(3.237.97.64) 您好!臺灣時間:2021/03/03 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏雲杰
研究生(外文):Yun-Jie Wei
論文名稱:預測液化天然氣程序中碳氫化合物在甲烷中的溶解度
論文名稱(外文):Prediction of Solubility of Heavy Hydrocarbons in Methane for Liquefied Natural Gas Process
指導教授:林祥泰
指導教授(外文):Shiang-Tai Lin
口試委員:謝介銘李旻璁游琇伃
口試委員(外文):Cheng-Ming HsiehMing-Tsung LeeHsiu-Yu Yu
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:73
中文關鍵詞:固液相平衡三相計算狀態方程式液氣相平衡
外文關鍵詞:solid-liquid equilibriumthree-phase calculationPRSV+COSMOSAC equation of statevapor-liquid equilibrium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
頁岩氣的發現減輕了數十年來逐漸高升的能源需求。從頁岩氣中分離出的液化天然氣在工業中扮演著重要的角色。天然氣經過液化程序利用冷卻的方式從氣態轉換為液態以方便運送及儲存。若是操作的溫度或壓力有所變動,其中的高碳數烷類極有可能就會析出,造成管線或是液化裝置阻塞。阻塞的管線會造成輸送產率的下降,工廠亦必須要花額外的成本來清理或更換管線和裝置。因此防止高碳數烷類析出是非常重要的課題。未經過完整程序的天然氣主要成份為甲烷,而高碳數烷類在甲烷內的溶解度會受到壓力、溫度影響,由於高碳數烷類包含直鏈碳烷類(如丙烷至壬烷)和芳香烴(如苯和二甲苯),近十五種物質共存的系統會導致計算過於複雜,故我們將問題簡化為雙成份系統,計算固液相平衡中,定壓下直鏈碳的烷類在甲烷中的溶解度和溫度的關係。此外,若溫度升高,甲烷可能汽化而使系統轉為固氣相平衡,同時高碳數烷類的溶解度會大幅降低。為了避免這類問題的發生,我們進行固液氣三相平衡的計算。

我們利用MHV1混合律結合PRSV狀態方程式與COSMOSAC活行系數模型,進行各種相平衡的預測,找出在定壓下,直鏈碳的烷類與芳香烴在甲烷中的溶解度和溫度的關係和三相共存的溫度、組成並和既有實驗值做比較。溶解度預測方面,隨著溫度降低,預測結果會越趨失準,在主碳數8以上的烷類預測和實驗值相比約莫有50-70%誤差且和實驗值趨勢不同;三相計算方面,在低溫下中碳數烷類系統有良好的預測,但在高碳數、或有特殊結構的烷類系統如辛烷和二甲苯及其異構物並沒有得到非常好的成果,多數的實驗結果為發散或收斂至錯誤的區域。另外,我們檢查在稀薄溶液的系統中,沸點上升的依數性質是成立的。
Discovery of shale gas has alleviated the rising demand of energy in the past decades. Liquefied natural gas (LNG) separated from shale gas plays a role in industries. Natural gas is liquefied during the liquefaction process for the sake of delivery and storage. As the pressure or temperature in pipelines change, high-carbon number hydrocarbons in LNG might convert into solids, blocking the cooling devices. Blocked pipelines results in decrease of yields and causes extra cost to clean up or replace. In general, natural gas is composed of mainly methane and other hydrocarbons. Solubility of heavy hydrocarbons (HHCs), which is dilute in natural gas, is influenced by temperature and pressure. HHCs include straight-chain ( propane, nonane, etc.) and aromatics ( benzene, xylene, etc.).

The system with almost 15 components will lead the calculation to be complicated, so we simplified the problem to be binary system. We calculate the solubility of straight chain hydrocarbon-methane solid-liquid equilibrium (SLE) system with different temperature at fixed pressure to discuss the relationship between solubility and temperature. Also, as temperature rises, methane is prone to vaporize and the system changes into solid-vapor equilibrium (SVE), bringing about drop of HHCs solubility. To prevent this problem, we need to discuss solid-liquid-vapor equilibrium (SVLE), or three-phase equilibrium in other words.

