|
[1]B. R. Eggins, “Chemical Sensors and Biosensors”, John Wiley & Sons, West Sussex, England (2002). [2]A. JF Griffiths, J. H Miller, D. T. Suzuki, R. C. Lewontin, and W. M. Gelbart, “An Introduction to Genetic Analysis”, 7th ed., W. H. Freeman, New York (2000). [3]B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, “Molecular Biology of the Cell”, 4th ed., Garland Science, New York (2002). [4]http://csrri.iit.edu/~howard/biochem/lectures/cofactors.html (Illinois Institute of Technology, Biological, Chemical, and Physical Science Department. Referred to this website on 2017/01/03) [5]J. Wang, “Analytical Electrochemistry”, 3rd ed., John Wiley & Sons, Hoboken, New Jersey (2006). [6]A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2nd ed.; John Wiley & Sons, New York (2000). [7]C. E. Banks, R. G. Compton, “Exploring the Electrocatalytic Sites of Carbon Nanotubes for NADH Detection: an Edge Plane Pyrolytic Graphite Electrode Study”, Analyst, 2005, 130, 1232-1239. [8]C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, “Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge-Plane Sites and Tube Ends are the Reactive Sites”, Chem. Commun., 2005, 829-841. [9]E. J. Biddinger, U. S. Ozkan, “Role of Graphitic Edge Plane Exposure in Carbon Nanostructures for Oxygen Reduction Reaction”, J. Phys. Chem. C, 2010, 114, 15306-15314. [10]E. C. Landis, K. L. Klein, A. Liao, E. Pop, D. K. Hensley, A. V. Melechko, R. J. Hamers, “Covalent Functionalization and Electron-Transfer Properties of Vertically Aligned Carbon Nanofibers: The Importance of Edge-Plane Sites”, Chem. Mater., 2010, 22, 2357-2366. [11]C. E. Banks, A. Crossley, C. Salter, S. J. Wilkins, R. G. Compton, “Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the “Electrocatalysis” Seen at Some Nanotube-Modified Electrodes”, Angew. Chem. Int. Ed., 2006, 45, 2533-2537. [12]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 2004, 306, 663-669. [13]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Lett., 2008, 8, 902-907. [14]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 2008, 321, 385-388. [15]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, “Graphene-Based Ultracapacitors”, Nano Lett., 2008, 8, 3498-3502. [16]S. Alwarappan, A. Erdem, C. Liu, C. Z. Li, “Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications”, J. Phys. Chem. C, 2009, 113, 8853-8857. [17]M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, H. L. Poh, “Graphene for Electrochemical Sensing and Biosensing”, TrAC-Trends Anal. Chem., 2010, 29, 954-965. [18]J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Using High-Performance Screen-Printed Graphene Electrode”, Biosens. Bioelectron., 2012, 34, 70-76. [19]X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, “3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection”, ACS Nano, 2012, 6, 3206-3213. [20]R. Jain, A. Sinha, “A Graphene Based Sensor for Sensitive Voltammetric Quantification of Cabergoline”, J. Electrochem. Soc., 2014, 160, H314-H320. [21]L. J. Brennan, S. T. Barwich, A. Satti, A. Faure, Y. K. Gunko, “Graphene–ionic liquid electrolytes for dye sensitised solar cells”, J. Mater. Chem. A, 2013, 1, 