|
Reference
1.Brabec, C.J., N.S. Sariciftci, and J.C. Hummelen, Plastic Solar Cells. Adv. Funct. Mater., 2001. 11: p. 15-26. 2.Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells. Chem. Mater., 2004. 16: p. 4533-4542. 3.Brabec, C.J., Organic photovoltaics:technolog y and market. Sol. Energy Mater. Sol. Cells, 2004. 83: p. 273–292. 4.Yu, J., et al., Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells. Adv. Energy Mater., 2012. 2: p. 245–252. 5.Li, G., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater., 2005. 4: p. 864–868. 6.Yang, S.N., et al., Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Lett., 2005. 5: p. 579–583. 7.Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev., 2009. 109: p. 5868–5923. 8.Oh, J.Y., et al., Self-Seeded Growth of Poly(3-hexylthiophene) (P3HT) Nanofibrils by a Cycle of Cooling and Heating in Solutions. Macromolecules, 2012. 45: p. 7504-7513. 9.Venkataraman, D., et al., Role of Molecular Architecture in Organic Photovoltaic Cells. J. Phys. Chem. Lett., 2010. 1: p. 947–958. 10.Brady, M.A., G.M. Su, and M.L. Chabinyc, Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter, 2011. 7: p. 11065–11077. 11.Thompson, B.C. and J.M.J. Fréchet, Polymer–Fullerene Composite Solar Cells. Angew. Chem. Int. Ed., 2008. 47: p. 58–77. 12.Yao, Y., et al., Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells. Adv. Funct. Mater., 2008. 18: p. 1783–1789. 13.Pivrikas, A., et al., Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. Org. Electron., 2008. 9: p. 775–782. 14.Reyes-Reyes, M., K. Kim, and D.L. Carroll, High-efficiency photovoltaic devices based on annealed poly3-hexylthiophene and 1-3-methoxycarbonylpropyl-1- phenyl-6,6 C61 blends. Appl. Phys. Lett., 2005. 87: p. 083506. 15.Nguyen, L.H., et al., Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater., 2007. 17: p. 1071–1078. 16.Miller, S., et al., Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. J. Mater. Chem., 2007. 18: p. 306–312. 17.Tang, H., et al., Precise construction of PCBM aggregates for polymer solar cells via multi-step controlled solvent vapor annealing. J. Mater. Chem., 2010. 20: p. 683–688. 18.Janssen, G., et al., Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents. Eur. Phys. J. Appl. Phys., 2007. 37: p. 287–290. 19.Li, G., et al., “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Adv. Funct. Mater., 2007. 17: p. 1636–1644. 20.Sivula, K., et al., Enhancing the Thermal Stability of Polythiophene: Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity. J. Am. Chem. Soc., 2006. 128: p. 13988–13989. 21.Woo, C.H., et al., The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. J. Am. Chem. Soc., 2008. 130: p. 16324–16329. 22.Ebadian, S., et al., Effects of Annealing and Degradation on Regioregular Polythiophene-Based Bulk Heterojunction Organic Photovoltaic Devices. Sol. Energy Mater. Sol. Cells, 2010. 94: p. 2258–2264. 23.Miyanishi , S., K. Tajima, and K. Hashimoto, Morphological Stabilization of Polymer Photovoltaic Cells by Using Cross-Linkable Poly(3-(5-hexenyl)thiophene). Macromolecules, 2009. 42: p. 1610–1618. 24.Kim, B.J., et al., Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics. Adv. Funct. Mater., 2009. 19: p. 2273–2281. 25.Dai, C.-A., et al., Facile Synthesis of Well-Defined Block Copolymers Containing Regioregular Poly(3-hexyl thiophene) via Anionic Macroinitiation Method and Their Self-Assembly Behavior J. Am. Chem. Soc. , 2007. 129: p. 11036-11038. 26.Lee, Y.-H., et al., In-Situ Template Synthesis of a Polymer-Semiconductor Nanohybrid Using Amphiphilic Conducting Block Copolymers. Langmuir, 2010. 26: p. 4196-4206. 27.Lee, Y.