|
1.Mouri, H. and K. Akutagawa, Improved tire wet traction through the use of mineral fillers. Rubber chemistry and technology, 1999. 72(5): p. 960-968. 2.Krejsa, M. and J. Koenig, A review of sulfur crosslinking fundamentals for accelerated and unaccelerated vulcanization. Rubber chemistry and technology, 1993. 66(3): p. 376-410. 3.Medalia, A., Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber chemistry and Technology, 1978. 51(3): p. 437-523. 4.Saito, Y., New polymer development for low rolling resistance tyres. Kautschuk und Gummi, Kunststoffe, 1986. 39(1): p. 30-32. 5.Medalia, A.I., Heat generation in elastomer compounds: causes and effects. Rubber chemistry and technology, 1991. 64(3): p. 481-492. 6.Futamura, S., Deformation Index—Concept for Hysteretic Energy-Loss Process. Rubber chemistry and technology, 1991. 64(1): p. 57-64. 7.Wang, M.-J., Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chemistry and Technology, 1998. 71(3): p. 520-589. 8.Medalia, A.I., Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber. Journal of Colloid and Interface Science, 1970. 32(1): p. 115-131. 9.Schuring, D. and S. Futamura, Rolling loss of pneumatic highway tires in the eighties. Rubber Chemistry and Technology, 1990. 63(3): p. 315-367. 10.Schuring, D., The rolling loss of pneumatic tires. Rubber Chemistry and Technology, 1980. 53(3): p. 600-727. 11.Zhang, P., M. Morris, and D. Doshi, MATERIALS DEVELOPMENT FOR LOWERING ROLLING RESISTANCE OF TIRES. Rubber Chemistry and Technology, 2016. 89(1): p. 79-116. 12.Ghosh, S., R.A. Sengupta, and M. Kaliske, PREDICTION OF ROLLING RESISTANCE FOR TRUCK BUS RADIAL TIRES WITH NANOCOMPOSITE BASED TREAD COMPOUNDS USING FINITE ELEMENT SIMULATION. Rubber Chemistry and Technology, 2014. 87(2): p. 276-290. 13.Sircar, A., et al., Glass transition of elastomers using thermal analysis techniques. Rubber chemistry and technology, 1999. 72(3): p. 513-552. 14.Payne, A. and R. Whittaker, Low strain dynamic properties of filled rubbers. Rubber chemistry and technology, 1971. 44(2): p. 440-478. 15.Le Gal, A., X. Yang, and M. Klüppel, Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis. The Journal of chemical physics, 2005. 123(1): p. 014704. 16.Heinrich, G. and M. Klüppel, Recent advances in the theory of filler networking in elastomers, in Filled Elastomers Drug Delivery Systems. 2002, Springer. p. 1-44. 17.Klüppel, M., R.H. Schuster, and G. Heinrich, Structure and properties of reinforcing fractal filler networks in elastomers. Rubber chemistry and technology, 1997. 70(2): p. 243-255. 18.Meier, J.G. and M. Klüppel, Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromolecular materials and engineering, 2008. 293(1): p. 12-38. 19.Heinrich, G. and H. Kluppel, The role of polymer-filler interphase in reinforcement of elastomers. Kautschuk Gummi Kunststoffe, 2004. 57(9): p. 452-454. 20.Kohls, D. and G. Beaucage, Rational design of reinforced rubber. Current Opinion in Solid State and Materials Science, 2002. 6(3): p. 183-194. 21.Wang, M.J., S.X. Lu, and K. Mahmud, Carbon–silica dual‐phase filler, a new‐generation reinforcing agent for rubber. Part VI. Time–temperature superposition of dynamic properties of carbon–silica‐dual‐phase‐filler‐filled vulcanizates. Journal of Polymer Science Part B: Polymer Physics, 2000. 38(9): p. 1240-1249. 22.Nusser, K., et al., Conformations of silica− poly (ethylene− propylene) nanocomposites. Macromolecules, 2010. 43(23): p. 9837-9847. 23.Jouault, N., et al., Direct measurement of polymer chain conformation in well-controlled model nanocomposites by combining SANS and SAXS. Macromolecules, 2010. 43(23): p. 9881-9891. 24.Nakatani, A., et al., Chain dimensions in polysilicate-filled poly (dimethyl siloxane). Polymer, 2001. 42(8): p. 3713-3722. 25.Berriot, J., et al., Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules, 2002. 35(26): p. 9756-9762. 