|
第一章 1.C. R. Rao, G. U. Kulkarni, P. J. Thomas and P. P. Edwards, Metal nanoparticles and their assemblies. Chem. Soc. Rev., 2000, 29, 27-35. 2.C. Rao, G. Kulkarni, P. J. Thomas and P. P. Edwards, Size‐dependent chemistry: properties of nanocrystals. Chem. Eur. J., 2002, 8, 28-35. 3.Z. H. Lin, M. H. Lin and H. T. Chang, Facile synthesis of catalytically active platinum nanosponges, nanonetworks, and nanodendrites. Chem. Eur. J., 2009, 15, 4656-4662. 4.Y. Kwon, S. C. Lai, P. Rodriguez and M. T. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc., 2011, 133, 6914-6917. 5.S. Guo, S. Zhang, X. Sun and S. Sun, Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc., 2011, 133, 15354-15357. 6.Z.-H. Lin, Z.-Y. Shih, H.-Y. Tsai and H.-T. Chang, Gold/Platinum nanosponges for electrocatalytic oxidation of methanol. Green Chem., 2011, 13, 1029-1035. 7.Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy and W. I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors, 2012, 12, 5996-6022. 8.Z. Dursun and B. Gelmez, Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE. Electroanalysis, 2010, 22, 1106-1114. 9.J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans and M. Perez, Water Gas Shift Reaction on Cu and Au Nanoparticles Supported on CeO2(111) and ZnO(000 ): Intrinsic Activity and Importance of Support Interactions. Angew. Chem., 2007, 119, 1351-1354. 10.A. P. Periasamy, J. Liu, H.-M. Lin and H.-T. Chang, Synthesis of copper nanowire decorated reduced graphene oxide for electro-oxidation of methanol. J. Mater. Chem. A, 2013, 1, 5973-5981. 11.M. A. Thorseth, C. E. Tornow, C. Edmund and A. A. Gewirth, Cu complexes that catalyze the oxygen reduction reaction. Coord. Chem. Rev., 2013, 257, 130-139. 12.N. N. Hoover, B. J. Auten and B. D. Chandler, Tuning supported catalyst reactivity with dendrimer-templated Pt−Cu nanoparticles. J. Phys. Chem. B, 2006, 110, 8606-8612. 13.N. Barrabés, J. Just, A. Dafinov, F. Medina, J. Fierro, J. Sueiras, P. Salagre and Y. Cesteros, Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: The effect of copper nanoparticles. Appl. Catal., B, 2006, 62, 77-85. 14.J. Zheng, W. Zhang, Z. Lin, C. Wei, W. Yang, P. Dong, Y. Yan and S. Hu, Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J. Mater. Chem. B, 2016, 4, 1247-1253. 15.J.-M. Zen, C.-T. Hsu, A. S. Kumar, H.-J. Lyuu and K.-Y. Lin, Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst, 2004, 129, 841-845. 16.K. B. Male, S. Hrapovic, Y. Liu, D. Wang and J. H. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta, 2004, 516, 35-41. 17.A. Umer, S. Naveed, N. Ramzan and M. S. Rafique, Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 2012, 7, 1230005-1230023. 18.D. L. Fedlheim and C. A. Foss, Metal nanoparticles: synthesis, characterization, and applications, Marcel Dekker, Inc., New York, 2002. 19.Y. Wang, P. Chen and M. Liu, Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology, 2006, 17, 6000-6006. 20.S.-Y. Xie, Z.-J. Ma, C.-F. Wang, S.-C. Lin, Z.-Y. Jiang, R.-B. Huang and L.-S. Zheng, Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: a combination of physical and chemical processes. J. Solid State Chem., 2004, 177, 3743-3747. 21.J. Xiong, Y. Wang, Q. Xue and X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem., 2011, 13, 900-904. 22.I. Lisiecki, A. Filankembo, H. Sack-Kongehl, K. Weiss, M.-P. Pileni and J. Urban, Structural investigations of copper nanorods by high-resolution TEM. Phys. Rev. B, 2000, 61, 4968-4974. 23.S. M. Haffner, C. M. Alexander, T. J. Cook, S. J. Boccuzzi, T. A. Musliner, T. R. Pedersen, J. Kjekshus and K. Pyörälä, Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med., 1999, 159, 2661-2667. 24.W. Rathmann and G. Giani, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care, 2004, 27, 2568-2569. 25.J. R. Gavin III, K. Alberti, M. B. Davidson and R. A. DeFronzo, Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes care, 1997, 20, 1183-1197. 