-H., et al., Self-assembly and phase transformations of p-conjugated block copolymers that bend and twist: from rigid-rod nanowires to highly curvaceous gyroids. Soft Matter, 2011. 7: p. 10429–10442. 28.Lee, Y.-H., et al., Solution self-assembly and phase transformations of form II crystals in nanoconfined poly(3-hexyl thiophene) based rod-coil block copolymers. Nanoscale, 2014. 6: p. 2194-2200. 29.Sary, N., et al., A New Supramolecular Route for Using Rod-Coil Block Copolymers in Photovoltaic Applications. Adv. Mater., 2010. 22: p. 763–768. 30.Gu, Z., et al., Annealing Effect on Performance and Morphology of Photovoltaic Devices Based on Poly(3-hexylthiophene)-b-Poly(ethylene oxide). J. Polym. Sci., Part A: Polym. Chem., 2011. 49: p. 2645–2652. 31.Darling, S.B., Block copolymers for photovoltaics. Energy Environ. Sci., 2009. 2: p. 1266–1273. 32.Botiz, I. and S.B. Darling, Optoelectronics using block copolymers. Materials Today, 2010. 13: p. 42-51. 33.Yang, C., et al., J. Mater. Chem., 2009. 19: p. 5416-5423. 34.Dante, M., et al., Self-Assembly and Charge-Transport Properties of a Polythiophene–Fullerene Triblock Copolymer. Adv. Mater., 2010. 22: p. 1835–1839. 35.Ren, G., P.-T. Wu, and S.A. Jenekhe, Solar Cells Based on Block Copolymer Semiconductor Nanowires: Effects of Nanowire Aspect Ratio. ACS Nano, 2011. 5: p. 376–384. 36.He, M., et al., All-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells with controlled molecular organization and nanoscale morphology. Energy Environ. Sci., 2011. 4: p. 2894–2902. 37.Yao, K., et al., Cooperative Assembly Donor Acceptor System Induced by Intermolecular Hydrogen Bonds Leading to Oriented Nanomorphology for Optimized Photovoltaic Performance. J. Phys. Chem. C, 2012. 116: p. 714–721. 38.Lin, Y., et al., Cooperative Assembly of Hydrogen-Bonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability. Chem. Mater., 2012. 24: p. 622-632. 39.He, M., et al., Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells. Nanoscale, 2011. 3: p. 3159–3163. 40.Suspène, C., et al., Amphiphilic conjugated block copolymers for efficient bulk heterojunction solar cells. J. Mater. Chem., 2012. 22: p. 4511–4518. 41.Ouhib, F., et al., Thermally Stable Bulk Heterojunction Solar Cells Based on Cross-Linkable Acrylate-Functionalized Polythiophene Diblock Copolymers. Macromolecules, 2013. 46: p. 785-795. 42.Verduzco, R., et al., Polythiophene-block-polyfluorene and Polythiophene-blockpoly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers. Macromolecules, 2011. 44: p. 530–539. 43.Botiz, I., et al., Optoelectronic Properties and Charge Transfer in Donor Acceptor All-Conjugated Diblock Copolymers. J. Phys. Chem. C, 2011. 115: p. 9260–9266. 44.Kozycz, L.M., et al., Donor-Donor Block Copolymers for Ternary Organic Solar Cells. Macromolecules, 2012. 45: p. 5823-5832. 45.Gao, D., J. Hollinger, and D.S. Seferos, Selenophene Thiophene Block Copolymer Solar Cells with Thermostable Nanostructures. ACS Nano, 2012. 6: p. 7114–7121. 46.Smith, K.A., et al., Synthesis and Crystallinity of Conjugated Block Copolymers Prepared by Click Chemistry. Macromolecules, 2013. 46: p. 2636-2645. 47.Blencowe, H., et al., Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatric Research, 2013. 74: p. 35-49. 48.Liu, J.H.K., et al., Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Investigative Ophthalmology & Visual Science, 2003. 44(4): p. 1586-1590. 49.Mosaed, S., J.H.K. Liu, and R.N. Weinreb, Correlation between office and peak nocturnal intraocular pressures in healthy subjects and glaucoma patients. American Journal of Ophthalmology, 2005. 139(2): p. 320-324. 50.Hughes, E., P. Spry, and J. Diamond, 24-hour monitoring of intraocular pressure in glaucoma management: A retrospective review. Journal of Glaucoma, 2003. 