跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 04:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧晨妤
研究生(外文):Chen-Yu Teng
論文名稱:穀胱甘肽輔助聚合物金奈米團簇之合成並應用於硫化氫檢測
論文名稱(外文):Glutathione assisted preparation of polymer-capped gold nanoclusters and their applications as hydrogen sulfide sensor
指導教授:張煥宗張煥宗引用關係
口試委員:胡焯淳林宗宏
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:55
中文關鍵詞:螢光金奈米團簇穀胱甘肽聚合物硫化氫
外文關鍵詞:FluorescenceAu nanoclustersGlutathionePolymerHydrogen sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
螢光金奈米團簇由於具備良好的生物相容性、生命週期長及光穩定性高,已被廣泛應用於生物感測器、細胞顯影等不同領域。目前小分子硫醇化合物、DNA、蛋白質及聚合物都已成功被當作合成金奈米團簇時之模板。其中聚合物包覆之金奈米團簇其性質可藉由利用不同特性的聚合物作為模板來控制,但其合成仍十分繁瑣費時。本研究藉由使用穀胱甘肽來輔助聚合物包覆之金奈米團簇(polymer/GSH-Au NCs)的合成,使用聚二烯丙基二甲基氯化銨(polydiallyldimethylammonium chloride, PDDA)及聚苯乙烯磺酸鈉(poly(sodium 4-styrenesulfonate), PSS)兩種帶電特性不同的聚合物,探討聚合物種類與濃度對於polymer/GSH-Au NCs性質的影響。同時也探討合成時pH值、聚合物分子量、穀胱甘肽及金離子濃度等條件對於聚合物包覆之金奈米團簇合成的影響。在最佳條件下可以在2小時合成出具有穩定螢光性質的PDDA/GSH-Au NCs。穀胱甘肽在此系統中扮演還原劑角色以簡化聚合物包覆之金奈米團簇合成,而聚合物在此系統中則為包覆劑。PDDA/GSH-Au NCs在PDDA的包覆下可以穩定存在於不同pH值及高鹽類環境,我們同時也將此材料應用於硫化氫之偵測,硫化氫會與PDDA/GSH-Au NCs反應形成聚集體而導致其螢光下降。在最佳化條件下,此系統之偵測極限為0.25 M,並具有良好的選擇性、高靈敏度及檢測快速(反應可於10 分鐘完成)等優點。此系統也被成功應用至湖水樣品中硫化氫含量及氣態硫化氫的偵測,證明此系統於真實環境樣品中硫化氫濃度偵測之可行性。
Fluorescence gold nanoclusters (Au NCs) have been widely used in sensing and imaging due to its good biocompatibility, long lifetime, and outstanding photostability. Various kinds of compounds have been used as templates in the preparation of Au NCs, such as small thiol molecules, DNA, proteins and polymers. Among them, the properties of polymer-capped Au NCs can be controlled by using polymers with different physical and chemical properties. However, the preparation of polymer-capped NCs is still tedious and complicated. In this study, glutathione (GSH) assisted preparation of polymer/GSH-Au NCs has been demonstrated. Polydiallyldimethylammonium chloride (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) were employed to study the effects of polymer and their concentrations on the properties of as-prepared polymer/GSH-Au NCs. The effects of pH conditions, molecular weight of polymer and concentrations of GSH and Au3+ were also investigated. PDDA/GSH-Au NCs with good stability can be prepared in 2 hours under optimal conditions. The major role of GSH is acting as reducing agent to simplify the preparation of polymer-capped Au NCs, while polymer serving as capping agent that protects as-prepared Au NCs against salt and changes in pH conditions. PDDA/GSH-Au NCs was further applied to develop H2S sensors owning to its good stability. H2S can react with PDDA/GSH-Au NCs and lead to aggregation and further quench the fluorescence of Au NCs. PDDA/GSH-Au NCs allowed detection of H2S down to 0.25 M in 10 minutes with the advantages of great stability against salt, sensitivity and selectivity. The practicality of this assay has also been validated by the detection of H2S in pond water samples and gaseous H2S.