8379-8384. [22]K. H. Hung, C. H. Chan, H. W. Wang, “Flexible TCO-free counter electrode for dye-sensitized solar cells using graphene nanosheets from a Ti–Ti(III) acid solution”, Renew. Energy, 2014, 66, 150-158. [23]G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, “Gram-Scale Synthesis of Nanomesh Graphene with High Surface Area and Its Application in Supercapacitor Electrodes”, Chem. Commun., 2011, 47, 5976-5978. [24]Z. Chen, D. Yu, W. Xiong, P. Liu, Y. Liu, L. Dai, “Graphene-Based Nanowire Supercapacitors”, Langmuir, 2014, 30, 3567-3571. [25]J. B. Raoof, R. Ojani, H. Beitollahi, “L-Cysteine Voltammetry at a Carbon Paste Electrode Bulk-Modified with Ferrocenedicarboxylic Acid”, Electroanalysis, 2007, 19, 1822-1830. [26]O. Rusin, N. N. St. Luce, R. A. Agbaria, J. O. Escobedo, S. Jiang, I. M. Warner, F. B. Dawan, K. Lian, R. M. Strongin, “Visual Detection of Cysteine and Homocysteine”, J. Am. Chem. Soc., 2004, 126, 438-439. [27]S. Shahrokhian, “Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode”, Anal. Chem., 2001, 73, 5972-5978. [28]D. Rhodes, A.C. Myers, G. Jamieson, “Gas Chromatography-Mass Spectrometry of N- Heptafluorobutyryl Isobutyl Esters of Amino Acids in the Analysis of the Kinetics of [15N]H4+ Assimilation in Lemna minor L”, Plant Physiol., 1981, 68, 1197-1205. [29]J. Dumonceaux, C. Goujon, V. Joliot, P. Briand, U. Hazan, “Determination of Essential Amino Acids Involved in the CD4-Independent Tropism of the X4 Human Immunodeficiency Virus Type 1 m7NDK Isolate: Role of Potential N Glycosylations in the C2 and V3 Regions of gp120”, J. Virol., 2001, 75, 5425-5428. [30]P. Schrynemackers-Pitance, S. Schoos-Berbette, “Determination of Aromatic and Neutral Amino Acids by HPLC in Blood Specimens Collected on Filter Paper”, Clin. Chim. Acta, 1987, 166, 91. [31]Y. Wang, J. Lu, L. H. Tang, H. X. Chang, J. H. Li, “Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds”, Anal. Chem. 2009, 81, 9710-9715. [32]M. Zhou, J. Ding, L. P. Guo, Q. K. Shang, “Electrochemical Behavior of l-Cysteine and Its Detection at Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode”, Anal. Chem., 2007, 79, 5328-5335. [33]L. P. Liu, Z. J. Yin, Z. S. Yang, “A L-cysteine Sensor Based on Pt Nanoparticles/Poly(o-aminophenol) Film on Glassy Carbon Electrode”, Bioelectrochem., 2010, 79, 84-89. [34]H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi and A.R. Fakhari, “A Novel Electrochemical Sensor Based on Metal-Organic Framework for Electro-Catalytic Oxidation of L-cysteine”, Biosens. Bioelectron., 2013, 42, 426-429. [35]J. A. Reyanud, B. Maltoy, P. Canessan, “Electrochemical Investigations of Amino Acids at Solid Electrodes: Part I. Sulfur Components: Cystine, Cysteine, Methionine”, J. Electroanal. Chem., 1980, 114, 195-211. [36]D. L. Rabenstein, G. T. Yamashita, “Determination of Homocysteine, Penicillamine, and Their Symmetrical and Mixed Disulfides by Liquid Chromatography with Electrochemical Detection”, Anal. Biochem., 1989, 180, 259-263. [37]J. L. D’Eramo, A. E. Finkelstein, F. Q. Boccazzi, O. Fridman, “Total Homocysteine Levels in Plasma: High-Performance Liquid Chromatographic Determination with Electrochemical Detection and Glassy