跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉瑀岑
研究生(外文):Yu-Tsen Liu
論文名稱:混煉製程對於橡膠奈米複材之動態機械性質影響:奈米結構與輪胎應用之關聯
論文名稱(外文):Effect of Mixing Process on the Dynamic Mechanical Properties of Rubber/Fillers Nanocomposite: Relations of Nanoscale Structure and Property for Tire Applications
指導教授:戴子安戴子安引用關係謝之真
指導教授(外文):Chi-An Dai
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:127
中文關鍵詞:胎面膠雙滾輪混煉機二氧化矽小角X光散射雙振幅原子力顯微鏡穿透式電子顯微鏡動態機械分析儀
外文關鍵詞:tire treadtwin-screw brabendersilica filled rubbersmall angle X-ray scatteringtransmission electron microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:952
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以二氧化矽取代碳黑作為輪胎填充料可以大幅的減低輪胎的滾動阻力(rolling resistance)進而節省油耗,增加濕地抓地力(wet traction)。但由於二氧化矽的親水性,如何使填充料良好分散於親油性的橡膠中因此成為一個重要的課題。本研究在不改變工業用配方的條件下,以不同的製程製作輪胎之胎面膠(tire tread),希望能找到最理想的製程以達到濕抓與滾阻性值的最優化,並分析填充料結構如何影響填充料/橡膠複材之機械性質。
在本研究中,胎面膠利用雙滾輪混煉機(benbury)製作,以相同的配方但不同的投料順序製程製作樣品。二氧化矽填充料之結構分析方面,胎面膠樣品後續經過冷凍切片處理,並利用原子力顯微鏡 (atomic force microscopy (AFM))之雙振幅(bimodal)模式進行樣品表面粒徑分析,配合穿透式電子顯微鏡 (transmission electron microscopy (TEM)) 觀察實際空間(direct space)的填充料結構。接著利用超小角X光散射 (ultra-small angle X-ray scattering (USAXS)) 分析x-ray動量空間(q-space)中,各階層之聚集結構(hierarchical aggregate structure)與前述實際空間結構之互補分析。最後利用動態機械分析儀 (dynamic mechanical analysis (DMA))進行1.非線性流變分析,確認填充料網絡狀態(Payne effect)以及2.線性流變分析,決定胎面膠之最終濕抓及滾阻性質。另外我們也探討說明混煉過程之混煉參數(如機器扭力、混煉溫度)對於混煉狀態及的影響之關連。
以下內容不適合放在abstract。
第一: 濕地抓地力性質測量標準為在0°C的能量耗損,在如此低溫下,由於接近填料表面之高分子鏈與填料之間吸附作用力影響,能夠藉由高分子鬆弛(relaxation)提供能量耗損貢獻之高分子為大尺寸結構(>60nm),又稱為凝聚體(agglomerate)之外之高分子,此部分橡膠也被稱為自由橡膠(free rubber)。降低凝聚體之尺寸將有效的提升濕地抓地力性質。
第二:滾動阻力性質測量標準為在60°C之能量耗損,在此高溫下鬆弛產生能量損耗的貢獻者為連接填料基本顆粒(primary particle)與顆粒間之少量高分子,也被稱為玻璃層(glassy layer),基本顆粒藉由玻璃層連結填料網絡(network)進而形成聚集體(aggregate)。研究發現當聚集體的尺寸極小(<45nm)且緊密度(compacity)大時,推測將提升玻璃層之鬆弛溫度(relaxation temperature) (>60°C),亦或是聚集體擁有大尺寸(>45nm)且緊密度小,將降低玻璃層之鬆弛溫度(<60°C)。上述兩種結構均能降低滾動阻力節省油耗。
另外就工業用高含量填料胎面膠而言,填料結構若呈現區域團聚且良好分布,其性質會遠比整體良好分散與分布之樣品來的良好。製程方面發現油與填料的加入時間點大大影響著結構,其添加順序以及時間點與混煉機之剪切力增減息息相關,實驗發現在第一階段5分鐘的混煉當中,油的加入時間點定在2分鐘且與次要填料碳黑同時加入時,胎面膠會有良好的機械性質。
以下歸納包含一次性進料以及分批進料之良好樣品之製程,製成差異在MB階段,其他包括NP、F以及後續熱壓均無不同,分批進料前之時間均為投料時間點:

一次性進料
混煉5分鐘 (一次性進料之樣品混煉時間越久分散越佳)

分批進料:
0分鐘:橡膠→1分鐘:白煙、Si69→2.5分鐘:碳黑、氧化鋅、硬脂酸、油→5分鐘:出料。先進行白煙的粉碎及分布,白煙與碳黑分開加入以免耦合反應(coupling reaction)受影響,白煙的粉碎與分散時間長達1.5分鐘,油與碳黑同時加入以防止混煉時的油無法吃入以致打滑的情形。此製程有助於橡膠的大量滲入,樣品填料形貌呈現巨觀良好分布
0分鐘:橡膠→1分鐘:白煙、Si69→1.5分鐘:碳黑、氧化鋅、硬脂酸、油→5分鐘:出料。與前述製程不同的是,此製程白煙之混煉時間縮短至30秒,使得橡膠的少量滲入,樣品填料形貌呈現區域集中,此樣品性質會稍好於上述樣品。
0分鐘:橡膠→1分鐘:白煙、Si69→2分鐘:碳黑、氧化鋅、硬脂酸、油→5分鐘:出料。油的加入時間點做最適化後發現在2分鐘加入油與碳黑會有最好的性質。
