跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡廷叡
研究生(外文):Ting-Rui Jian
論文名稱:氧化銅/氧化亞銅/聚吡咯複合材料於生化分析應用
論文名稱(外文):Bioanalytical Applications of CuO/Cu2O/Ppy Composites
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
口試委員:胡焯淳林宗宏黃志清陳建甫
口試委員(外文):Cho-Chun HuZong-Hong LinChih-Ching HuangChien-Fu Chen
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:氧化亞銅聚吡咯葡萄糖β-半乳糖苷酶大腸桿菌
外文關鍵詞:cuprous oxidepolypyrroleglucoseβ-galactosidaseEscherichia coli
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用麻布紋紙 (LT paper) 為基材,再以氧化銅/氧化亞銅/聚吡咯複合材料功能化,分別用於葡萄糖、β-半乳糖苷酶與大腸桿菌之定量檢測上。以兩步合成步驟將氧化銅/氧化亞銅/聚吡咯修飾於麻布紋紙上:吸附於麻布紋紙上之吡咯單體在抗壞血酸和果糖存下,與銅離子反應形成氧化亞銅/聚吡咯 (Cu2O/Ppy);之後在溴化十六烷基三甲銨下和銅離子反應,完成功能化紙電極 (CuO/Cu2O/Ppy LT paper electrode) 之製備。氧化銅/氧化亞銅/聚吡咯紙電極具類似葡萄糖氧化酶之催化活性,對葡萄糖之最低偵測極限可達0.04 mM。將此電極之面積縮小至0.12 cm2,製作成微型化紙電極。微電極可有效提升質量傳輸效率並減少樣品需求體積;利用此電極對葡萄糖專一的催化活性,可偵測β-半乳糖苷酶催化水解乳糖產生之葡萄糖,進一步定量β-半乳糖苷酶;亦可檢測能產生β-半乳糖苷酶之大腸桿菌,偵測極限分別可達0.034 U mL-1與120 CFU mL-1。活化劑和抑制劑對β-半乳糖苷酶之作用、誘導劑異丙基-β-D-硫代半乳糖苷 (IPTG) 誘導β-半乳糖苷酶表達,與抗生素對大腸桿菌之生長影響亦能由此檢測法進行篩檢。本研究所合成之氧化銅/氧化亞銅/聚吡咯 (微) 紙電極具可拋性、易處理、重量輕與低成本等特點;不僅對葡萄糖檢測具有靈敏性、選擇性與穩定性之優勢,可用於血糖監測應用上;另外對 β-半乳糖苷酶與大腸桿菌之檢測都極具發展應用潛力。
Linen texture (LT) paper functionalized with CuO/Cu2O/Ppy composite has been prepared and used as an electrode for quantitation of glucose, β-galactosidase, and Escherichia coli (E. coli). The low-cost CuO/Cu2O/Ppy LT paper is prepared through a two-step process; pyrrole adsorbed on an LT paper reacts with Cu2+ in the presence of ascorbic acid and fructose to form Cu2O/Ppy that then reacts with Cu2+ in the presence of cetyltrimethylammonium bromide. The CuO/Cu2O/Ppy LT paper electrode possessing glucose oxidase-like activity catalyzes the oxidation of glucose, allowing quantitation of glucose down to 0.04 mM. Furthermore, functionalized paper size was decreased to 0.12 cm2 to fabricate the CuO/Cu2O/Ppy LT paper microelectrodes. The microelectrode enhances the mass transfer efficiency and reduces the sample volume. By taking the specificity of β-galactosidase to hydrolyze lactose to form glucose, the functionalized paper microelectrode has been employed for the quantitation of β-galactosidase, and detection of E. coli that express β-galactosidase as low as to 0.034 U mL-1 and 120 CFU mL-1, respectively. In addition, this assay is powerful for screening activators/inhibitors of β-galactosidase, and the antibiotic activities toward E. coli. Our results clearly show the merits such as low-costs, high sensitivity, specificity, and superior stability of CuO/Cu2O/Ppy LT paper (micro) electrodes for blood glucose monitor, as well as for quantitation of β-galactosidase activity and E. coli.