In this work, we use MHV1 mixing rule combining with PRSV equation of state and COSMOSAC model to predict different types of phase equilibrium. At constant pressure, we discuss straight-chain HHCs and aromatics-methane for solubility and three-phase temperature predictions, comparing to experimental data. For solubility prediction, as temperature decreases, HHCs with carbon number over 8 has errors of %. For three-phase calculation, middle-chain HHCs systems have satisfying results at cryogenic temperature. However, in ling-chain HHCs and alkanes with cyclic structure our model doesn’t have well predictions. Most of the data points diverge or converge to wrong region. Furthermore, we find out in dilute-solute system, the colligative property of bubble point elevation is valid.
致謝 I
摘要 II
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
Chapter 2 Theory 6
2.1 The PRSV+MHV1+COSMOSAC model 6
2.2 Phase Diagram of Binary System 8
2.3 Solid-liquid Equilibrium 10
2.4 Isothermal Flash Calculation for Vapor-Liquid Equilibrium Calculation 11
2.5 Adomian Decomposition Method in Vapor-Liquid Equilibrium
calculation 12
2.6 Three-Phase Calculation 17
Chapter 3 Results and Discussions 19
3.1 Comparison of Different Mixing Rule 19
3.2 HHC Solubility at Cryogenic Temperatures 25
3.3 BTEX Solubility in Methane 31
3.4 Overall HHC Prediction at LNG Temperature 36
3.5 Binary Linear Alkanes, Cyclohexane, and Benzene-Methane System SVLE Calculation 38
3.6 SVLE Calculation for BTEX-Methane 45
3.7 Temperature-Composition Diagram of Binary Mixtures at
Constant Pressure 48
3.8 Colligative Property for Methane 55
3.9 Multicomponent Three-Phase Calculation 57
Chapter 4 Conclusion 64
References 65
Appendix 67
[1] K.D.L. James P. Kohn, Solubility of Hydrocarbons in Cryogenic Lng and Ngl Mixtures, (1976).
[2] J.P. Kohn, K.D. Luks, Solubility of Hydrocarbons in Cryogenic in Lng and Ngl Mixtures, (1976).
[3] J.P. Kohn, K.D. Luks, Solubility of Heavier Hydrocarbons in Liquid Methane, (1978).
[4] J.P. Kohn, K.D. Luks, Solubility of Hydrocarbons in Cryogenic in Lng and Ngl Mixtures, (1978).
[5] J.P. Kohn, K.D. Luks, P.H. Liu, D.L. Tiffin, Three-Phase Solid-Liquid-Vapor Equilibria of the Binary Hydrocarbon Systems Methane-N-Octane and Methane-Cyclohexane, Journal of Chemical and Engineering Data, Vol. 22 (1977) 419-421.
[6] K.D. Luks, J.P. Kohn, P.H. Liu, A.A. Kulkarni, Solubility of Hydrocarbons in Cryogenic Ngl and Lng, Hydrocarbon Processing 54 (1975) 181-184.
[7] K.L. Bjaanes, Literature Review and Evaluation of the Umr-Pru Eos for Predicting Solid Formation in Low Temperature Natural Gas Processing, (2013).
[8] D.L. Tiffin, K.D. Luks, J.P. Kohn, Solubility Enhancement of Solid Hydrocarbons in Liquid Methane Due to the Presence of Ethane, Advances in Cryogenic Engineering. vol. 23 (1978) 538-543
[9] V. Louli, C. Boukouvalas, E. Voutsas, K. Magoulas, D. Tassios, Application of the Umr-Pru Model to Multicomponent Systems: Prediction of the Phase Behavior of Synthetic Natural Gas and Oil Systems, Fluid Phase Equilibria 261 (2007) 351-358.
[10] S.V.G. Jie Yu, Jame Yao, Guang Lee, Prediction of Heavy Hydrocarbon Solubility on Lng, (2015).
[11] S.T. Lin, S.I. Sandler, A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model (Vol 41, Pg 903, 2004), Industrial & Engineering Chemistry Research 43 (2004) 1322-1322.
[12] M.T. Lee, S.T. Lin, Prediction of Mixture Vapor-Liquid Equilibrium from the Combined Use of Peng-Robinson Equation of State and Cosmo-Sac Activity Coefficient Model through the Wong-Sandler Mixing Rule, Fluid Phase Equilibria 254 (2007) 28-34.
[13] D. Peng, D.B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals 15 (1976) 59-64.
[14] D.S.H. Wong, S.I. Sandler, A Theoretically Correct Mixing Rule for Cubic Equations of State, Aiche Journal 38 (1992) 671-680.
[15] C.M. Hsieh, S.T. Lin, First-Principles Predictions of Vapor-Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations, Industrial & Engineering Chemistry Research 48 (2009) 3197-3205.
[16] R. Stryjek, J.H. Vera, Prsv - an Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures, Canadian Journal of Chemical Engineering 64 (1986) 323-333.
[17] M.L. Michelsen, A Modified Huron-Vidal Mixing Rule for Cubic Equations of State, Fluid Phase Equilibria 60 (1990) 213-219.
[18] C.M. Hsieh, S.T. Lin, First-Principles Prediction of Vapor-Liquid-Liquid Equilibrium from the Pr Plus Cosmosac Equation of State, Industrial & Engineering Chemistry Research 50 (2011) 1496-1503.
[19] J.C. de Hemptinne, Benzene Crystallization Risks in the Liquefin Liquefied Natural Gas Process, Process Safety Progress 24 (2005) 203-212.
[20] H. Fatoorehchi, H. Abolghasemi, R. Rach, A New Parametric Algorithm for Isothermal Flash Calculations by the Adomian Decomposition of Michaelis-Menten Type Nonlinearities, Fluid Phase Equilibria 395 (2015) 44-50.
[21] J.S. Duan, Recurrence Triangle for Adomian Polynomials, Applied Mathematics and Computation 216 (2010) 1235-1241.
[22] G. Soave, Application of Equations of State and the Theory of Group Solutions to Phase-Equilibrium Prediction, Fluid Phase Equilibria 87 (1993) 23-35.
[23] F. Kurata, Solubility of Heavier Hydrocarbons in Liquid Methane, (1975).
[24] G.P. Kuebler, C. McKinley, Solubility of Solid Benzene, Toluene, N-Hexane, and N-Heptane in Liquid Methane, Advances in Cryogenic Engineering. vol. 19 (1995) 320-326.
[25] G. Soave, Equilibrium Constants from a Modified Redlich-Kwong Equation of State, Chemical Engineering Science 27 (1972) 1197-&.
[26] K.D. Luks, J.D. Hottovy, J.P. Kohn, Three-Phase Solid-Liquid-Vapor Equilibriums in the Binary Hydrocarbon Systems Methane-N-Hexane and Methane-Benzene, Journal of Chemical & Engineering Data, vol. 26 (1981) 402-403.
[27] J. Shim, J.P. Kohn, Multiphase and Volumetric Equilibria of Methane-N-Hexane Binary System at Temperatures between -110° and 150° C, Journal of Chemical & Engineering Data, vol. 7 (1962) 3-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