26.W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng and Y. Huang, Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun., 2011, 47, 6695-6697. 27.W. Shi, X. Zhang, S. He and Y. Huang, CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem. Commun., 2011, 47, 10785-10787. 28.R. Gill, L. Bahshi, R. Freeman and I. Willner, Optical detection of glucose and acetylcholine esterase inhibitors by H2O2‐sensitive CdSe/ZnS quantum dots. Angew. Chem., 2008, 120, 1700-1703. 29.S. Weiss, Fluorescence spectroscopy of single biomolecules. Science, 1999, 283, 1676-1683. 30.F. Kormos, L. Sziráki and I. Tarsiche, Potentiometric biosensor for urinary glucose level monitoring. Lab. Rob. Autom., 2000, 12, 291-295. 31.J. Wang, Amperometric biosensors for clinical and therapeutic drug monitoring: a review. J. Pharm. Biomed. Anal., 1999, 19, 47-53. 32.Y. Miwa, M. Nishizawa, T. Matsue and I. Uchida, A conductometric glucose sensor based on a twin-microband electrode coated with a polyaniline thin film. Bull. Chem. Soc. Jpn., 1994, 67, 2864-2866. 33.M. M. Rahman, A. Ahammad, J.-H. Jin, S. J. Ahn and J.-J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors, 2010, 10, 4855-4886. 34.L. C. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci., 1962, 102, 29-45. 35.S. Updike and G. Hicks, The enzyme electrode. Nature, 1967, 214, 986-988. 36.J. Wang, Glucose biosensors: 40 years of advances and challenges. Electroanalysis, 2001, 13, 983-988. 37.K. Schügerl, B. Hitzmann, H. Jurgens, T. Kullick, R. Ulber and B. Weigal, Challenges in integrating biosensors and FIA for on-line monitoring and control. Trends Biotechnol., 1996, 14, 21-31. 38.Y. Sun, H. Buck and T. E. Mallouk, Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal. Chem., 2001, 73, 1599-1604. 39.L. Su, W. Jia, L. Zhang, C. Beacham, H. Zhang and Y. Lei, Facile synthesis of a platinum nanoflower monolayer on a single-walled carbon nanotube membrane and its application in glucose detection. J. Phys. Chem. C, 2010, 114, 18121-18125. 40.J. Wang, D. F. Thomas and A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal. Chem., 2008, 80, 997-1004. 41.J. Chen, W.-D. Zhang and J.-S. Ye, Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun., 2008, 10, 1268-1271. 42.S. Masoomi-Godarzi, A. Khodadadi, M. Vesali-Naseh and Y. Mortazavi, Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles. J. Electrochem. Soc., 2014, 161, B19-B25. 43.E. Reitz, W. Jia, M. Gentile, Y. Wang and Y. Lei, CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis, 2008, 20, 2482-2486. 44.S.-i. Mho and D. C. Johnson, Electrocatalytic response of carbohydrates at copper-alloy electrodes. J. Electroanal. Chem., 2001, 500, 524-532. 45.S. Park, T. D. Chung and H. C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem., 2003, 75, 3046-3049. 46.S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y.-C. Lai and H. He, A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem., 2007, 79, 2583-2587. 47.M. Rubianes and G. Rivas, Highly selective dopamine quantification using a glassy carbon electrode modified with a melanin-type polymer. Anal. Chim. Acta, 2001, 440, 99-108. 48.F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 1961, 3, 318-356. 49.E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman and A. Van Oudenaarden, Multistability in the lactose utilization network of Escherichia coli. Nature, 2004, 427, 737-740. 50.D. H. Juers, B. W. Matthews and R. E. Huber, LacZ β‐galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Sci., 2012, 21, 1792-1807. 51.L. H. Hansen, S. Knudsen and S. J. Sørensen, The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr. Microbiol., 1998, 36, 341-347. 52.B. W. Matthews, The structure of E. coli β-galactosidase. C. R. Biol., 2005, 328, 549-556. 53.I. Zabin, β-Galactosidase α-complementation. Mol. Cell. Biochem., 1982, 49, 87-96. 54.G. P. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E. E. Medrano, M. Linskens, I. Rubelj and O. Pereira-Smith, A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci., 1995, 92, 9363-9367. 55.D. Maruhn, Rapid colorimetric assay of β-galactosidase and N-acetyl-β-glucosaminidase in human urine. Clin. Chim. Acta, 1976, 73, 453-461. 56.K. L. Griffith and R. E. Wolf, Measuring β-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem. Biophys. Res. Commun., 2002, 290, 397-402. 57.J. Miller, Assay of β-galactosidase. Experiments in molecular genetics, 1972, 352-355. 58.T. Tschirhart, X. Y. Zhou, H. Ueda, C.-Y. Tsao, E. Kim, G. F. Payne and W. E. Bentley, Electrochemical measurement of the β-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth. Biol., 2015, 5, 28-35. 59.N. Mockli and D. Auerbach, Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques, 2004, 36, 872-877. 60.K. R. Gee, W.-C. Sun, M. K. Bhalgat, R. H. Upson, D. H. Klaubert, K. A. Latham and R. P. Haugland, Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-galactosidases. Anal. Biochem., 1999, 273, 41-48. 61.I. Bronstein, C. S. Martin, J. Fortin, C. Olesen and J. Voyta, Chemiluminescence: sensitive detection technology for reporter gene assays. Clin. Chem., 1996, 42, 1542-1546. 62.V. Bassaneze, A. A. Miyakawa and J. E. Krieger, A quantitative chemiluminescent method for studying replicative and stress-induced premature senescence in cell cultures. Anal. Biochem., 2008, 372, 198-203. 63.R. Simon, U. Priefer and A. Pühler, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol, 1983, 1, 784-791. 64.S. Edberg, E. Rice, R. Karlin and M. Allen, Escherichia coli: the best biological drinking water indicator for public health protection. J. Appl. Microbiol., 2000, 88, 106S-116S. 65.E. Bingen, S. Bonacorsi, N. Brahimi, E. Denamur and J. Elion, Virulence patterns of Escherichia coli K1 strains associated with neonatal meningitis. J. Clin. Microbiol., 1997, 35, 2981-2982. 66.E. F. Boyd and D. L. Hartl, Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J. Bacteriol., 1998, 180, 1159-1165. 67.W. Wu, S. Zhao, Y. Mao, Z. Fang, X. Lu and L. Zeng, A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta, 2015, 861, 62-68. 68.R. E. Besser, S. M. Lett, J. T. Weber, M. P. Doyle, T. J. Barrett, J. G. Wells and P. M. Griffin, An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157: H7 in fresh-pressed apple cider. JAMA, 1993, 269, 2217-2220. 69.M. F. Bavaro, E. coli O157: H7 and other toxigenic strains: the curse of global food distribution. Curr Gastroenterol Rep., 2012, 14, 317-323. 70.L. W. Leiter, The Eijkman Fermentation Test as an Aid in the detection of fecal organisms in water. Am. J. Hyg., 1929, 9, 705-734. 71.A. Goetz, N. Tsuneishi, P. W. Kabler, L. Streicher and H. G. Neumann, Application of molecular filter membranes to the bacteriological analysis of water. J. Am. Water Works Assoc., 1951, 43, 943-984. 72.T. Evans, C. Waarvick, R. J. Seidler and M. LeChevallier, Failure of the most-probable-number technique to detect coliforms in drinking water and raw water supplies. Appl. Environ. Microbiol., 1981, 41, 130-138. 73.K. F. Eckner, Comparison of membrane filtration and multiple-tube fermentation by the Colilert and Enterolert methods for detection of waterborne coliform bacteria, Escherichia coli, and enterococci used in drinking and bathing water quality monitoring in southern Sweden. Appl. Environ. Microbiol, 1998, 64, 3079-3083. 74.S. C. Edberg, M. J. Allen and D. B. Smith, National field evaluation of a defined substrate method for the simultaneous detection of total coliforms and Escherichia coli from drinking water: comparison with presence-absence techniques. Appl. Environ. Microbiol., 1989, 55, 1003-1008. 75.E. de Boer and R. R. Beumer, Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol., 1999, 50, 119-130. 76.T. Tsuzuki, Commercial scale production of inorganic nanoparticles. Int. J. Nanotechnol., 2009, 6, 567-578. 77.G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng and X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta, 2013, 180, 161-186. 78.I. G. Serebriiskii and E. A. Golemis, Uses of lacZ to study gene function: evaluation of β-galactosidase assays employed in the yeast two-hybrid system. Anal. Biochem., 2000, 285, 1-15.