Tire compounds which use silica as the main property improvement fillers hold the key to enhance fuel efficiency of motor vehicles. The improvement of filler dispersion of carbon black and silica in rubber blends for reducing rolling-resistance (RR) and increasing wet-traction (WT) has been studied for decades. The hierarchical aggregate structure of the reinforcing nanoparticles takes an important role in the final performance of tire tread. Therefore, a series of experiments featuring with different mixing sequences to add the compound fillers in rubbers was conducted in order to study its effects on the filler morphology and mechanical property of the nanocomposites, and provide a fundamental correlation between them. In our present work, the hierarchical filler structure was characterized with a combination of atomic force microscope (AFM), transmission electron microscope (TEM) and small-angle x-ray scattering (SAXS). We used bimodal AFM to derive more precise phase contrast between rubber and filler. Subsequently, from the phase image we conducted a particle analysis method to measure the average size of fillers. By TEM and SAXS measurements, the local filler structure details could be presented. The mechanical properties of the rubber/filler system were evaluated with dynamic mechanical analysis (DMA). The results show that the property of wet traction is related to the large-scale filler morphology (>60nm). To improve property of WT, the mechanism of re-agglomeration by aggregates should be avoided to generate the trapped rubber. However, the property of rolling resistance depends on the relative small-scale filler structure (<60nm), that is the morphology within the aggregates. The thickness of joint rubber shell between primary beads should be either small to construct rigid filler network by nearly direct contact mode which cannot be break down and generate hysteresis loss, or far to form soft filler network which is also unbreakable by cyclic deformation. For tire tread with high filler loadings, the filler morphology characterized with high compacity, which mean the volume fraction of filler within an aggregate, aggregates will be better than the one with low compacity aggregates on the tire performance.For effect of adding sequences, the time spot of filler and oil addition is a crucial point due to the impact on the shear force given by machine and then affect filler morphology. Results show that in the 5 minutes first mixing stage, oil addition time at 2 minutes and with minor filler which is carbon black will give the better mechanical properties of tire tread samples.
致謝 i
摘要 ii
Abstract iv
總目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 14
第二章 橡膠動態性質評定之方法與參數 15
第三章 填料有效體積以及橡膠殼層 22
第四章 隨形變而變化的動態性質-潘恩效應 25
第五章 材料 29
第六章 混煉功率與填料分布 33
第七章 填料形貌分析 34
小角度X光散射 34
原子力顯微鏡 46
穿透式電子顯微鏡 50
第八章 實驗 51
實驗儀器 51
實驗方法 53
第九章 實驗結果與討論 58
第一次實驗 58
第二次實驗 72
第三次實驗 87
第四次實驗 99
結論 106
附錄 108
質心質心距離頻率之作法 108
第二次實驗AFM圖像 115
第二次實驗小角X光散射資料 116
第三次實驗之AFM圖像 117
第三次實驗小角X光散射資料 118
第四次實驗之AFM圖像 118
第四次實驗小角X光散射資料 119
Fitting Method 120
穿透式電子顯微鏡操作方法 121
參考文獻 123
1.Mouri, H. and K. Akutagawa, Improved tire wet traction through the use of mineral fillers. Rubber chemistry and technology, 1999. 72(5): p. 960-968.