誌謝 I
中文摘要 III
Abstract IV
圖目錄 VIII
表目錄 IX
第一章 1
1.1奈米材料的應用 1
1.1.1 奈米材料介紹 1
1.1.2 奈米材料於電化學上的應用 1
1.1.3 銅金屬奈米材料與其催化特性 2
1.2 葡萄糖檢測簡介 3
1.2.1葡萄糖檢測之目的 3
1.2.2 葡萄糖檢測 4
1.2.3 電化學方式偵測葡萄糖 4
1.2.4 電性選擇聚合物在電化學之運用 6
1.3 β-半乳糖苷酶檢測 7
1.3.1 β-半乳糖苷酶簡介 7
1.3.2 β-半乳糖苷酶偵測目的 8
1.3.3 β-半乳糖苷酶偵測方式 9
1.4 大腸桿菌檢測 10
1.4.1 大腸桿菌簡介 10
1.4.2 大腸桿菌偵測目的 11
1.4.3 大腸桿菌偵測方式 12
1.5 研究動機 13
1.6 參考文獻 15
第二章 31
2.1 前言 31
2.2 實驗材料與方法 32
2.2.1 實驗藥品與儀器 32
2.2.2 氧化銅/氧化亞銅/聚吡咯紙電極合成與電極組裝 33
2.2.3 材料特性鑑定 34
2.2.4大腸桿菌培養及誘導基因表現 34
2.2.5血液樣品製備 35
2.2.6電化學之葡萄糖檢測 35
2.2.7 電化學量測β-半乳糖苷酶 35
2.2.8電化學檢測大腸桿菌 36
2.3 實驗結果與討論 37
2.3.1 氧化銅/氧化亞銅/聚吡咯功能化紙電極之合成與鑑定 37
2.3.2 功能化紙電極之電化學催化活性 38
2.3.3 功能化紙電極之葡萄糖偵測及其穩定性 40
2.3.4 功能化紙電極之β-半乳糖苷酶偵測 41
2.3.5 功能化紙電極大腸桿菌之檢測 42
2.4 結論 43
2.5 參考文獻 44
第三章 64
第一章
1.C. R. Rao, G. U. Kulkarni, P. J. Thomas and P. P. Edwards, Metal nanoparticles and their assemblies. Chem. Soc. Rev., 2000, 29, 27-35.
2.C. Rao, G. Kulkarni, P. J. Thomas and P. P. Edwards, Size‐dependent chemistry: properties of nanocrystals. Chem. Eur. J., 2002, 8, 28-35.
3.Z. H. Lin, M. H. Lin and H. T. Chang, Facile synthesis of catalytically active platinum nanosponges, nanonetworks, and nanodendrites. Chem. Eur. J., 2009, 15, 4656-4662.
4.Y. Kwon, S. C. Lai, P. Rodriguez and M. T. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc., 2011, 133, 6914-6917.
5.S. Guo, S. Zhang, X. Sun and S. Sun, Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc., 2011, 133, 15354-15357.
6.Z.-H. Lin, Z.-Y. Shih, H.-Y. Tsai and H.-T. Chang, Gold/Platinum nanosponges for electrocatalytic oxidation of methanol. Green Chem., 2011, 13, 1029-1035.
7.Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy and W. I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors, 2012, 12, 5996-6022.
8.Z. Dursun and B. Gelmez, Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE. Electroanalysis, 2010, 22, 1106-1114.
9.J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans and M. Perez, Water Gas Shift Reaction on Cu and Au Nanoparticles Supported on CeO2(111) and ZnO(000 ): Intrinsic Activity and Importance of Support Interactions. Angew. Chem., 2007, 119, 1351-1354.
10.A. P. Periasamy, J. Liu, H.-M. Lin and H.-T. Chang, Synthesis of copper nanowire decorated reduced graphene oxide for electro-oxidation of methanol. J. Mater. Chem. A, 2013, 1, 5973-5981.