口試委員審定書 #
致謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1 貴金屬奈米材料 1
1.2 貴金屬奈米團簇 2
1.3 金奈米團簇之合成 4
1.3.1 硫醇包覆之金奈米團簇 4
1.3.2 蛋白質包覆之金奈米團簇 5
1.3.3 樹枝狀高分子及聚合物包覆之金奈米團簇 5
1.4 金奈米團簇之應用 6
1.4.1 金奈米團簇感測器 6
1.4.2 金奈米團簇應用於生物顯影 8
1.5 研究動機 8
1.6 本章圖表 10
1.7 參考文獻 15
第二章 穀胱甘肽輔助聚合物金奈米團簇之合成並應用於硫化氫檢測 23
2.1 前言 23
2.2 材料與方法 24
2.2.1 實驗藥品 25
2.2.2 PDDA/GSH-Au NCs之合成 25
2.2.3 PSS/GSH-Au NCs之合成 26
2.2.4 GSH-Au NCs之合成 26
2.2.5 材料鑑定 26
2.2.6 利用PDDA/GSH-Au NCs檢測硫化氫 27
2.2.7 真實樣品檢測 27
2.2.8 利用PDDA/GSH-Au NCs偵測氣態硫化氫 27
2.3 結果與討論 28
2.3.1 PDDA/GSH-Au NCs之製備 28
2.3.2 PSS/GSH-Au NCs及GSH-Au NCs之製備 31
2.3.3 利用PDDA/GSH-Au NCs檢測硫化氫 33
2.3.4 真實樣品及氣態樣品檢測 35
2.4 結論 35
2.5 本章圖表 37
2.6 參考文獻 52
第一章
1.Díez, I.; Ras, R. H. A., Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963-1970.
2.Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424, 824-830.
3.Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
4.Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858-871.
5.Li, S.; Dong, S.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401-418.
6.Siang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T., Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 2012, 22, 12972-12982.
7.Khlebtsov, N.; Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647-1671.
8.Wang, T.; Hu, X.; Dong, S., A renewable SERS substrate prepared by cyclic depositing and stripping of silver shells on gold nanoparticle microtubes. Small 2008, 4, 781-786.
9.Wang, C.-W.; Lin, Z.-H.; Roy, P.; Chang, H.-T., Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering. Front. Anal. Chem. 2013, 1, 1-5.
10.Kreibig, U.; Vollmer, M., Optical properties of metal clusters. Springer, New York, 1995.
11.Zheng, J.; Zhang, C.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402-1-4.
12.de Heer, W. A., The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611-676.
13.de Herr, W. A.; Selby, K.; Kresin, V.; Masui, J.; Vollmer, M.; Châtelain, A.; Knight, W. D., Phys. Rev. Lett. 1987, 59, 1805-1808.
14.Wu, Z.; Jin, R., On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573.
15.Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M. J.; Laromaine, A.; McComb, D.W., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun. 2008, 34, 3986-3988.
16.Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I; Parak, W. J.; Chang, W. H., Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401.
17.De Cremer, G.; Coutiño-Gonzalez, E.; Roeffaers, M. B. J.; Moens, B.; Ollevier, J.; Van der Auweraer, M.; Schoonheydt, R.; Jacobs, P. A.; De Schryver, F. C.; Hofkens, J.; De Vos, D. E.; Sels, B. F.; Vosch, T., Characterization of fluorescence in heat-treated silver-exchanged zeolites. J. Am. Chem. Soc. 2009, 131, 3049-3056.
18.Adhikari, B.; Banerjee, A., Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg(II) sensing. Chem. Mater. 2010, 22, 4364-4371.
19.Zheng, J.; Dickson, R. M., Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc. 2002, 124, 13982-13983.
20.Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 2010, 135, 1406-1410.
21.Yu, J.; Choi, S.; Dickson, R. M., Shuttle-based fluorogenic silver-cluster biolabels. Angew. Chem. Int. Ed. 2009, 48, 318-320.