Carbon Electrode”, J. Chromatogr. B, 1998, 720, 205-210. [38]P. J. Vandeberg, D. C. Johnson, “Pulsed Electrochemical Detection of Cysteine, Cystine, Methionine, and Glutathione at Gold Electrodes Following Their Separation by Liquid Chromatography”, Anal. Chem., 1993, 65, 2713-2718. [39]N. Maleki, A. Safavi, F. Sedaghati, F. Tajabadi, “Efficient Electrocatalysis of L-cysteine Oxidation at Carbon Ionic Liquid Electrode”, Anal. Biochem., 2007, 369, 149-153. [40]T. R. Ralph, M. L. Hitchman, J. P. Millington, F. C. Walsh, “The Reduction of L-cystine Hydrochloride at Lead Using Static and Rotating Disc Electrodes”, J. Electroanal. Chem., 2005, 583, 260-272. [41]N. Spãtaru, B. V. Sarada, E. Popa, D. A. Tryk, A. Fujishima, “Voltammetric Determination of L-Cysteine at Conductive Diamond Electrodes”, Anal. Chem., 2001, 73, 514-519. [42]M. T. Stankovich, A. J. Bard, “The Electrochemistry of Proteins and Related Substances: I. Cystine and Cysteine at the Mercury Electrode”, J. Electroanal. Chem., 1977, 75, 487-505. [43]F. G. Bãnicã, J. C. Moreira, A. G. Fogg, “Application of Catalytic Stripping Voltammetry for the Determination of Organic Sulfur Compounds at a Hanging Mercury Drop Electrode: Behaviour of Cysteine, Cystine and N-acetylcysteine in the Presence of Nickel Ion”, Analyst, 1994, 119, 309. [44]T. Inoue, J. R. Kirchhoff, “Electrochemical Detection of Thiols with a Coenzyme Pyrroloquinoline Quinone Modified Electrode”, Anal. Chem., 2000, 72, 5755-5760. [45]T. Inoue, J.R. Kirchhoff, “Determination of Thiols by Capillary Electrophoresis with Amperometric Detection at a Coenzyme Pyrroloquinoline Quinone Modified Electrode”, Anal. Chem., 2002, 74, 1349-1354. [46]D. Mimica, F. Bedioui, J. H. Zagal, “Reversibility of the L-cysteine/L-cystine Redox Process at Physiological pH on Graphite Electrodes Modified with Coenzyme B12 and Vitamin B12”, Electrochim. Acta, 2002, 48, 323-329. [47]A. K. M. Kafi, F. Yin, H. K. Shin, Y.-S. Kwon, “Amperometric Thiol Sensor Based on Prussian Blue-Modified Glassy Carbon Electrode”, Curr. Appl. Phys., 2007, 7, 496-499. [48]K. P. Gong, X. Z. Zhu, R. Zhao, S. X. Xiong, L. Q. Mao, C. F. Chen, “Rational Attachment of Synthetic Triptycene Orthoquinone onto Carbon Nanotubes for Electrocatalysis and Sensitive Detection of Thiols”, Anal. Chem., 2005, 77, 8158. [49]N. Sehlothl, T. Nyokong, J. H. Zagal, F. Bedioui, “Electrocatalysis of Oxidation of 2-mercaptoethanol, L-cysteine and Reduced Glutathione by Adsorbed and Electrodeposited Cobalt Tetra Phenoxypyrrole and Tetra Ethoxythiophene Substituted Phthalocyanines”, Electrochim. Acta, 2006, 51, 5125-5130. [50]C. Y. Deng, J. H. Chen, X. L. Chen, Z. Nie, S. Z. Yao, “Boron-Doped Carbon Nanotubes Modified Electrode for Electroanalysis of NADH”, Electrochem. Commun., 2008, 10, 907-909. [51]C. Y. Deng, J. H. Chen, X. L. Chen, C. H. Xiao, L. H. Nie, S. Z. Yao, ”Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Boron-Doped Carbon Nanotubes Modified Electrode”, Biosens. Bioelectron., 2008, 23, 1272-1277. [52]N. Q. Jia, L. J. Wang, L. Liu, Q. Zhou, Z. Y. Jiang, “Bamboo-Like CNx Nanotubes for the Immobilization of Hemoglobin and Its Bioelectrochemistry”, Electrochem. Commun., 