11.M. A. Thorseth, C. E. Tornow, C. Edmund and A. A. Gewirth, Cu complexes that catalyze the oxygen reduction reaction. Coord. Chem. Rev., 2013, 257, 130-139.
12.N. N. Hoover, B. J. Auten and B. D. Chandler, Tuning supported catalyst reactivity with dendrimer-templated Pt−Cu nanoparticles. J. Phys. Chem. B, 2006, 110, 8606-8612.
13.N. Barrabés, J. Just, A. Dafinov, F. Medina, J. Fierro, J. Sueiras, P. Salagre and Y. Cesteros, Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: The effect of copper nanoparticles. Appl. Catal., B, 2006, 62, 77-85.
14.J. Zheng, W. Zhang, Z. Lin, C. Wei, W. Yang, P. Dong, Y. Yan and S. Hu, Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J. Mater. Chem. B, 2016, 4, 1247-1253.
15.J.-M. Zen, C.-T. Hsu, A. S. Kumar, H.-J. Lyuu and K.-Y. Lin, Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst, 2004, 129, 841-845.
16.K. B. Male, S. Hrapovic, Y. Liu, D. Wang and J. H. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta, 2004, 516, 35-41.
17.A. Umer, S. Naveed, N. Ramzan and M. S. Rafique, Selection of a suitable method for the synthesis of copper nanoparticles. Nano, 2012, 7, 1230005-1230023.
18.D. L. Fedlheim and C. A. Foss, Metal nanoparticles: synthesis, characterization, and applications, Marcel Dekker, Inc., New York, 2002.
19.Y. Wang, P. Chen and M. Liu, Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology, 2006, 17, 6000-6006.
20.S.-Y. Xie, Z.-J. Ma, C.-F. Wang, S.-C. Lin, Z.-Y. Jiang, R.-B. Huang and L.-S. Zheng, Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: a combination of physical and chemical processes. J. Solid State Chem., 2004, 177, 3743-3747.
21.J. Xiong, Y. Wang, Q. Xue and X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem., 2011, 13, 900-904.
22.I. Lisiecki, A. Filankembo, H. Sack-Kongehl, K. Weiss, M.-P. Pileni and J. Urban, Structural investigations of copper nanorods by high-resolution TEM. Phys. Rev. B, 2000, 61, 4968-4974.
23.S. M. Haffner, C. M. Alexander, T. J. Cook, S. J. Boccuzzi, T. A. Musliner, T. R. Pedersen, J. Kjekshus and K. Pyörälä, Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med., 1999, 159, 2661-2667.
24.W. Rathmann and G. Giani, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care, 2004, 27, 2568-2569.
25.J. R. Gavin III, K. Alberti, M. B. Davidson and R. A. DeFronzo, Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes care, 1997, 20, 1183-1197.
26.W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng and Y. Huang, Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun., 2011, 47, 6695-6697.
27.W. Shi, X. Zhang, S. He and Y. Huang, CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem. Commun., 2011, 47, 10785-10787.
28.R. Gill, L. Bahshi, R. Freeman and I. Willner, Optical detection of glucose and acetylcholine esterase inhibitors by H2O2‐sensitive CdSe/ZnS quantum dots. Angew. Chem., 2008, 120, 1700-1703.
29.S. Weiss, Fluorescence spectroscopy of single biomolecules. Science, 1999, 283, 1676-1683.
30.F. Kormos, L. Sziráki and I. Tarsiche, Potentiometric biosensor for urinary glucose level monitoring. Lab. Rob. Autom., 2000, 12, 291-295.
31.J. Wang, Amperometric biosensors for clinical and therapeutic drug monitoring: a review. J. Pharm. Biomed. Anal., 1999, 19, 47-53.
32.Y. Miwa, M. Nishizawa, T. Matsue and I. Uchida, A conductometric glucose sensor based on a twin-microband electrode coated with a polyaniline thin film. Bull. Chem. Soc. Jpn., 1994, 67, 2864-2866.
33.M. M. Rahman, A. Ahammad, J.-H. Jin, S. J. Ahn and J.-J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors, 2010, 10, 4855-4886.