22.Palmal, S.; Jana, N. R., Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 102-110.
23.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
24.Huang, C.-C.; Liao, H.-Y.; Shiang, Y.-C.; Lin, Z.-H.; Yang, Z.; Chang, H.-T., Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 2009, 19, 755-759.
25.Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J., From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
26.Lin, H.; Li, L.; Lei, C.; Xu, X.; Nie, Z.; Guo, M.; Huang, Y.; Yao, S., Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 41, 256-261.
27.Chen, P.-C.; Chiang, C.-K.; Chang, H.-T., Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 2013, 15, 1336-1-10.
28.Ho, L.-C.; Wang, C.-W.; Roy, P.; Chang H.-T., Sensitive and selective gold nanomaterials based optical probes. J. Chin. Chem. Soc. 2014, 61, 163-174.
29.Chen, P.-C.; Roy, P.; Chen, L.-Y.; Chen, Y.-N.; Chang, H.-T., Gold nanomaterials based absorption and fluorescence detection of mercury, lead, and copper. Interactions of Nanomaterials with Emerging Environmental Contaminants, American Chemical Society, New York, 2013, 39-62.
30.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
31.Zeng, J.; Petty, J. T.; Dickson, R. M., High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 2003, 125, 7780-7781.
32.Bao, Y.; Zhong, C.; Vu, D. M.; Temirov, J. P.; Dyer, R. B.; Martinez, J. S., Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J. Phys. Chem. C 2007, 111, 12194-12198.
33.Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Guével, X. L., Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 2016, 10, 2591-2599.
34.Ho, J. A.; Chang, H.-C.; Su, W.-T., DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem. 2012, 84, 3246-3253.
35.Yuan, Z.; Peng, M.; He, Y.; Yeung, E. S., Functionalized fluorescent gold nanodots: Synthesis and application for Pb2+ sensing. Chem. Commun. 2011, 47, 11981-11983.
36.Chen, W.; Tu, X.; Guo, X., Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun. 2009, 1736-1738.
37.Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-nancluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 2010, 20, 951-956.
38.Shiang, Y.-C; Huang, C.-C; Chang, H.-T., Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun. 2009, 3437-3439.
39.Triulzi, R. C.; Micic, M.; Giordani, S.; Serry, M.; Chiou, W.-A.; Leblanc, R. M., Immunoassay based on the antibody-conjugated PAMAM-dendrimer gold quantum dot complex. Chem. Commun. 2006, 5068-5070.
40.Huang, C.-C.; Chen, C.-T.; Shiang, Y.-C.; Lin, Z.-H.; Chang, H.-T., Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin A and Escherichia coli. Anal. Chem. 2009, 81, 875-882.
41.Liu, J.-M.; Chen, J.-T.; Yan, X.-P., Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 2013, 85, 3238-3245.
42.Wang, Y.; Chen, J.-T.; Yan, X.-P., Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 2013, 85, 2529-2535.
43.Zhang, X.-D.; Luo, Z.; Chen, J.; Song, S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y.; Gao, K.; Zhang, L.; Fan, S.; Leong, D. T.; Guo, M.; Xie, J., Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015, 5, 8669.
44.Palmal, S.; Basiruddin, S. K.; Maity, A. R.; Ray, S. C.; Jana, N. R., Thiol-directed synthesis of highly fluorescent gold clusters and their conversion into stable imaging nanoprobes. Chem. Eur. J. 2013, 19, 943-949.
45.Lin, S.-Y.; Chen, N.-T.; Sum, S.-P.; Lo, L.-W.; Yang, C.-S., Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem. Commun. 2008, 4762-4764.
46.Wang, Y.; Chen, J.; Irudayaraj, J., Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 2011, 5, 9718-9725.