2.Krejsa, M. and J. Koenig, A review of sulfur crosslinking fundamentals for accelerated and unaccelerated vulcanization. Rubber chemistry and technology, 1993. 66(3): p. 376-410.
3.Medalia, A., Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber chemistry and Technology, 1978. 51(3): p. 437-523.
4.Saito, Y., New polymer development for low rolling resistance tyres. Kautschuk und Gummi, Kunststoffe, 1986. 39(1): p. 30-32.
5.Medalia, A.I., Heat generation in elastomer compounds: causes and effects. Rubber chemistry and technology, 1991. 64(3): p. 481-492.
6.Futamura, S., Deformation Index—Concept for Hysteretic Energy-Loss Process. Rubber chemistry and technology, 1991. 64(1): p. 57-64.
7.Wang, M.-J., Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chemistry and Technology, 1998. 71(3): p. 520-589.
8.Medalia, A.I., Morphology of aggregates: VI. Effective volume of aggregates of carbon black from electron microscopy; Application to vehicle absorption and to die swell of filled rubber. Journal of Colloid and Interface Science, 1970. 32(1): p. 115-131.
9.Schuring, D. and S. Futamura, Rolling loss of pneumatic highway tires in the eighties. Rubber Chemistry and Technology, 1990. 63(3): p. 315-367.
10.Schuring, D., The rolling loss of pneumatic tires. Rubber Chemistry and Technology, 1980. 53(3): p. 600-727.
11.Zhang, P., M. Morris, and D. Doshi, MATERIALS DEVELOPMENT FOR LOWERING ROLLING RESISTANCE OF TIRES. Rubber Chemistry and Technology, 2016. 89(1): p. 79-116.
12.Ghosh, S., R.A. Sengupta, and M. Kaliske, PREDICTION OF ROLLING RESISTANCE FOR TRUCK BUS RADIAL TIRES WITH NANOCOMPOSITE BASED TREAD COMPOUNDS USING FINITE ELEMENT SIMULATION. Rubber Chemistry and Technology, 2014. 87(2): p. 276-290.
13.Sircar, A., et al., Glass transition of elastomers using thermal analysis techniques. Rubber chemistry and technology, 1999. 72(3): p. 513-552.
14.Payne, A. and R. Whittaker, Low strain dynamic properties of filled rubbers. Rubber chemistry and technology, 1971. 44(2): p. 440-478.
15.Le Gal, A., X. Yang, and M. Klüppel, Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis. The Journal of chemical physics, 2005. 123(1): p. 014704.
16.Heinrich, G. and M. Klüppel, Recent advances in the theory of filler networking in elastomers, in Filled Elastomers Drug Delivery Systems. 2002, Springer. p. 1-44.
17.Klüppel, M., R.H. Schuster, and G. Heinrich, Structure and properties of reinforcing fractal filler networks in elastomers. Rubber chemistry and technology, 1997. 70(2): p. 243-255.
18.Meier, J.G. and M. Klüppel, Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromolecular materials and engineering, 2008. 293(1): p. 12-38.
19.Heinrich, G. and H. Kluppel, The role of polymer-filler interphase in reinforcement of elastomers. Kautschuk Gummi Kunststoffe, 2004. 57(9): p. 452-454.
20.Kohls, D. and G. Beaucage, Rational design of reinforced rubber. Current Opinion in Solid State and Materials Science, 2002. 6(3): p. 183-194.
21.Wang, M.J., S.X. Lu, and K. Mahmud, Carbon–silica dual‐phase filler, a new‐generation reinforcing agent for rubber. Part VI. Time–temperature superposition of dynamic properties of carbon–silica‐dual‐phase‐filler‐filled vulcanizates. Journal of Polymer Science Part B: Polymer Physics, 2000. 38(9): p. 1240-1249.
22.Nusser, K., et al., Conformations of silica− poly (ethylene− propylene) nanocomposites. Macromolecules, 2010. 43(23): p. 9837-9847.
23.Jouault, N., et al., Direct measurement of polymer chain conformation in well-controlled model nanocomposites by combining SANS and SAXS. Macromolecules, 2010. 43(23): p. 9881-9891.
24.Nakatani, A., et al., Chain dimensions in polysilicate-filled poly (dimethyl siloxane). Polymer, 2001. 42(8): p. 3713-3722.