2005, 7, 349-354. [53]R. X. Wang, D. J. Zhang, Y. M. Zhang, C. B. Liu, “Boron-Doped Carbon Nanotubes Serving as a Novel Chemical Sensor for Formaldehyde”, J. Phys. Chem. B, 2006, 110, 18267-18271. [54]L. Wu, X. J. Zhang, H. X. Ju, “Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential”, Anal. Chem., 2007, 79, 453-458. [55]T. J. Davies, R. R. Moore, C. E. Banks, R. G. Compton, “The Cyclic Voltammetric Response of Electrochemically Heterogeneous Surfaces”, J. Electroanal. Chem., 2004, 574, 123. [56]A. Salimi, C. E. Banks, R. G. Compton, “Abrasive Immobilization of Carbon Nanotubes on a Basal Plane Pyrolytic Graphite Electrode: Application to the Detection of Epinephrine”, Analyst, 2004, 129, 225-228. [57]M. Zhang, K. P. Gong, H. Z. Zhang, L. Q. Mao, “Layer-By-Layer Assembled Carbon Nanotubes for Selective Determination of Dopamine in the Presence of Ascorbic Acid”, Biosens. Bioelectron., 2005, 20, 1270-1276. [58]A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates Jr., J. Liu, R. E. Smalley, “Enhancement of Adsorption Inside of Single-Walled Nanotubes: Opening the Entry Ports”, Chem. Phys. Lett., 2000, 321, 292-296. [59]D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, “Improved Synthesis of Graphene Oxide”, ACS Nano, 2010, 4, 4806-4814. [60]S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, R. S. Ruoff, “Hydrazine-Reduction of Graphite and Graphene oxide”, Carbon, 2011, 49, 3019-3023. [61]T. W. Lin, C. Y. Su, X. Q. Zhang, W. Zhang, Y. H. Lee, C.W. Chu, H. Y. Lin, M. T. Chang, F. R. Chen, L. J. Li, “Converting Graphene Oxide Monolayers into Boron Carbonitride Nanosheets by Substitutional Doping”, Small, 2012, 8, 1384-1391. [62]T. Schiros, D. Nordlund, L. Palova, L. Y. Zhao,M. Levendorf, C. Jaye, D. Reichman, J. Park, M. Hybertsen, A. Pasupathy, “Atomistic Interrogation of B–N Co-dopant Structures and Their Electronic Effects in Graphene”, ACS Nano, 2016, 10, 6574-6584. [63]R. S. Krsmanović, Ž. Šljivančanin, “Atomic Structure, Electronic Properties, and Reactivity of In-Plane Heterostructures of Graphene and Hexagonal Boron Nitride”, J. Phys. Chem. C, 2014, 118, 16104-16112. [64]B. Hammer, “Special Sites at Noble and Late Transition Metal Catalysts”, Top. Catal., 2006, 37, 3-16. [65]T. R. Ralph, M.L. Hitchman, J. P. Millington, F. C. Walsh, “The Electrochemistry of L-cystine and L-cysteine: Part 1: Thermodynamic and Kinetic Studies”, J. Electroanal. Chem., 1994, 375, 1-15. [66]S. G. Ge, M. Yan, J. J. Lu, M. Zhang, F. Yu, J. H. Yu, X. R. Song, S. L. Yu, “Electrochemical Biosensor Based on Graphene Oxide-Au Nanoclusters Composites for L-cysteine Analysis”, Biosens. Bioelectron., 2012, 31, 49-54. [67]C. Y. Deng, J. H. Chen, X. L. Chen, M. D. Wang, Z. Nie, S. Z. Yao, “Electrochemical Detection of L-cysteine Using a Boron-Doped Carbon Nanotube-Modified Electrode”, Electrochim. Acta, 2009, 54, 3298-3302. [68]S. Budavari, M.J. O’Neil, A. Smith, P.E. Heckelman, The Merck Index, 11th ed.; Merck & Co. Inc. Rahway, NJ, 1989. [69]T. R. Ralph, M. L. Hitchman, J. P. Millington, F. C. Walsh, “The Reduction of L-cystine in Hydrochloric Acid at Mercury Drop Electrodes”, J. Electroanal. Chem., 2006, 587, 