26.Papakonstantopoulos, G.J., et al., Calculation of local mechanical properties of filled polymers. Physical Review E, 2007. 75(3): p. 031803. 27.Robertson, C.G. and M. Rackaitis, Further consideration of viscoelastic two glass transition behavior of nanoparticle-filled polymers. Macromolecules, 2011. 44(5): p. 1177-1181. 28.Tsagaropoulos, G. and A. Eisenburg, Direct observation of two glass transitions in silica-filled polymers. Implications to the morphology of random ionomers. Macromolecules, 1995. 28(1): p. 396-398. 29.Chevigny, C., et al., Tuning the mechanical properties in model nanocomposites: Influence of the polymer‐filler interfacial interactions. Journal of Polymer Science Part B: Polymer Physics, 2011. 49(11): p. 781-791. 30.Guth, E., Theory of filler reinforcement. Journal of applied physics, 1945. 16(1): p. 20-25. 31.Akcora, P., et al., “Gel-like” mechanical reinforcement in polymer nanocomposite melts. Macromolecules, 2009. 43(2): p. 1003-1010. 32.Conzatti, L., et al., Morphology and viscoelastic behaviour of a silica filled styrene/butadiene random copolymer. Macromolecular Materials and Engineering, 2008. 293(3): p. 178-187. 33.Chevigny, C., et al., Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules, 2010. 44(1): p. 122-133. 34.Cichomski, E., et al., Influence of silica-polymer bond microstructure on tire-performance indicators. 2014. 35.Yatsuyanagi, F., et al., Effects of surface chemistry of silica particles on the mechanical properties of silica filled styrene–butadiene rubber systems. Polymer journal, 2002. 34(5): p. 332-339. 36.Oberdisse, J. and F. Boué, Rheology–structure relationship of a model nanocomposite material. Trends in Colloid and Interface Science XVII, 2004: p. 124-129. 37.Schneider, G.J., et al., Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites. The Journal of chemical physics, 2010. 133(9): p. 094902. 38.Shinohara, Y., et al., Microscopic observation of aging of silica particles in unvulcanized rubber. Macromolecules, 2010. 43(22): p. 9480-9487. 39.Tatou, M., et al., Reinforcement and polymer mobility in silica–latex nanocomposites with controlled aggregation. Macromolecules, 2011. 44(22): p. 9029-9039. 40.Payne, A.R., The dynamic properties of carbon black‐loaded natural rubber vulcanizates. Part I. Journal of applied polymer science, 1962. 6(19): p. 57-63. 41.Nordsiek, K., The «integral rubber» concept―an approach to an ideal tire tread rubber. Kautschuk und Gummi, Kunststoffe, 1985. 38(3): p. 178-185. 42.Mihara, S., Reactive processing of silica-reinforced tire rubber: new insight into the time-and temperature-dependence of silica rubber interaction. 2009: University of Twente. 43.Dizon, E., E. Micek, and C. Scott, Performance characteristics of present-day tread blacks. Journal of Elastomers & Plastics, 1976. 8(4): p. 414-430. 44.Dizon, E., Processing in an internal mixer as affected by carbon black properties. Rubber Chemistry and Technology, 1976. 49(1): p. 12-27. 45.Cotten, G.R., Mixing of carbon black with rubber I. Measurement of dispersion rate by changes in mixing torque. Rubber chemistry and technology, 1984. 57(1): p. 118-133. 46.Takenaka, M., Analysis of structures of rubber-filler systems with combined scattering methods. Polymer journal, 2013. 45(1): p. 10-19. 47.Roe, R.-J., Methods of X-ray and neutron scattering in polymer science. Vol. 739. 2000: Oxford University Press on Demand. 48.Otegui, J., et al., Determination of filler structure in silica-filled SBR compounds by means of SAXS and AFM. Rubber Chemistry and Technology, 2015. 88(4): p. 690-710. 49.Meyer, E., Atomic force microscopy. Progress in surface science, 1992. 41(1): p. 3-49. 50.Cleveland, J., et al., Energy dissipation in tapping-mode atomic force microscopy. Applied Physics Letters, 1998. 72(20): p. 2613-2615. 51.Baeza, G.P., et al., Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM. Macromolecules, 2012. 46(1): p. 317-329.
|