34.L. C. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci., 1962, 102, 29-45.
35.S. Updike and G. Hicks, The enzyme electrode. Nature, 1967, 214, 986-988.
36.J. Wang, Glucose biosensors: 40 years of advances and challenges. Electroanalysis, 2001, 13, 983-988.
37.K. Schügerl, B. Hitzmann, H. Jurgens, T. Kullick, R. Ulber and B. Weigal, Challenges in integrating biosensors and FIA for on-line monitoring and control. Trends Biotechnol., 1996, 14, 21-31.
38.Y. Sun, H. Buck and T. E. Mallouk, Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal. Chem., 2001, 73, 1599-1604.
39.L. Su, W. Jia, L. Zhang, C. Beacham, H. Zhang and Y. Lei, Facile synthesis of a platinum nanoflower monolayer on a single-walled carbon nanotube membrane and its application in glucose detection. J. Phys. Chem. C, 2010, 114, 18121-18125.
40.J. Wang, D. F. Thomas and A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal. Chem., 2008, 80, 997-1004.
41.J. Chen, W.-D. Zhang and J.-S. Ye, Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun., 2008, 10, 1268-1271.
42.S. Masoomi-Godarzi, A. Khodadadi, M. Vesali-Naseh and Y. Mortazavi, Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles. J. Electrochem. Soc., 2014, 161, B19-B25.
43.E. Reitz, W. Jia, M. Gentile, Y. Wang and Y. Lei, CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis, 2008, 20, 2482-2486.
44.S.-i. Mho and D. C. Johnson, Electrocatalytic response of carbohydrates at copper-alloy electrodes. J. Electroanal. Chem., 2001, 500, 524-532.
45.S. Park, T. D. Chung and H. C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem., 2003, 75, 3046-3049.
46.S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y.-C. Lai and H. He, A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem., 2007, 79, 2583-2587.
47.M. Rubianes and G. Rivas, Highly selective dopamine quantification using a glassy carbon electrode modified with a melanin-type polymer. Anal. Chim. Acta, 2001, 440, 99-108.
48.F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 1961, 3, 318-356.
49.E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman and A. Van Oudenaarden, Multistability in the lactose utilization network of Escherichia coli. Nature, 2004, 427, 737-740.
50.D. H. Juers, B. W. Matthews and R. E. Huber, LacZ β‐galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Sci., 2012, 21, 1792-1807.
51.L. H. Hansen, S. Knudsen and S. J. Sørensen, The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr. Microbiol., 1998, 36, 341-347.
52.B. W. Matthews, The structure of E. coli β-galactosidase. C. R. Biol., 2005, 328, 549-556.
53.I. Zabin, β-Galactosidase α-complementation. Mol. Cell. Biochem., 1982, 49, 87-96.
54.G. P. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E. E. Medrano, M. Linskens, I. Rubelj and O. Pereira-Smith, A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci., 1995, 92, 9363-9367.
55.D. Maruhn, Rapid colorimetric assay of β-galactosidase and N-acetyl-β-glucosaminidase in human urine. Clin. Chim. Acta, 1976, 73, 453-461.
56.K. L. Griffith and R. E. Wolf, Measuring β-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem. Biophys. Res. Commun., 2002, 290, 397-402.
57.J. Miller, Assay of β-galactosidase. Experiments in molecular genetics, 1972, 352-355.
58.T. Tschirhart, X. Y. Zhou, H. Ueda, C.-Y. Tsao, E. Kim, G. F. Payne and W. E. Bentley, Electrochemical measurement of the β-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth. Biol., 2015, 5, 28-35.
59.N. Mockli and D. Auerbach, Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques, 2004, 36, 872-877.
60.K. R. Gee, W.-C. Sun, M. K. Bhalgat, R. H. Upson, D. H. Klaubert, K. A. Latham and R. P. Haugland, Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-galactosidases. Anal. Biochem., 1999, 273, 41-48.
61.I. Bronstein, C. S. Martin, J. Fortin, C. Olesen and J. Voyta, Chemiluminescence: sensitive detection technology for reporter gene assays. Clin. Chem., 1996, 42, 1542-1546.