31-41. [70]M. Zhou, J. Ding, L. P. Guo, Q. K. Shang, “Electrochemical Behavior of L-Cysteine and Its Detection at Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode”, Anal. Chem., 2007, 79, 5328-5335. [71]Y. T. Lai, A. Ganguly, L. C. Chen, K. H. Chen, “Direct Voltammetric Sensing of L-Cysteine at Pristine GaN Nanowires Electrode”, Biosens. Bioelectron., 2010, 26, 1688-1691. [72]S. Ge, M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song, S. Yu, “Electrochemical Biosensor Based on Graphene Oxide-Au Nanoclusters Composites for L-cysteine Analysis”, Biosens. Bioelectron., 2012, 31, 49-54. [73]S. Fei, J. Chen, S. Yao, G. Deng, D. He, Y. Kuang, “Electrochemical Behavior of L-cysteine and Its Detection at Carbon Nanotube Electrode Modified with Platinum”, Anal. Biochem., 2005, 339, 29-35. [74]X. Q. Wang, Y. P. Wen, L. M. Lu, J. K. Xu, L. Zhang, Y. Y. Yao, H. H. He, “A Novel L-Cysteine Electrochemical Sensor Using Sulfonated Graphene-poly(3,4-Ethylenedioxythiophene) Composite Film Decorated with Gold Nanoparticles”, Electroanalysis, 2014, 26, 648-655. [75]Y. Dong, J. B. Zheng, “A Nonenzymatic L-cysteine Sensor Based on SnO2-MWCNTs Nanocomposites”, J. Mol. Liq., 2014, 196, 280-284. [76]R. X. Shen, X. Z. Li, G. L. Lium, Y. L. Ji, G. F. Wang, B. Fang, “Synthesis and Characterization of Chromium Hexacyanoferrate/Multiwalled Carbon Nanotube Composite and Its Biosensing for L-Cysteine”, Electroanalysis, 2010, 22, 2383-2388. [77]G. H. Yang, Y. H. Zhou, J. J. Wu, J. T. Cao, L. L. Li, H. Y. Liu, J. J. Zhu, “Microwave-Assisted Synthesis of Nitrogen and Boron Co-doped Graphene and Its Application for Enhanced Electrochemical Detection of Hydrogen Peroxide”, RSC Adv., 2013, 3, 22597-22604. [78]P. N. Bartlett, Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications. John Wiley & Sons, New York, USA (2008). [79]F. Ricci, A. Amine, D. Moscone, G. Palleschi, “Surface Chemistry Effects on the Performance of an Electrochemical DNA Sensor”, Biosens. Bioelectron., 2007, 22, 854-862. [80]J. Moiroux, P. J. Elving, “Effects of Adsorption, Electrode Material, and Operational Variables on the Oxidation of Dihydronicotinamide Adenine Dinucleotide at Carbon Electrodes”, Anal. Chem., 1978, 50, 1056-1062. [81]G. D. Birkmayer, NADH: The Energizing Coenzyme, Basic Health Publications, Inc, United States. (1993) pp. 1-22. [82]G. D. Birkmayer, “NADH: The Biological Hydrogen: The Secret of Our Life Energy”, 2009, Basic Health Publications, Inc, United States. [83]J. Castro-Marrero, M. D. Cordero, M. J. Segundo, N. Sáez-Francàs, N. Calvo, L. Román-Malo, L. Aliste, T. FernándezdeSevilla, J. Alegre, “Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome?”, Redox Signal., 2014, 22, 679-685. [84]R. Sahelian, 2014, NADH Supplement Benefit, Side Effects, 5 mg 10 mg and 20 mg Tablets, Fatigue URL: 〈http://www.raysahelian.com/nadh.html〉. [85]T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, M. R. Duchen, “Separating NADH and NADPH Fluorescence in Live Cells and Tissues Using FLIM”, Nature Commun., 2014, 5, 3936. [86]V. B. Ritov, E. V. Menshikova, D. E. Kelley, “High-Performance Liquid Chromatography-Based Methods of Enzymatic Analysis: Electron