25.Berriot, J., et al., Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules, 2002. 35(26): p. 9756-9762.
26.Papakonstantopoulos, G.J., et al., Calculation of local mechanical properties of filled polymers. Physical Review E, 2007. 75(3): p. 031803.
27.Robertson, C.G. and M. Rackaitis, Further consideration of viscoelastic two glass transition behavior of nanoparticle-filled polymers. Macromolecules, 2011. 44(5): p. 1177-1181.
28.Tsagaropoulos, G. and A. Eisenburg, Direct observation of two glass transitions in silica-filled polymers. Implications to the morphology of random ionomers. Macromolecules, 1995. 28(1): p. 396-398.
29.Chevigny, C., et al., Tuning the mechanical properties in model nanocomposites: Influence of the polymer‐filler interfacial interactions. Journal of Polymer Science Part B: Polymer Physics, 2011. 49(11): p. 781-791.
30.Guth, E., Theory of filler reinforcement. Journal of applied physics, 1945. 16(1): p. 20-25.
31.Akcora, P., et al., “Gel-like” mechanical reinforcement in polymer nanocomposite melts. Macromolecules, 2009. 43(2): p. 1003-1010.
32.Conzatti, L., et al., Morphology and viscoelastic behaviour of a silica filled styrene/butadiene random copolymer. Macromolecular Materials and Engineering, 2008. 293(3): p. 178-187.
33.Chevigny, C., et al., Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules, 2010. 44(1): p. 122-133.
34.Cichomski, E., et al., Influence of silica-polymer bond microstructure on tire-performance indicators. 2014.
35.Yatsuyanagi, F., et al., Effects of surface chemistry of silica particles on the mechanical properties of silica filled styrene–butadiene rubber systems. Polymer journal, 2002. 34(5): p. 332-339.
36.Oberdisse, J. and F. Boué, Rheology–structure relationship of a model nanocomposite material. Trends in Colloid and Interface Science XVII, 2004: p. 124-129.
37.Schneider, G.J., et al., Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites. The Journal of chemical physics, 2010. 133(9): p. 094902.
38.Shinohara, Y., et al., Microscopic observation of aging of silica particles in unvulcanized rubber. Macromolecules, 2010. 43(22): p. 9480-9487.
39.Tatou, M., et al., Reinforcement and polymer mobility in silica–latex nanocomposites with controlled aggregation. Macromolecules, 2011. 44(22): p. 9029-9039.
40.Payne, A.R., The dynamic properties of carbon black‐loaded natural rubber vulcanizates. Part I. Journal of applied polymer science, 1962. 6(19): p. 57-63.
41.Nordsiek, K., The «integral rubber» concept―an approach to an ideal tire tread rubber. Kautschuk und Gummi, Kunststoffe, 1985. 38(3): p. 178-185.
42.Mihara, S., Reactive processing of silica-reinforced tire rubber: new insight into the time-and temperature-dependence of silica rubber interaction. 2009: University of Twente.
43.Dizon, E., E. Micek, and C. Scott, Performance characteristics of present-day tread blacks. Journal of Elastomers & Plastics, 1976. 8(4): p. 414-430.
44.Dizon, E., Processing in an internal mixer as affected by carbon black properties. Rubber Chemistry and Technology, 1976. 49(1): p. 12-27.
45.Cotten, G.R., Mixing of carbon black with rubber I. Measurement of dispersion rate by changes in mixing torque. Rubber chemistry and technology, 1984. 57(1): p. 118-133.
46.Takenaka, M., Analysis of structures of rubber-filler systems with combined scattering methods. Polymer journal, 2013. 45(1): p. 10-19.
47.Roe, R.-J., Methods of X-ray and neutron scattering in polymer science. Vol. 739. 2000: Oxford University Press on Demand.
48.Otegui, J., et al., Determination of filler structure in silica-filled SBR compounds by means of SAXS and AFM. Rubber Chemistry and Technology, 2015. 88(4): p. 690-710.
49.Meyer, E., Atomic force microscopy. Progress in surface science, 1992. 41(1): p. 3-49.
50.Cleveland, J., et al., Energy dissipation in tapping-mode atomic force microscopy. Applied Physics Letters, 1998. 72(20): p. 2613-2615.
51.Baeza, G.P., et al., Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM. Macromolecules, 2012. 46(1): p. 317-329.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