47.Liu, C.-L.; Wu, H.-T.; Hsiao, Y.-H.;, Lai, C.-W.; Shih, C.-W.; Peng, Y.-K.; Tang, K.-C.; Chang, H.-W.; Chien, Y.-C.; Hsiao, J.-K.; Cheng, J.-T.; Chou, P.-T., Insulin-directed synthesis of fluorescent gold nanoclusters: Preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. 2011, 50, 7056-7060.
48.Kong, Y.; Chen, J.; Gao, F.; Brydson, R.; Johnson, B.; Heath, G.; Zhang, Y.; Wu, L.; Zhou, D., Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging. Nanoscale 2013, 5, 1009-1017.
49.Wang, J.; Zhang, G.; Li, Q.; Jiang, H.; Liu, C.; Amatore, C.; Wang, X., In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci. Rep. 2013, 3,1157.
50.Eto, K.; Asada, T.; Arima, K.; Makifuchi, T.; Kimura, H., Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2002, 293, 1485-1488.
51.Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R., H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine γ-lysase. Science 2008, 322, 587-590.
52.Lawrence, N. S.; Davis, J.; Jiang, L.; Jones, T. G. J.; Davies, S. N.; Compton, R. G., The electrochemical analog of the methylene blue reaction: A novel amperometric approach to the detection of hydrogen sulfide. Electroanalysis 2000, 12, 1453-1460.
53.Lawrence, N. S.; Davis, J.; Compton, R. G., Analytical strategies for the detection of sulfide: a review. Talanta 2000, 52, 771-784.
54.Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S.-K., Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chem. Commun. 2009, 47, 7390-7392.
55.Choi, M. M. F., Fluorimetric optode membrane for sulfide detection. Analyst 1998, 123, 1631-1634.
56.Bérubé, P. R.; Parkinson, P. D.; Hall, E. R., Measurement of reduced sulphur compounds contained in aqueous matrices by direct injection into a gas chromatograph with a flame photometric detector. J. Chromatogr. A 1999, 830, 485-489.
57.Chen, S.; Chen, Z.-j.; Ren, W.; Ai, H.-w., Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. J. Am. Chem. Soc. 2012, 134, 9589-9592.
58.Wang, X.; Sun, J.; Zhang, W.; Ma, X.; Lv, J.; Tang, B., A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells. Chem. Sci. 2013, 4, 2551-2556.
59.Qu, X.; Li, C.; Chen, H.; Mack, J.; Guo, Z.; Shen, Z., A red fluorescent turn-on probe for hydrogen sulfide and its application in living cells. Chem. Commun. 2013, 49, 7510-7512.
60.Chen, Y.; Zhu, C.; Y, Z.; Chen, J.; He, Y.; Jiao, Y.; He, W.; Qiu, L.; Cen, J.; Guo, Z., A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angew. Chem. 2013, 125, 1732-1735.
61.Liu, C.; Peng, B.; Li, S.; Park, C.-M.; Whorton, A. R.; Xian, M., Reaction based fluorescent probe for hydrogen sulfide. Org. Lett. 2012, 14, 2184-2187.
62.Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T., Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 2011, 83, 9450-9455.
63.Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S., Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing. Nanoscale 2013, 5, 4683-4686.

第二章
1.Zhang, L.; Wang, E., Metal nanoclusters: New fluorescent probe for sensors and bioimaging. Nano Today 2014, 9, 132-157.
2.Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murry, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L., Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science 1998, 280, 2098-2101.
3.Sun, J.; Jin, Y., Fluorescent Au nanoclusters: recent progress and sensing applications. J. Mater. Chem. C 2014, 2, 8000-8011.
4.Zheng, J.; Zhou, C.; Yu, M.; Liu, J., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073-4083.
5.Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858-871.
6.Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
7.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
8.Hussain, A. M. P.; Sarangi, S. N.; Kesarwani, J. A.; Sahu, S. N., Au-nanocluster emission based glucose sensing. Biosens. Bioelectron. 2011, 29, 60-65.
9.Kim, J.-Y.; Lee, J.-S., Synthesis and thermally reversible assembly DNA-gold nanoparticle cluster conjugates. Nano Lett. 2009, 9, 4564-4569.