第二章 1.J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski and D. J. Birch, Fluorescence-based glucose sensors. Biosens. Bioelectron., 2005, 20, 2555-2565. 2.Y. Xia, J. Ye, K. Tan, J. Wang and G. Yang, Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism–glucose oxidase system. Anal. Chem., 2013, 85, 6241-6247. 3.J. Wang, Electrochemical glucose biosensors. Chem. Rev., 2008, 108, 814-825. 4.K. Tian, S. Alex, G. Siegel and A. Tiwari, Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Mater. Sci. Eng. C, 2015, 46, 548-552. 5.J. Y. Park, Y. H. Kim, A. Seong and Y. J. Yoo, Amperometric determination of glucose, based on the direct electron transfer between glucose oxidase and tin oxide. Biotechnol. Bioprocess Eng., 2008, 13, 431-435. 6.C. Luhana, X.-J. Bo, J. Ju and L.-P. Guo, A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode. J. Nanopart. Res., 2012, 14, 1158. 7.L.-M. Lu, H.-B. Li, F. Qu, X.-B. Zhang, G.-L. Shen and R.-Q. Yu, In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens. Bioelectron., 2011, 26, 3500-3504. 8.X. Niu, M. Lan, C. Chen and H. Zhao, Nonenzymatic electrochemical glucose sensor based on novel Pt–Pd nanoflakes. Talanta, 2012, 99, 1062-1067. 9.X. Chen, H. Pan, H. Liu and M. Du, Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochim. Acta, 2010, 56, 636-643. 10.Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang and Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron., 2010, 26, 542-548. 11.W.-D. Zhang, J. Chen, L.-C. Jiang, Y.-X. Yu and J.-Q. Zhang, A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim. Acta, 2010, 168, 259-265. 12.S. Sun, X. Zhang, Y. Sun, J. Zhang, S. Yang, X. Song and Z. Yang, A facile strategy for the synthesis of hierarchical CuO nanourchins and their application as non-enzymatic glucose sensors. RSC Adv., 2013, 3, 13712-13719. 13.Y.-H. Won and L. A. Stanciu, Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing. Sensors, 2012, 12, 13019-13033. 14.Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao and M. M. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst, 2008, 133, 126-132. 15.L. Özcan, Y. Şahin and H. Türk, Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt (II) phthalocyanine tetrasulfonate. Biosens. Bioelectron., 2008, 24, 512-517. 16.C. Hidalgo, J. Reyes and R. Goldschmidt, Induction and general properties of beta-galactosidase and beta-galactoside permease in Pseudomonas BAL-31. J. Bacteriol., 1977, 129, 821-829. 17.A. Sewing, B. Wiseman, A. C. Lloyd and H. Land, High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol., 1997, 17, 5588-5597. 18.W. H. Beggs and P. Rogers, Galactose repression of β-galactosidase induction in Escherichia coli. J. Bacteriol., 1966, 91, 1869-1874. 19.T. Tschirhart, X. Y. Zhou, H. Ueda, C.-Y. Tsao, E. Kim, G. F. Payne and W. E. Bentley, Electrochemical measurement of the β-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth. Biol., 2015, 5, 28-35. 20.G. G. Zhanel, J. A. Karlowsky, G. K. Harding, A. Carrie, T. Mazzulli, D. E. Low and D. J. Hoban, A Canadian national surveillance study of urinary tract isolates from outpatients: comparison of the activities of trimethoprim-sulfamethoxazole, ampicillin, mecillinam, nitrofurantoin, and ciprofloxacin. Antimicrob. Agents Chemother., 2000, 44, 1089-1092. 21.S. K. Mahadeva, S. Yun and J. Kim, Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens. Actuators A, 2011, 165, 194-199. 22.P.-G. Su and S.-C. Huang, Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride. Sens. Actuators B, 2005, 105, 170-175. 23.P.-G. Su and S.