Transport Chain Activity in Mitochondria from Human Skeletal Muscle”, Anal. Biochem., 2004, 333, 27-38. [87]P. Aronov, Y. Kawahara, J. Cox, T. Christison, L. Lopez, 2014, Determinationof NADH and NADPH Ssing ion Chromatography and High Resolution Accurate Mass Spectrometry. In: Thermo Scientific. pp.1-8. [88]H. Huck, A. S. Graf, J. Danzer, P. Kirch, H. L. Schmidt, “Bioelectrochemical Detection Systems for Substrates of Dehydrogenases”, Analyst, 1984, 109, 147-150. [89]S. Mutyala, J. Mathiyarasu, “A Highly Sensitive NADH Biosensor Using Nitrogen Doped Graphene Modified Electrodes”, J. Electroanal. Chem., 2016, 775, 329-336. [90]J. Balamurugan, T. D. Thanh, N. H. Kim, J. H. Lee, “Facile Fabrication of FeN Nanoparticles/Nitrogen-Doped Graphene Core-Shell Hybrid and Its Use as a Platform for NADH Detection in Human Blood Serum”, Biosens. Bioelectron., 2016, 83, 68-76. [91]M. Eguílaz, F. Gutierrez, J.M. González-Domínguez, M.T. Martínez, G. Rivas, “Single-Walled Carbon Nanotubes Covalently Functionalized with Polytyrosine: A New Material for the Development of NADH-Based Biosensors”, Biosens. Bioelectron., 2016, 86, 308-314. [92]P. P. Gai, C. E. Zhao, Y. Wang, E. S. Abdel-Halim, J. R. Zhang, J. J. Zhu, “NADH Dehydrogenase-Like Behavior of Nitrogen-Doped Graphene and Its Application in NAD+-Dependent Dehydrogenase Biosensing”, Biosens. Bioelectron., 2014, 62, 170-176. [93]C. H. Chen, Y. C. Chen, M. S. Lin, “Urea Based Organic Nanoparticles for Selective Determination of NADH”, Biosens. Bioelectron., 2013, 42, 379-384. [94]C. O. Schmakel, K. S. V. Santhanam, P. J. Elving, “Nicotinamide Adenine Dinucleotide (NAD+) and Related Compounds. Electrochemical Redox Pattern and Allied Chemical Behavior”, J. Am. Chem. Soc., 1975, 97, 5083-5092. [95]A. A. Karyakin, E. E. Karyakina, W. Schuhmann, H. L. Schmidt, “Electropolymerized Azines: Part II. In a Search of the Best Electrocatalyst of NADH Oxidation”, Electroanalysis, 1999, 11, 553-557. [96]R. D. Braun, K. S. V. Santhanam, P. J. Elving, “Electrochemical Oxidation in Aqueous and Nonaqueous Media of Dihydropyridine Nucleotides NMNH, NADH, and NADPH”, J. Am. Chem. Soc., 1975, 97, 2591-2598. [97]A. M. Wilson, D. G. Epple, “A Comprehensive Study of the Postnatal Changes in the Concentration of the Lipids of Developing Rat Brain”, Biochemistry, 1966, 5, 3170-3175. [98]L. Gorton, E. Dominguez, in: A. J. Bard, M. Stratmann (Eds.), NAD(P)+/NAD(P)H in Living Systems, Encyclopaedia of Electrochemistry, Wiley-VCH 2002, p. 77. [99]L. N. Wu, X. J. Zhang, H. X. Ju, “Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential”, Anal. Chem., 2007, 79, 453-458. [100]T. J. Davies, R. R. Moore, C. E. Banks, R. G. Compton, “The Cyclic Voltammetric Response of Electrochemically Heterogeneous Surfaces”, J. Electroanal. Chem., 2004, 574, 123-152. [101]M. N. Zhang, K. P. Gong, H. Z. Zhang, L. Q. Mao, “Layer-By-Layer Assembled Carbon Nanotubes for Selective Determination of Dopamine in the Presence of Ascorbic Acid”, Biosens. Bioelectron., 2005, 20, 1270-1276. [102]J. Moiroux, P.J. Elving, “Mechanistic Aspects of the Electrochemical Oxidation of Dihydronicotinamide Adenine Dinucleotide (NADH)”, J. Am. Chem. Soc., 