10.Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
11.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
12.Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M. J.; Laromaine, A.; McComb, D.W.; Stevens, M. M.; Wang, Y.; Petit, L.; Barentin, C.; Spiller, D. G.; Copper, A. I.; Lévy, R., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun. 2008, 34, 3986-3988.
13.Kanaoka, S.; Yagi, N.; Fukuyama, Y.; Aoshima, S.; Tsunoyama, H.; Tsukuda, T.; Sakurai, H., Thermosensitive gold nanoclusters stabilized by well-defined vinyl ether star polymers: Reusable and durable catalysts for aerobic alcohol oxidation. J. Am. Chem. Soc. 2007, 129, 12060-12061.
14.Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson III, T., Optically excited acoustic vibrations in quantum-sized monolayer-protected gold nanoclusters. ACS Nano 2010, 4, 3406-3412.
15.Wang, Y.-Q.; Zhang, Y.-Y.; Wu, X.-G.; He, X.-W.; Li, W.-Y., Rapid facile in situ synthesis of the Au/poly(N-isopropylacrylamide) thermosensitive gels as temperature sensors. Mater. Letters 2015, 143, 326-329.
16.Zeng, J.; Petty, J. T.; Dickson, R. M., High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 2003, 125, 7780-7781.
17.Duan, H.; Nie, S., Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129, 2412-2413.
18.Wu, B.-Y.; Wang, C.-W.; Chen, P.-C.; Chang, H.-T., Glutathione assisted preparation of gold nanoclusters using minimum amount of protein. Sens. Actuators B 2017, 238, 1258-1265.
19.Schafer, F. Q.; Buettner, G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 2001, 30, 1191-1212.
20.Goia, D. V.; Matijević, E., Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. A 1999, 146, 139-152.
21.Guével, X. L; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011, 115, 10955-10963.
22.Zheng, J.; Zhou, C.; Yu, M.; Liu, J., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073-4083.
23.Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.
24.Li, L.; Ferng, L.; Wei, Y.; Yang, C.; Ji, H.-F., Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water. J. Colloid Interface Sci. 2012, 381, 11-16.
25.Abe, K.; Kimura, H., The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, 16, 1066-1071.
26.Reiffenstein, R. J.; Hulbert, W. C.; Roth, S. H., Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol. 1992, 109-134.
27.Morris, T.; Copeland, H.; Szulczewski, G., Synthesis and characterization of gold sulfide nanoparticles. Langmuir 2002, 18, 535-539.
28.Zhou, C.; Sun, C.; Yu, M.; Qin, Y.; Wang, J.; Kim, M.; Zheng, J., Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010, 114, 7727-7732.
29.Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S., Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing. Nanoscale 2013, 5, 4683-4686.
30.Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zheng, Z.-Y.; Zhang, L.-H.; Jiang, S.-L., A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2-. Sens. Actuators B 2013, 188, 53-58.
31.Fan, J.; Li, R.; Xu, P.; Di, J.; Tu, Y.; Yan, J., Sensitive sulfide sensor with a trypsin-stabilized gold nanocluster. Anal. Science 2014, 30, 457-462.
32.Zhang, Y.; Shen, H.-Y.; Hai, X.; Chen, X.-W.; Wang, J.-H., Polyhedral oligomeric silsesquioxane polymer-caged silver nanoparticle as a smart colorimetric probe for the detection of hydrogen sulfide. Anal. Chem. 2017, 89, 1346-1352.
33.Liu, J.; Chen, J.; Fang, Z.; Zeng, L., A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes. Analyst 2012, 137, 5502-5505.
34.Chen, P.-C.; Li, Y.-C.; Ma, J.-Y.; Huang, J.-Y.; Chen, C.-F.; Chang, H.-T., Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices. Sci. Rep. 2016, 6, 24882-1-9.
35.Li, Z.; Guo, S.; Lu, C., A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement. Analyst 2015, 140, 2719-2915.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