12(3): p. 232-236. 51.Yung, E., V. Trubnik, and L.J. Katz, An overview of home tonometry and telemetry for intraocular pressure monitoring in humans. Graefes Archive for Clinical and Experimental Ophthalmology, 2014. 252(8): p. 1179-1188. 52.Tonnu, P.A., et al., The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, noncontact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry. British Journal of Ophthalmology, 2005. 89(7): p. 851-854. 53.Wessels, I.F. and Y. Oh, Tonometer Utilization, Accuracy, and Calibration under Field Conditions. Archives of Ophthalmology, 1990. 108(12): p. 1709-1712. 54.Goldmann, H. and T. Schmidt, Über applanation stonometrie. Ophthalmologica 1957. 134(4): p. 221-242. 55.Klont, R.R., et al., Successful treatment of Fusarium keratitis with cornea transplantation and topical and systemic voriconazole. Clin Infect Dis, 2005. 40(12): p. e110-2. 56.Klenkler, B.J., et al., EGF-grafted PDMS surfaces in artificial cornea applications. Biomaterials, 2005. 26(35): p. 7286-96. 57.Chirila, T.V., An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001. 22(24): p. 3311-7. 58.Hicks, C.R., et al., Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol, 1997. 42(2): p. 175-89. 59.Parke-Houben, R., et al., Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery. J Mater Sci Mater Med, 2015. 26(2): p. 107. 60.Heindl, L.M., et al., Split cornea transplantation for 2 recipients: a new strategy to reduce corneal tissue cost and shortage. Ophthalmology, 2011. 118(2): p. 294-301. 61.van Essen, T.H., et al., A fish scale-derived collagen matrix as artificial cornea in rats: properties and potential. Invest Ophthalmol Vis Sci, 2013. 54(5): p. 3224-33. 62.Kadakia, A., et al., Hybrid superporous scaffolds: an application for cornea tissue engineering. Crit Rev Biomed Eng, 2008. 36(5-6): p. 441-71. 63.Myung, D., et al., Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed Microdevices, 2007. 9(6): p. 911-22. 64.Eguchi, H., et al., Cataract surgery with the AlphaCor artificial cornea. J Cataract Refract Surg, 2004. 30(7): p. 1486-91. 65.Hicks, C.R., et al., Corneal replacement using a synthetic hydrogel cornea, AlphaCor (TM) device, preliminary outcomes and complications. Eye, 2003. 17(3): p. 385-392. 66.Bleckmann, H. and S. Holak, Preliminary results after implantation of four AlphaCor artificial corneas. Graefes Arch Clin Exp Ophthalmol, 2006. 244(4): p. 502-6. 67.MD, A.C., et al., Histopathology of explanted AlphaCor due to keratoprosthesis extrusion. Clin. and Exp. Ophthalmol. , 2006. 68.Crawford, G.J., H. Eguchi, and C.R. Hicks, Two cases of AlphaCor surgery performed using a small incision technique. Clinical and Experimental Ophthalmology, 2005. 33(1): p. 10-15. 69.Jiraskova, N., et al., AlphaCor artificial cornea: clinical outcome. Eye (Lond), 2011. 25(9): p. 1138-46. 70.Holak, S.A., H.M. Holak, and H. Bleckmann, AlphaCor keratoprosthesis: postoperative development of six patients. Graefes Arch Clin Exp Ophthalmol, 2009. 247(4): p. 535-9. 71.Xiang, J., et al., T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs. Materials Science & Engineering C-Materials for Biological Applications, 2015. 50: p. 274-285. 72.Liu, K.M., et al., Graphite/poly (vinyl alcohol) hydrogel composite as porous ringy skirt for artificial cornea. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009. 29(1): p. 261-266. 73.Xu, F.L., et al., Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite. Journal of Materials Science-Materials in Medicine, 2007. 18(4): p. 635-640. 74.Colton, T. and F. Ederer, The Distribution of Intraocular Pressures in the General-Population. Survey of Ophthalmology, 1980. 