azevedo, E. G., Formation of indomethacin-saccharin cocrystals using supercritical fluid technology, Eur. J. Pharm. Sci., 38 (2009) 9-17. Padrela, L., Rodrigues, M. A., Velaga, S. P., Fernandes, A. C., Matos, H. A., & de Azevedo E. G., Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process, J. Supercrit. Fluid, 53 (2010) 156-164. Padrela, L., Rodrigues, M. A., Tiago, J., Velaga, S. P., Matos, H. A., & de Azevedo E. G., Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique, J. Supercrit. Fluid, 86 (2014) 129-136. Pang T. H., & McLaughlln, E., Supercritical Extraction of Aromatic Hydrocarbon Solids and Tar and Bitumens, Ind. Eng. Chem. Proc. DD., 24 (1985) 1027–1032. Porto, C. D., Voinovich, D., Decorti, D., & Natolino, A., Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction, J. Supercrit. Fluid, 68 (2012) 45-51. Reverchon, E., & Adami, R., Nanomaterials and supercritical fluids, J. Supercrit. Fluid, 37 (2006) 1-22. Reverchon, E., Adami, R., Cardea, S., & Della Porta, G., Supercritical fluids processing of polymers for pharmaceutical and medical applications, J. Supercrit. Fluid, 47 (2009) 484-492. Reverchon, E., & Donsi, G., Salicylic acid solubilization in supercritical CO2 and its micronization by RESS, J. Supercrit. Fluid, 6 (1993) 241-248. Ricci, S., Celani, M. G., Cantisani, A. T., & Righetti, E., Piracetam for acute ischaemic stroke. Cochrane. Db. Syst. Rev., (2006). Rostamian, H., & Lotfollahi, M. N., A New Simple Equation of State for Calculating Solubility of Solids in Supercritical Carbon Dioxide, Period. Polytech. Chem. Eng. 59 (2015) 174-185. Schmitt W. J., & Reid R. C., Solubitity of monofunctional organic solids in chemically diverse supercritical fluids, J. Chem. Eng. Data, 31 (1986) 204-212. Seneff, M., Scott, J., Friedman, B., & Smith, M., Acute theophylline toxicity and the use of esmolol to reverse cardiovascular instability, Ann. Emerg. Med., 19 (1990) 671–673. Shan, N., & Zaworotko, M. J., The role of cocrystals in pharmaceutical science, Drug Disc. Today, 13 (2008) 440-446. Shekunov, B., & York P., Crystallization processes in pharmaceutical technology and drug delivery design, J. Cryst. Growth, 211 (2000) 122-136. Shikhar, A., Bommana, M. M., Gupta, S. S., & Squillante, E., Formulation development of Carbamazepine–Nicotinamide co-crystals complexed with γ-cyclodextrin using supercritical fluid process, J. Supercrit. Fluid, 55 (2011) 1070-1078. Skerget, M., Kenz, Z., & Kenz-Hrncic, M., Solubility of solids in sub- and supercritical fluids: a review, J. Chem. Eng. Data, 56 (2011) 694–719. Stassi, A., Bettini, R., Gazzaniga, A., Giordano, F., & Schiraldi, A., Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions, J. Chem. Eng. Data, 45 (2000) 161-165. Su, C. S., Chen, Y. M., & Chen, Y. P., Correlation of solid solubilities for phenolic compounds and steroids in supercritical carbon dioxide using the solution model, J. Taiwan Inst. Chem. E., 42 (2011) 608-615. Su, C. S., Tang, M., & Chen, Y. P., Micronization of nabumetone using the rapid expansion of supercritical solution (RESS) process, J. Supercrit. Fluid, 50 (2009) 69-76. Tabernero A., del Valle E. M. M. & Galán M. A., Supercritical fluisd for pharmaceutical particle engineering: methods, basic fundamentals and modeling, Chem. Eng. Process., 60 (2012) 9-25 Tai C. Y., You G. S., & Wang D. C., Modified retrograde crystallization process for separation of binary solid mixtures exploiting the crossover region of supercritical carbon dioxide, Ind. Eng. Chem. Res., 39 (2000) 4357-4364. Tsai C. C., Lin H. M., & Lee M. J., Solubility of C. I. Disperse Violet 1 in supercritical carbon dioxide with or without cosolvent, J. Chem. Eng. Data, 53 (2008) 2163-2169. Weyna, D. R. Shattock, T., Vishweshwar, P., Zaworotko, M. J., Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution, Cryst. Growth Des., 9 (2009) 1106–1123. William, M. H., CRC Handbook of Chemistry and Physics Online (section 16), 97th ed.,2016–2017, http://www.hbcpnetbase.com/. Wouters, J., Rome, S., & Quéré, L., Pharmaceutical Salts and Co-crystals (Editors: Wouters, J., & Quéré, L.), Chapter 16, RSC Drug Discovery Series No. 16, UK, 2012.
|