-C. Huang, Electrical and humidity sensing properties of carbon nanotubes- SiO2- poly (2-acrylamido-2-methylpropane sulfonate) composite material. Sens. Actuators B, 2006, 113, 142-149. 24.Z. Shi, H. Gao, J. Feng, B. Ding, X. Cao, S. Kuga, Y. Wang, L. Zhang and J. Cai, In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chem. Int. Ed., 2014, 53, 5380-5384. 25.Y. Liu, Z. Liu, N. Lu, E. Preiss, S. Poyraz, M. J. Kim and X. Zhang, Facile synthesis of polypyrrole coated copper nanowires: a new concept to engineered core–shell structures. Chem. Commun., 2012, 48, 2621-2623. 26.Z. Yang, C.-K. Chiang and H.-T. Chang, Synthesis of fluorescent and photovoltaic Cu2O nanocubes. Nanotechnology, 2007, 19, 025604. 27.W. Wang, Y. Tu, P. Zhang and G. Zhang, Surfactant-assisted synthesis of double-wall Cu2O hollow spheres. CrystEngComm, 2011, 13, 1838-1842. 28.J. Xiang, J. Tu, L. Zhang, Y. Zhou, X. Wang and S. Shi, Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochim. Acta, 2010, 55, 1820-1824. 29.C. M. Welch and R. G. Compton, The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem., 2006, 384, 601-619. 30.N. Lu, C. Shao, X. Li, T. Shen, M. Zhang, F. Miao, P. Zhang, X. Zhang, K. Wang and Y. Zhang, CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. RSC Adv., 2014, 4, 31056-31061. 31.W. Yao, F.-L. Li, H.-X. Li and J.-P. Lang, Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J. Mater. Chem. A, 2015, 3, 4578-4585. 32.L. Debbichi, M. Marco de Lucas, J. Pierson and P. Kruger, Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J. Phys. Chem. C, 2012, 116, 10232-10237. 33.J. Xu, W. Ji, Z. Shen, S. Tang, X. Ye, D. Jia and X. Xin, Preparation and characterization of CuO nanocrystals. J. Solid State Chem., 1999, 147, 516-519. 34.A. Dendramis, E. Schwinn and R. Sperline, A surface-enhanced Raman scattering study of CTAB adsorption on copper. Surf. Sci., 1983, 134, 675-688. 35.J. Hamilton, J. Farmer and R. Anderson, In situ Raman spectroscopy of anodic films formed on copper and silver in sodium hydroxide solution. J. Electrochem. Soc., 1986, 133, 739-745. 36.X. Kang, Z. Mai, X. Zou, P. Cai and J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem., 2007, 363, 143-150. 37.I. Shackery, U. Patil, A. Pezeshki, N. M. Shinde, S. Kang, S. Im and S. C. Jun, Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochim. Acta, 2016, 191, 954-961. 38.Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang and J. Wang, A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim. Acta, 2013, 109, 602-608. 39.Y. Zhang, L. Su, D. Manuzzi, H. V. E. de los Monteros, W. Jia, D. Huo, C. Hou and Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron., 2012, 31, 426-432. 40.G. L. Turdean, Amperometric detection of glucose by electrocatalytic reduction at a copper-modified electrode. Rev. Roum. Chim., 2013, 58, 729-735. 41.A. P. Periasamy, P. Roy, W.-P. Wu, Y.-H. Huang and H.-T. Chang, Glucose oxidase and horseradish peroxidase like activities of cuprous oxide/polypyrrole composites. Electrochim. Acta, 2016, 215, 253-260. 42.S. Hrapovic and J. H. Luong, Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. Anal. Chem., 2003, 75, 3308-3315. 43.J. Luo, S. Jiang, H. Zhang, J. Jiang and X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta, 2012, 709, 47-53. 44.M. L. Heien, P. E. Phillips, G. D. Stuber, A. T. Seipel and R. M. Wightman, Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst, 2003, 128, 1413-1419. 45.S. J. Hood, D. K. Kampouris, R. O. Kadara, N. Jenkinson, F. J. Del Campo, F. X. Muñoz and C. E. Banks, Why ‘the bigger the better’is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium (VI). Analyst, 2009, 134, 2301-2305. 46.R. G. Guven, A. Kaplan, K. Guven, F. Matpan and M. Dogru, Effects of various inhibitors on β-galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. Rittmannii isolated from Antarctica. Biotechnol. Bioprocess Eng., 2011, 16, 114-119. 47.D. H. Lee and A. L. Goldberg, Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem., 1996, 271, 27280-27284. 