1980, 102, 6533-6538. [103]R. R. Moore, C. E. Banks, R. G. Compton, “Basal Plane Pyrolytic Graphite Modified Electrodes: Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts”, Anal. Chem., 2004, 76, 2677-2682. [104]F. S. Saleh, L. Q. Mao, T. Ohsaka, “Development of a Dehydrogenase-Based Glucose Anode Using a Molecular Assembly Composed of Nile Blue and Functionalized SWCNTs and Its Applications to a Glucose Sensor and Glucose/O2 Biofuel Cell”, Sensor Actuat. B-Chem., 2011, 152, 130-135. [105]T. Maiyalagan, J. Sundaramurthy, P.S. Kumar, P. Kannan, M. Opallo, S. Ramakrishna, “Nanostructured α-Fe2O3 Platform for the Electrochemical Sensing of Folic Acid”, Analyst, 2013, 138, 1779-1786. [106]J. G. Velasco, “Determination of Standard Rate Constants for Electrochemical Irreversible Processes From Linear Sweep Voltammograms”, Electroanalysis, 1997, 9, 880-882. [107]G. P. Keeley, A. O´Neill, M. Holzinger, S. Cosnier, J. N. Coleman, G. S. Duesberg, “DMF-Exfoliated Graphene for Electrochemical NADH Detection”, Phys. Chem. Chem. Phys., 2011, 13, 7747-7750. [108]Y. Fan, X. Yang, C. Yang, J. Liu, “Au-TiO2/Graphene Nanocomposite Film for Electrochemical Sensing of Hydrogen Peroxide and NADH”, Electroanalysis, 2012, 6, 1334-1339. [109]H. Teymourian, A. Salimi, S. Khezrian, “Fe3O4 Magnetic Nanoparticles/Reduced Graphene Oxide Nanosheets as a Novel Electrochemical and Bioeletrochemical Sensing Platform”, Biosens. Bioelectron., 2013, 49, 1-8. [110]G. M. Mota-Ferreira, F. Mota-deOliveira, F. R. Figueiredo-Leite, C. M. Maroneze, L. T. Kubota, F. S. Damos, R. C. Silva-Luz, “DNA and Graphene as a New Efficient Platform for Entrapment of Methylene blue (MB): Studies of the Electrocatalytic Oxidation of β-nicotinamide Adenine Dinucleotide”, Electrochim. Acta, 2013, 111, 543-551. [111]V. Serafin, L. Agüí, P. Yañez-Sedeño, J.M. Pingarrón, “A Novel Hybrid Platform for the Preparation of Disposable Enzyme Biosensors Based on Poly(3,4-ethylenedioxythiophene) Electrodeposition in an Ionic Liquid Medium onto Gold Nanoparticles-Modified Screen-Printed Electrodes”, J. Electroanal. Chem., 2011, 656, 152-158. [112]E. Hua, L. Wang, X. Jing, C. Chen, G. Xie, “One-Step Fabrication of Integrated Disposable Biosensor Based on ADH/NAD+/Meldola''s Blue/Graphitized Mesoporous Carbons/Chitosan Nanobiocomposite for Ethanol Dsetection”, Talanta, 2013, 111,163-169. [113]M. Revenga-Parra, C. Gomez-Anquela, T. Garcia-Mendiola, E. Gonzalez, F. Pariente, E. Lorenzo, “Grafted Azure a Modified Electrodes as Disposable β-Nicotinamide Adenine Dinucleotide Sensors”, Anal. Chim. Acta, 2012, 747, 84-91. [114]http://delloyd.50megs.com/moreinfo/buffers2.html (Delloyd’s Lab Tech, resources reagents and solutions. Referred to this website on 2015/06/18). [115]McGraw Hill Encyclopedia of Science & Technology, “Graphene and graphene oxide membranes for water treatment”, 11th Edition Keystroked (2016). [116]L. Zhao, M. Levendorf, S. Goncher, T. Schiros, L. Pálová, A. Zabet-Khosousi, K.T. Rim, C. Gutiérrez, D. Nordlund, C. Jaye, M. Hybertsen, D. Reichman, G.W. Flynn, J. Park, A.N. Pasupathy, “Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene”, Nano Lett., 2013, 13, 4659-4665.
|