25(3): p. 123-129. 75.Ljubimova, D., Biomechanics of the Human Eye and Intraocular Pressure Measurements. 2009. 76.Gloster, J. and E.S. Perkins, The Validity of the Imbert-Fick Law as Applied to Applanation Tonometry. Experimental Eye Research, 1963. 2(3): p. 274-283. 77.Whitacre, M.M., R.A. Stein, and K. Hassanein, The Effect of Corneal Thickness on Applanation Tonometry. American Journal of Ophthalmology, 1993. 115(5): p. 592-596. 78.Doughty, M.J. and M.L. Zaman, Human corneal thickness and its impact on intraocular pressure measures: A review and meta-analysis approach. Survey of Ophthalmology, 2000. 44(5): p. 367-408. 79.Stodtmeister, R., Applanation tonometry and correction according to corneal thickness. Acta Ophthalmologica Scandinavica, 1998. 76(3): p. 319-324. 80.Whitacre, M.M. and R. Stein, Sources of Error with Use of Goldmann-Type Tonometers. Survey of Ophthalmology, 1993. 38(1): p. 1-30. 81.Johnson, M., et al., Increased Corneal Thickness Simulating Elevated Intraocular-Pressure. Archives of Ophthalmology, 1978. 96(4): p. 664-665. 82.Dekking, H.M. and H.D. Coster, Dynamic Tonometry. Ophthalmologica, 1967. 154(1): p. 59-75. 83.Klyce, S.D. and R.W. Beuerman, Structure and function of the cornea. The cornea, 1987: p. 1-47. 84.Kontiola, A., A new electromechanical method for measuring intraocular pressure. Documenta Ophthalmologica, 1997. 93(3): p. 265-276. 85.Mathur, A.M., S.K. Moorjani, and A.B. Scranton, Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1996. C36(2): p. 405-430. 86.Shields, M.B., Non-Contact Tonometer - Its Value and Limitations. Survey of Ophthalmology, 1980. 24(4): p. 211-219. 87.Kopecek, J. and J.Y. Yang, Hydrogels as smart biomaterials. Polymer International, 2007. 56(9): p. 1078-1098. 88.Wichterle, O. and D. Lim, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118. 89.S.L., S.C., B. C.H., and T. T., Polymer Biomaterials in Solution, as Interfaces and as Solids. 1995. 90.Sá-Lima, H., et al., Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010. 6(20): p. 5184-5195. 91.Guiseppi-Elie, A., Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials, 2010. 31(10): p. 2701-2716. 92.Peppas, N.A., et al., Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials, 2006. 18(11): p. 1345-1360. 93.Woerly, S., et al., Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel (TM)). Biomaterials, 2001. 22(10): p. 1095-1111. 94.Bray, J.C. and E.W. Merrill, Poly (Vinyl Alcohol) Hydrogels for Synthetic Articular-Cartilage Material. Journal of Biomedical Materials Research, 1973. 7(5): p. 431-443. 95.Bailey, B.M., et al., Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS). Journal of Materials Chemistry, 2011. 21(46): p. 18776-18782. 96.Arica, M.Y., et al., Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzylpoly(ethylene oxide)) for biomedical applications: Properties and drug release characteristics. Macromolecular Bioscience, 2005. 5(10): p. 983-992. 97.Flynn, L., P.D. Dalton, and M.S. Shoichet, Fiber ternplating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials, 2003. 24(23): p. 4265-4272. 98.Hicks, C.R., et al., Histology of AlphaCor skirts - Evaluation of biointegration. Cornea, 2005. 24(8): p. 933-940. 99.Myung, D., et al., Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnology Progress, 2008. 24(3): p. 735-741. 100.Millar, J.R., Interpenetrating Polymer Networks - Styrene-Divinylbenzene Copolymers with 2 and 3 Interpenetrating Networks, and Their Sulphonates. Journal of the Chemical Society, 1960(Resumed): p. 1311-1317. 101.Myung, D., et al., Progress in the development of interpenetrating polymer network hydrogels. Polymers for Advanced Technologies, 2008. 