62.V. Bassaneze, A. A. Miyakawa and J. E. Krieger, A quantitative chemiluminescent method for studying replicative and stress-induced premature senescence in cell cultures. Anal. Biochem., 2008, 372, 198-203.
63.R. Simon, U. Priefer and A. Pühler, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol, 1983, 1, 784-791.
64.S. Edberg, E. Rice, R. Karlin and M. Allen, Escherichia coli: the best biological drinking water indicator for public health protection. J. Appl. Microbiol., 2000, 88, 106S-116S.
65.E. Bingen, S. Bonacorsi, N. Brahimi, E. Denamur and J. Elion, Virulence patterns of Escherichia coli K1 strains associated with neonatal meningitis. J. Clin. Microbiol., 1997, 35, 2981-2982.
66.E. F. Boyd and D. L. Hartl, Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J. Bacteriol., 1998, 180, 1159-1165.
67.W. Wu, S. Zhao, Y. Mao, Z. Fang, X. Lu and L. Zeng, A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta, 2015, 861, 62-68.
68.R. E. Besser, S. M. Lett, J. T. Weber, M. P. Doyle, T. J. Barrett, J. G. Wells and P. M. Griffin, An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157: H7 in fresh-pressed apple cider. JAMA, 1993, 269, 2217-2220.
69.M. F. Bavaro, E. coli O157: H7 and other toxigenic strains: the curse of global food distribution. Curr Gastroenterol Rep., 2012, 14, 317-323.
70.L. W. Leiter, The Eijkman Fermentation Test as an Aid in the detection of fecal organisms in water. Am. J. Hyg., 1929, 9, 705-734.
71.A. Goetz, N. Tsuneishi, P. W. Kabler, L. Streicher and H. G. Neumann, Application of molecular filter membranes to the bacteriological analysis of water. J. Am. Water Works Assoc., 1951, 43, 943-984.
72.T. Evans, C. Waarvick, R. J. Seidler and M. LeChevallier, Failure of the most-probable-number technique to detect coliforms in drinking water and raw water supplies. Appl. Environ. Microbiol., 1981, 41, 130-138.
73.K. F. Eckner, Comparison of membrane filtration and multiple-tube fermentation by the Colilert and Enterolert methods for detection of waterborne coliform bacteria, Escherichia coli, and enterococci used in drinking and bathing water quality monitoring in southern Sweden. Appl. Environ. Microbiol, 1998, 64, 3079-3083.
74.S. C. Edberg, M. J. Allen and D. B. Smith, National field evaluation of a defined substrate method for the simultaneous detection of total coliforms and Escherichia coli from drinking water: comparison with presence-absence techniques. Appl. Environ. Microbiol., 1989, 55, 1003-1008.
75.E. de Boer and R. R. Beumer, Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol., 1999, 50, 119-130.
76.T. Tsuzuki, Commercial scale production of inorganic nanoparticles. Int. J. Nanotechnol., 2009, 6, 567-578.
77.G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng and X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta, 2013, 180, 161-186.
78.I. G. Serebriiskii and E. A. Golemis, Uses of lacZ to study gene function: evaluation of β-galactosidase assays employed in the yeast two-hybrid system. Anal. Biochem., 2000, 285, 1-15.


第二章
1.J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski and D. J. Birch, Fluorescence-based glucose sensors. Biosens. Bioelectron., 2005, 20, 2555-2565.
2.Y. Xia, J. Ye, K. Tan, J. Wang and G. Yang, Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism–glucose oxidase system. Anal. Chem., 2013, 85, 6241-6247.
3.J. Wang, Electrochemical glucose biosensors. Chem. Rev., 2008, 108, 814-825.
4.K. Tian, S. Alex, G. Siegel and A. Tiwari, Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Mater. Sci. Eng. C, 2015, 46, 548-552.
5.J. Y. Park, Y. H. Kim, A. Seong and Y. J. Yoo, Amperometric determination of glucose, based on the direct electron transfer between glucose oxidase and tin oxide. Biotechnol. Bioprocess Eng., 2008, 13, 431-435.
