|
(1).Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Contact Line Deposits in an Evaporating Drop. Phys. Rev. E 2000, 62, 756-765. (2).Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997, 389, 827-829. (3).Deegan, R. D., Pattern Formation in Drying Drops. Phys. Rev. E 2000, 61, 475-485. (4).Kim, D.; Jeong, S.; Park, B. K.; Moon, J., Direct Writing of Silver Conductive Patterns: Improvement of Film Morphology and Conductance by Controlling Solvent Compositions. Appl. Phys. Lett. 2006, 89, 3. (5).Park, J.; Moon, J., Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing. Langmuir 2006, 22, 3506-3513. (6).Sun, J. Z.; Bao, B.; He, M.; Zhou, H. H.; Song, Y. L., Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets. ACS Appl. Mater. Interfaces 2015, 7, 28086-28099. (7).Fischer, B. J., Particle Convection in an Evaporating Colloidal Droplet. Langmuir 2002, 18, 60-67. (8).Hu, H.; Larson, R. G., Evaporation of a Sessile Droplet on a Substrate. J. Phys. Chem. B 2002, 106, 1334-1344. (9).Hu, H.; Larson, R. G., Marangoni Effect Reverses Coffee-Ring Depositions. J. Phys. Chem. B 2006, 110, 7090-7094. (10).Soltman, D.; Subramanian, V., Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect. Langmuir 2008, 24, 2224-2231. (11).Fukuda, K.; Sekine, T.; Kumaki, D.; Tokito, S., Profile Control of Inkjet Printed Silver Electrodes and Their Application to Organic Transistors. ACS Appl. Mater. Interfaces 2013, 5, 3916-3920. (12).Cui, L. Y.; Zhang, J. H.; Zhang, X. M.; Huang, L.; Wang, Z. H.; Li, Y. F.; Gao, H. N.; Zhu, S. J.; Wang, T. Q.; Yang, B., Suppression of the Coffee Ring Effect by Hydrosoluble Polymer Additives. ACS Appl. Mater. Interfaces 2012, 4, 2775-2780. (13).Jin, H. Y.; Qian, J. S.; Zhou, L. M.; Yuan, J. K.; Huang, H. T.; Wang, Y.; Tang, W. M.; Chan, H., Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window. ACS Appl. Mater. Interfaces 2016, 8, 9088-9096. (14).Majumder, M.; Rendall, C. S.; Eukel, J. A.; Wang, J. Y. L.; Behabtu, N.; Pint, C. L.; Liu, T. Y.; Orbaek, A. W.; Mirri, F.; Nam, J.; Barron, A. R.; Hauge, R. H.; Schmid, H. K.; Pasquali, M., Overcoming the "Coffee-Stain" Effect by Compositional Marangoni-Flow-Assisted Drop-Drying. J. Phys. Chem. B 2012, 116, 6536-6542. (15).Uno, K.; Hayashi, K.; Hayashi, T.; Ito, K.; Kitano, H., Particle Adsorption in Evaporating Droplets of Polymer Latex Dispersions on Hydrophilic and Hydrophobic Surfaces. Colloid Polym. Sci. 1998, 276, 810-815. (16).Nguyen, T. A. H.; Hampton, M. A.; Nguyen, A. V., Evaporation of Nanoparticle Droplets on Smooth Hydrophobic Surfaces: The Inner Coffee Ring Deposits. J. Phys. Chem. C 2013, 117, 4707-4716. (17).Li, Y. F.; Sheng, Y. J.; Tsao, H. K., Evaporation Stains: Suppressing the Coffee-Ring Effect by Contact Angle Hysteresis. Langmuir 2013, 29, 7802-7811. (18).Shen, X. Y.; Ho, C. M.; Wong, T. S., Minimal Size of Coffee Ring Structure. J. Phys. Chem. B 2010, 114, 5269-5274. (19).Wong, T. S.; Chen, T. H.; Shen, X. Y.; Ho, C. M., Nanochromatography Driven by the Coffee Ring Effect. Anal. Chem. 2011, 83, 1871-1873. (20).Weon, B. M.; Je, J. H., Self-Pinning by Colloids Confined at a Contact Line. Phys. Rev. Lett. 2013, 110, 5. (21).Shi, B. O.; Webb, E. B., Self-Pinning of a Nanosuspension Droplet: Molecular Dynamics Simulations. Phys. Rev. E 2016, 94, 13. (22).Lin, S. Y.; Yang, K. C.; Chen, L. J., Effect of Surface Hydrophobicity on Critical Pinning Concentration of Nanoparticles To Trigger the Coffee Ring Formation during the Evaporation Process of Sessile Drops of Nanofluids. J. Phys. Chem. C 2015, 119, 3050-3059. (23).Neumann, A. W.; Spelt, J. K., Applied Surface Thermodynamics. CRC Press: 1996. (24).Picknett, R. G.; Bexon, R., Evaporation of Sessile or Pendant Drops in Still Air. J. Colloid Interface Sci. 1977, 61, 336-350. (25).Li, Y. Q.; Wu, H. A.; Wang, F. C., Effect of a Single Nanoparticle on the Contact Line Motion. Langmuir 2016, 32, 12676-12685. (26).Chhasatia, V. H.; Sun, Y., Interaction of Bi-dispersed Particles with Contact Line in an Evaporating Colloidal Drop. Soft Matter 2011, 7, 10135-10143. (27).Yeh, K. Y.; Chen, L. J.; Chang, J. Y., Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces. Langmuir 2008, 24, 245-251. (28).Yeh, M. C.; Chen, L. J., A modified calibration technique for pendant drop/bubble tensiometry. Journal of the Chinese Institute of Chemical Engineers 2001, 32, 109-116. (29).Rao, K. S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K., A Novel Method for Synthesis of Silica Nanoparticles. J. Colloid Interface Sci. 2005, 289, 125-131. (30).Haynes, W. M., CRC handbook of chemistry and physics. CRC press: 2014. (31).Still, T.; Yunker, P. J.; Yodh, A. G., Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops. Langmuir 2012, 28, 4984-4988.
|