19(6): p. 647-657. 102.Sperling, L.H., Interpenetrating Polymer Networks. 2004, Copyright © 2002: John Wiley & Sons, Inc. 103.Sperling, L.H. and V. Mishra, The current status of interpenetrating polymer networks. Polymers for Advanced Technologies, 1996. 7(4): p. 197-208. 104.Klempner, D., L.H. Sperling, and L.A. Utracki, Interpenetrating Polymer Networks - Preface. Interpenetrating Polymer Networks, 1994. 239: p. R15-R16. 105.Brandrup, J., et al., POLYMER HANDBOOK Vol. 89. 1999, New York: Wiley. 106.Waters, D.J. and C.W. Frank, Hindered diffusion of oligosaccharides in high strength poly(ethylene glycol)/poly(acrylic acid) interpenetrating network hydrogels: Hydrodynamic vs. obstruction models. Polymer, 2009. 50(26): p. 6331-6339. 107.Myung, D., et al., Biomimetic strain hardening in interpenetrating polymer network hydrogels. Polymer, 2007. 48(18): p. 5376-5387. 108.Myung, D., et al., Characterization of poly(ethylene glycol)-poly(acrylic acid) (PEG-PAA) double networks designed for corneal implant applications. Investigative Ophthalmology & Visual Science, 2005. 46. 109.Johannesson, G., et al., Pascal, ICare and Goldmann applanation tonometry - a comparative study. Acta Ophthalmologica, 2008. 86(6): p. 614-621. 110.Hamilton, K.E. and D.C. Pye, Young''s modulus in normal corners and the effect on applanation tonometry. Optometry and Vision Science, 2008. 85(6): p. 445-450. 111.Elsheikh, A., D.F. Wang, and D. Pye, Determination of the modulus of elasticity of the human cornea. Journal of Refractive Surgery, 2007. 23(8): p. 808-818. 112.Liu, Y., et al., Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules, 2006. 7(6): p. 1819-1828. 113.Crabb, R.A.B., et al., Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Engineering, 2006. 12(6): p. 1565-1575. 114.Krachmer, J.H., M.J. Mannis, and E.J. Holland, Cornea. 1997, St. Louis: Mosby. 115.Merindano, M.D., et al., A comparative study of Bowman''s layer in some mammals: relationships with other constituent corneal structures. European Journal of anatomy, 2002. 6(3): p. 133-139. 116.Klintworth, G.K., Cornea - Structure and Macromolecules in Health and Disease. American Journal of Pathology, 1977. 89(3): p. 718-808. 117.Last, J.A., et al., Compliance profile of the human cornea as measured by atomic force microscopy. Micron, 2012. 43(12): p. 1293-1298. 118.Hou, Y.P., et al., Photo-Cross-Linked PDMSstar-PEG Hydrogels: Synthesis, Characterization, and Potential Application for Tissue Engineering Scaffolds. Biomacromolecules, 2010. 11(3): p. 648-656. 119.Munkwitz, S., et al., Comparison of the iCare rebound tonometer and the Goldmann applanation tonometer over a wide IOP range. Graefes Archive for Clinical and Experimental Ophthalmology, 2008. 246(6): p. 875-879. 120.Hjortdal, J.O. and P.K. Jensen, In-Vitro Measurement of Corneal Strain, Thickness, and Curvature Using Digital Image-Processing. Acta Ophthalmologica Scandinavica, 1995. 73(1): p. 5-11. 121.Merino, S., et al., Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery. Acs Nano, 2015. 9(5): p. 4686-4697. 122.Duffy, C.V., L. David, and T. Crouzier, Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Acta Biomater, 2015. 20: p. 51-9. 123.Xavier, J.R., et al., Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano, 2015. 9(3): p. 3109-18. 124.Roman, J., et al., Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds. Science and Technology of Advanced Materials, 2011. 12(4). 125.Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2012. 64: p. 18-23. 126.Yaping Hou, et al., Photo-Cross-Linked PDMSstar-PEG Hydrogels Synthesis,Characterization, and Potential Application for Tissue. Biomacromolecules 2010. 