6.C. Luhana, X.-J. Bo, J. Ju and L.-P. Guo, A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode. J. Nanopart. Res., 2012, 14, 1158.
7.L.-M. Lu, H.-B. Li, F. Qu, X.-B. Zhang, G.-L. Shen and R.-Q. Yu, In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens. Bioelectron., 2011, 26, 3500-3504.
8.X. Niu, M. Lan, C. Chen and H. Zhao, Nonenzymatic electrochemical glucose sensor based on novel Pt–Pd nanoflakes. Talanta, 2012, 99, 1062-1067.
9.X. Chen, H. Pan, H. Liu and M. Du, Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochim. Acta, 2010, 56, 636-643.
10.Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang and Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron., 2010, 26, 542-548.
11.W.-D. Zhang, J. Chen, L.-C. Jiang, Y.-X. Yu and J.-Q. Zhang, A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim. Acta, 2010, 168, 259-265.
12.S. Sun, X. Zhang, Y. Sun, J. Zhang, S. Yang, X. Song and Z. Yang, A facile strategy for the synthesis of hierarchical CuO nanourchins and their application as non-enzymatic glucose sensors. RSC Adv., 2013, 3, 13712-13719.
13.Y.-H. Won and L. A. Stanciu, Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing. Sensors, 2012, 12, 13019-13033.
14.Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao and M. M. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst, 2008, 133, 126-132.
15.L. Özcan, Y. Şahin and H. Türk, Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt (II) phthalocyanine tetrasulfonate. Biosens. Bioelectron., 2008, 24, 512-517.
16.C. Hidalgo, J. Reyes and R. Goldschmidt, Induction and general properties of beta-galactosidase and beta-galactoside permease in Pseudomonas BAL-31. J. Bacteriol., 1977, 129, 821-829.
17.A. Sewing, B. Wiseman, A. C. Lloyd and H. Land, High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol., 1997, 17, 5588-5597.
18.W. H. Beggs and P. Rogers, Galactose repression of β-galactosidase induction in Escherichia coli. J. Bacteriol., 1966, 91, 1869-1874.
19.T. Tschirhart, X. Y. Zhou, H. Ueda, C.-Y. Tsao, E. Kim, G. F. Payne and W. E. Bentley, Electrochemical measurement of the β-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth. Biol., 2015, 5, 28-35.
20.G. G. Zhanel, J. A. Karlowsky, G. K. Harding, A. Carrie, T. Mazzulli, D. E. Low and D. J. Hoban, A Canadian national surveillance study of urinary tract isolates from outpatients: comparison of the activities of trimethoprim-sulfamethoxazole, ampicillin, mecillinam, nitrofurantoin, and ciprofloxacin. Antimicrob. Agents Chemother., 2000, 44, 1089-1092.
21.S. K. Mahadeva, S. Yun and J. Kim, Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens. Actuators A, 2011, 165, 194-199.
22.P.-G. Su and S.-C. Huang, Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride. Sens. Actuators B, 2005, 105, 170-175.
23.P.-G. Su and S.-C. Huang, Electrical and humidity sensing properties of carbon nanotubes- SiO2- poly (2-acrylamido-2-methylpropane sulfonate) composite material. Sens. Actuators B, 2006, 113, 142-149.
24.Z. Shi, H. Gao, J. Feng, B. Ding, X. Cao, S. Kuga, Y. Wang, L. Zhang and J. Cai, In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chem. Int. Ed., 2014, 53, 5380-5384.
25.Y. Liu, Z. Liu, N. Lu, E. Preiss, S. Poyraz, M. J. Kim and X. Zhang, Facile synthesis of polypyrrole coated copper nanowires: a new concept to engineered core–shell structures. Chem. Commun., 2012, 48, 2621-2623.
26.Z. Yang, C.-K. Chiang and H.-T. Chang, Synthesis of fluorescent and photovoltaic Cu2O nanocubes. Nanotechnology, 2007, 19, 025604.