48.K. Ovsejevi, V. Grazú, K. Cuadra and F. Batista-Viera, Enzyme reduction on solid phase as a tool for the reversible immobilization of yeast β-galactosidase onto a thiol-reactive support. Enzyme Microb. Technol., 2004, 35, 203-209. 49.M. D. Disney, J. Zheng, T. M. Swager and P. H. Seeberger, Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J. Am. Chem. Soc., 2004, 126, 13343-13346. 50.L. Goodridge, J. Chen and M. Griffiths, Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157: H7. Appl. Environ. Microbiol., 1999, 65, 1397-1404. 51.A. Marbach and K. Bettenbrock, lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. J. Biotechnol., 2012, 157, 82-88. 52.L. H. Hansen, S. Knudsen and S. J. Sørensen, The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr. Microbiol., 1998, 36, 341-347. 53.D. Manderson, R. Dempster and Y. Chisti, A recombinant vaccine against hydatidosis: production of the antigen in Escherichia coli. J. Ind. Microbiol. Biotechnol., 2006, 33, 173-182. 54.H. M. M. Sadeghi, M. Rabbani, E. Rismani, F. Moazen, F. Khodabakhsh, K. Dormiani and Y. Khazaei, Optimization of the expression of reteplase in Escherichia coli. Res Pharm Sci., 2011, 6, 87-92. 55.N. Mockli and D. Auerbach, Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques, 2004, 36, 872-877. 56.I. Bronstein, C. S. Martin, J. Fortin, C. Olesen and J. Voyta, Chemiluminescence: sensitive detection technology for reporter gene assays. Clin. Chem., 1996, 42, 1542-1546. 57.K. R. Gee, W.-C. Sun, M. K. Bhalgat, R. H. Upson, D. H. Klaubert, K. A. Latham and R. P. Haugland, Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-galactosidases. Anal. Biochem., 1999, 273, 41-48. 58.M. J. Casadaban, A. Martinez-Arias, S. K. Shapira and J. Chou, β-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol., 1983, 100, 293-308. 59.R. Barrangou, M. A. Azcarate-Peril, T. Duong, S. B. Conners, R. M. Kelly and T. R. Klaenhammer, Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 3816-3821. 60.J. Feng, M. Weitner, W. Shi, S. Zhang, D. Sullivan and Y. Zhang, Identification of additional anti-persister activity against Borrelia burgdorferi from an FDA drug library. Antibiotics, 2015, 4, 397-410. 61.L.L. Brunton, B. Chabner and B.C. Knollmann, Goodman and Gilman''s the pharmacological basis of therapeutics, McGraw-Hill, New York, 1996. 62.C. Li, Y. Liu, L. Li, Z. Du, S. Xu, M. Zhang, X. Yin and T. Wang, A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta, 2008, 77, 455-459. 63.M. Guo, H. Hong, X. Tang, H. Fang and X. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim. Acta, 2012, 63, 1-8. 64.S. Sattayasamitsathit, P. Thavarungkul, C. Thammakhet, W. Limbut, A. Numnuam, C. Buranachai and P. Kanatharana, Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis, 2009, 21, 2371-2377. 65.C. Li, Y. Su, S. Zhang, X. Lv, H. Xia and Y. Wang, An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens. Bioelectron., 2010, 26, 903-907. 66.B. Blais, J. Leggate, J. Bosley and A. Martinez‐Perez, Comparison of fluorogenic and chromogenic assay systems in the detection of Escherichia coli O157 by a novel polymyxin‐based ELISA. Lett. Appl. Microbiol., 2004, 39, 516-522. 67.P. Daly, T. Collier and S. Doyle, PCR‐ELISA detection of Escherichia coli in milk. Lett. Appl. Microbiol., 2002, 34, 222-226. 68.X.-L. Su and Y. Li, A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157: H7. Biosens. Bioelectron., 2004, 19, 563-574. 69.M. B. Dos Santos, J. Agusil, B. Prieto-Simón, C. Sporer, V. Teixeira and J. Samitier, Highly sensitive detection of pathogen Escherichia coli O157: H7 by electrochemical impedance spectroscopy. Biosens. Bioelectron., 2013, 45, 174-180. 70. A. D. Taylor, Q. Yu, S. Chen, J. Homola and S. Jiang, Comparison of E. coli O157: H7 preparation methods used for detection with surface plasmon resonance sensor. Sens. Actuators B, 2005, 107, 202-208.
|