127.Myung, D., et al., Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications: a pilot study. Curr Eye Res, 2008. 33(1): p. 29-43. 128.Zhang, C.F., et al., Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer. Journal of Membrane Science, 2010. 365(1-2): p. 216-224. 129.Matsuyama, H., et al., Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. Journal of Membrane Science, 2003. 223(1-2): p. 119-126. 130.Matsuyama, H., et al., Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. Journal of Membrane Science, 2002. 204(1-2): p. 323-328. 131.Bailey, B.M., et al., Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)(). J Mater Chem, 2011. 21(46): p. 18776-18782. 132.Zhang, X.Z., Y.Y. Yang, and T.S. Chung, Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels. Langmuir, 2002. 18(7): p. 2538-2542. 133.Shibayama, M., M. Morimoto, and S. Nomura, Phase-Separation Induced Mechanical Transition of Poly(N-Isopropylacrylamide) Water Isochore Gels. Macromolecules, 1994. 27(18): p. 5060-5066. 134.Hou, Q., D.W. Grijpma, and J. Feijen, Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 2003. 24(11): p. 1937-47. 135.Cai, Q., et al., A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials, 2002. 23(23): p. 4483-4492. 136.Ji, C.D., et al., Fabrication of poly-(DL)-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomaterialia, 2012. 8(2): p. 570-578. 137.Yoon, J.J., et al., Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials, 2004. 25(25): p. 5613-20. 138.Bryant, S.J. and K.S. Anseth, Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A, 2003. 64(1): p. 70-9. 139.Chapekar, M.S., Tissue engineering: challenges and opportunities. J Biomed Mater Res, 2000. 53(6): p. 617-20. 140.Kim, B.S. and D.J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998. 16(5): p. 224-30. 141.Tessmar, J.K. and A.M. Gopferich, Customized PEG-derived copolymers for tissue-engineering applications. Macromolecular Bioscience, 2007. 7(1): p. 23-39. 142.Padmavathi, N.C. and P.R. Chatterji, Structural characteristics and swelling behavior of poly(ethylene glycol) diacrylate hydrogels. Macromolecules, 1996. 29(6): p. 1976-1979. 143.Veronese, F.M. and A. Mero, The impact of PEGylation on biological therapies. Biodrugs, 2008. 22(5): p. 315-329. 144.Nemir, S., H.N. Hayenga, and J.L. West, PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng, 2010. 105(3): p. 636-44. 145.Dumortier, G., et al., A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res, 2006. 23(12): p. 2709-28. 146.Alexandridis, P. and J.F. Holzwarth, Differential Scanning Calorimetry Investigation of the Effect of Salts on Aqueous Solution Properties of an Amphiphilic Block Copolymer (Poloxamer). Langmuir, 1997 147.Cabana, A., A. Ait-Kadi, and J. Juhasz, Study of the Gelation Process of Polyethylene Oxidea -Polypropylene Oxideb -Polyethylene Oxidea Copolymer (Poloxamer 407) Aqueous Solutions. J Colloid Interface Sci, 1997. 190(2): p. 307-12. 148.Mortensen, K. and J.S. Pedersen, Structural Study on the Micelle Formation of Poly(Ethylene Oxide) Poly(Propylene Oxide) Poly(Ethylene Oxide) Triblock Copolymer in Aqueous-Solution. Macromolecules, 1993. 26(4): p. 805-812. 149.Bailey, B.M., et al., PDMS(star)-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds. Acta Biomater, 2012. 8(12): p. 4324-33. 150.Zhang, H., et al., Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. Journal of Applied Polymer Science, 2011. 121(1): p. 531-540. 151.Bryant, S.J. and K.S. Anseth, Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res, 2002. 59(1): p. 63-72. 152.Chace, K.V., et al., Effect of Oxygen Free-Radicals on Corneal Collagen. Free Radical Research Communications, 1991. 12-3: p. 591-594.
|