27.W. Wang, Y. Tu, P. Zhang and G. Zhang, Surfactant-assisted synthesis of double-wall Cu2O hollow spheres. CrystEngComm, 2011, 13, 1838-1842.
28.J. Xiang, J. Tu, L. Zhang, Y. Zhou, X. Wang and S. Shi, Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochim. Acta, 2010, 55, 1820-1824.
29.C. M. Welch and R. G. Compton, The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem., 2006, 384, 601-619.
30.N. Lu, C. Shao, X. Li, T. Shen, M. Zhang, F. Miao, P. Zhang, X. Zhang, K. Wang and Y. Zhang, CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. RSC Adv., 2014, 4, 31056-31061.
31.W. Yao, F.-L. Li, H.-X. Li and J.-P. Lang, Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J. Mater. Chem. A, 2015, 3, 4578-4585.
32.L. Debbichi, M. Marco de Lucas, J. Pierson and P. Kruger, Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J. Phys. Chem. C, 2012, 116, 10232-10237.
33.J. Xu, W. Ji, Z. Shen, S. Tang, X. Ye, D. Jia and X. Xin, Preparation and characterization of CuO nanocrystals. J. Solid State Chem., 1999, 147, 516-519.
34.A. Dendramis, E. Schwinn and R. Sperline, A surface-enhanced Raman scattering study of CTAB adsorption on copper. Surf. Sci., 1983, 134, 675-688.
35.J. Hamilton, J. Farmer and R. Anderson, In situ Raman spectroscopy of anodic films formed on copper and silver in sodium hydroxide solution. J. Electrochem. Soc., 1986, 133, 739-745.
36.X. Kang, Z. Mai, X. Zou, P. Cai and J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem., 2007, 363, 143-150.
37.I. Shackery, U. Patil, A. Pezeshki, N. M. Shinde, S. Kang, S. Im and S. C. Jun, Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochim. Acta, 2016, 191, 954-961.
38.Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang and J. Wang, A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim. Acta, 2013, 109, 602-608.
39.Y. Zhang, L. Su, D. Manuzzi, H. V. E. de los Monteros, W. Jia, D. Huo, C. Hou and Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron., 2012, 31, 426-432.
40.G. L. Turdean, Amperometric detection of glucose by electrocatalytic reduction at a copper-modified electrode. Rev. Roum. Chim., 2013, 58, 729-735.
41.A. P. Periasamy, P. Roy, W.-P. Wu, Y.-H. Huang and H.-T. Chang, Glucose oxidase and horseradish peroxidase like activities of cuprous oxide/polypyrrole composites. Electrochim. Acta, 2016, 215, 253-260.
42.S. Hrapovic and J. H. Luong, Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. Anal. Chem., 2003, 75, 3308-3315.
43.J. Luo, S. Jiang, H. Zhang, J. Jiang and X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta, 2012, 709, 47-53.
44.M. L. Heien, P. E. Phillips, G. D. Stuber, A. T. Seipel and R. M. Wightman, Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst, 2003, 128, 1413-1419.
45.S. J. Hood, D. K. Kampouris, R. O. Kadara, N. Jenkinson, F. J. Del Campo, F. X. Muñoz and C. E. Banks, Why ‘the bigger the better’is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium (VI). Analyst, 2009, 134, 2301-2305.
46.R. G. Guven, A. Kaplan, K. Guven, F. Matpan and M. Dogru, Effects of various inhibitors on β-galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. Rittmannii isolated from Antarctica. Biotechnol. Bioprocess Eng., 2011, 16, 114-119.
47.D. H. Lee and A. L. Goldberg, Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem., 1996, 271, 27280-27284.
48.K. Ovsejevi, V. Grazú, K. Cuadra and F. Batista-Viera, Enzyme reduction on solid phase as a tool for the reversible immobilization of yeast β-galactosidase onto a thiol-reactive support. Enzyme Microb. Technol., 2004, 35, 203-209.
49.M. D. Disney, J. Zheng, T. M. Swager and P. H. Seeberger, Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J. Am. Chem. Soc., 2004, 126, 13343-13346.
50.L. Goodridge, J. Chen and M. Griffiths, Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157: H7. Appl. Environ. Microbiol., 1999, 65, 1397-1404.
51.A. Marbach and K. Bettenbrock, lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. J. Biotechnol., 2012, 157, 82-88.
52.L. H. Hansen, S. Knudsen and S. J. Sørensen, The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr. Microbiol., 1998, 36, 341-347.
53.D. Manderson, R. Dempster and Y. Chisti, A recombinant vaccine against hydatidosis: production of the antigen in Escherichia coli. J. Ind. Microbiol. Biotechnol., 2006, 33, 173-182.
54.H. M. M. Sadeghi, M. Rabbani, E. Rismani, F. Moazen, F. Khodabakhsh, K. Dormiani and Y. Khazaei, Optimization of the expression of reteplase in Escherichia coli. Res Pharm Sci., 2011, 6, 87-92.
55.N. Mockli and D. Auerbach, Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques, 2004, 36, 872-877.
56.I. Bronstein, C. S. Martin, J. Fortin, C. Olesen and J. Voyta, Chemiluminescence: sensitive detection technology for reporter gene assays. Clin. Chem., 1996, 42, 1542-1546.
57.K. R. Gee, W.-C. Sun, M. K. Bhalgat, R. H. Upson, D. H. Klaubert, K. A. Latham and R. P. Haugland, Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-galactosidases. Anal. Biochem., 1999, 273, 41-48.
58.M. J. Casadaban, A. Martinez-Arias, S. K. Shapira and J. Chou, β-Galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol., 1983, 100, 293-308.
59.R. Barrangou, M. A. Azcarate-Peril, T. Duong, S. B. Conners, R. M. Kelly and T. R. Klaenhammer, Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 3816-3821.
60.J. Feng, M. Weitner, W. Shi, S. Zhang, D. Sullivan and Y. Zhang, Identification of additional anti-persister activity against Borrelia burgdorferi from an FDA drug library. Antibiotics, 2015, 4, 397-410.
61.L.L. Brunton, B. Chabner and B.C. Knollmann, Goodman and Gilman''s the pharmacological basis of therapeutics, McGraw-Hill, New York, 1996.
62.C. Li, Y. Liu, L. Li, Z. Du, S. Xu, M. Zhang, X. Yin and T. Wang, A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta, 2008, 77, 455-459.
63.M. Guo, H. Hong, X. Tang, H. Fang and X. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim. Acta, 2012, 63, 1-8.
64.S. Sattayasamitsathit, P. Thavarungkul, C. Thammakhet, W. Limbut, A. Numnuam, C. Buranachai and P. Kanatharana, Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis, 2009, 21, 2371-2377.
65.C. Li, Y. Su, S. Zhang, X. Lv, H. Xia and Y. Wang, An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens. Bioelectron., 2010, 26, 903-907.
66.B. Blais, J. Leggate, J. Bosley and A. Martinez‐Perez, Comparison of fluorogenic and chromogenic assay systems in the detection of Escherichia coli O157 by a novel polymyxin‐based ELISA. Lett. Appl. Microbiol., 2004, 39, 516-522.
67.P. Daly, T. Collier and S. Doyle, PCR‐ELISA detection of Escherichia coli in milk. Lett. Appl. Microbiol., 2002, 34, 222-226.
68.X.-L. Su and Y. Li, A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157: H7. Biosens. Bioelectron., 2004, 19, 563-574.
69.M. B. Dos Santos, J. Agusil, B. Prieto-Simón, C. Sporer, V. Teixeira and J. Samitier, Highly sensitive detection of pathogen Escherichia coli O157: H7 by electrochemical impedance spectroscopy. Biosens. Bioelectron., 2013, 45, 174-180.
70. A. D. Taylor, Q. Yu, S. Chen, J. Homola and S. Jiang, Comparison of E. coli
O157: H7 preparation methods used for detection with surface plasmon resonance sensor. Sens. Actuators B, 2005, 107, 202-208. 
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