|
第一章 1.Díez, I.; Ras, R. H. A., Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963-1970. 2.Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424, 824-830. 3.Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431. 4.Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858-871. 5.Li, S.; Dong, S.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401-418. 6.Siang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T., Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 2012, 22, 12972-12982. 7.Khlebtsov, N.; Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647-1671. 8.Wang, T.; Hu, X.; Dong, S., A renewable SERS substrate prepared by cyclic depositing and stripping of silver shells on gold nanoparticle microtubes. Small 2008, 4, 781-786. 9.Wang, C.-W.; Lin, Z.-H.; Roy, P.; Chang, H.-T., Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering. Front. Anal. Chem. 2013, 1, 1-5. 10.Kreibig, U.; Vollmer, M., Optical properties of metal clusters. Springer, New York, 1995. 11.Zheng, J.; Zhang, C.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402-1-4. 12.de Heer, W. A., The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611-676. 13.de Herr, W. A.; Selby, K.; Kresin, V.; Masui, J.; Vollmer, M.; Châtelain, A.; Knight, W. D., Phys. Rev. Lett. 1987, 59, 1805-1808. 14.Wu, Z.; Jin, R., On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573. 15.Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M. J.; Laromaine, A.; McComb, D.W., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun. 2008, 34, 3986-3988. 16.Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I; Parak, W. J.; Chang, W. H., Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401. 17.De Cremer, G.; Coutiño-Gonzalez, E.; Roeffaers, M. B. J.; Moens, B.; Ollevier, J.; Van der Auweraer, M.; Schoonheydt, R.; Jacobs, P. A.; De Schryver, F. C.; Hofkens, J.; De Vos, D. E.; Sels, B. F.; Vosch, T., Characterization of fluorescence in heat-treated silver-exchanged zeolites. J. Am. Chem. Soc. 2009, 131, 3049-3056. 18.Adhikari, B.; Banerjee, A., Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg(II) sensing. Chem. Mater. 2010, 22, 4364-4371. 19.Zheng, J.; Dickson, R. M., Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc. 2002, 124, 13982-13983. 20.Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst 2010, 135, 1406-1410. 21.Yu, J.; Choi, S.; Dickson, R. M., Shuttle-based fluorogenic silver-cluster biolabels. Angew. Chem. Int. Ed. 2009, 48, 318-320. 22.Palmal, S.; Jana, N. R., Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 102-110. 23.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828. 24.Huang, C.-C.; Liao, H.-Y.; Shiang, Y.-C.; Lin, Z.-H.; Yang, Z.; Chang, H.-T., Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 2009, 19, 755-759. 25.Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J., From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670. 26.Lin, H.; Li, L.; Lei, C.; Xu, X.; Nie, Z.; Guo, M.; Huang, Y.; Yao, S., Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 41, 256-261. 27.Chen, P.-C.; Chiang, C.-K.; Chang, H.-T., Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 2013, 15, 1336-1-10. 28.Ho, L.-C.; Wang, C.-W.; Roy, P.; Chang H.-T., Sensitive and selective gold nanomaterials based optical probes. J. Chin. Chem. Soc. 2014, 61, 163-174. 29.Chen, P.-C.; Roy, P.; Chen, L.-Y.; Chen, Y.-N.; Chang, H.-T., Gold nanomaterials based absorption and fluorescence detection of mercury, lead, and copper. Interactions of Nanomaterials with Emerging Environmental Contaminants, American Chemical Society, New York, 2013, 39-62. 30.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889. 31.Zeng, J.; Petty, J. T.; Dickson, R. M., High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 2003, 125, 7780-7781. 32.Bao, Y.; Zhong, C.; Vu, D. M.; Temirov, J. P.; Dyer, R. B.; Martinez, J. S., Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J. Phys. Chem. C 2007, 111, 12194-12198. 33.Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Guével, X. L., Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 2016, 10, 2591-2599. 34.Ho, J. A.; Chang, H.-C.; Su, W.-T., DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem. 2012, 84, 3246-3253. 35.Yuan, Z.; Peng, M.; He, Y.; Yeung, E. S., Functionalized fluorescent gold nanodots: Synthesis and application for Pb2+ sensing. Chem. Commun. 2011, 47, 11981-11983. 36.Chen, W.; Tu, X.; Guo, X., Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun. 2009, 1736-1738. 37.Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-nancluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 2010, 20, 951-956. 38.Shiang, Y.-C; Huang, C.-C; Chang, H.-T., Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun. 2009, 3437-3439. 39.Triulzi, R. C.; Micic, M.; Giordani, S.; Serry, M.; Chiou, W.-A.; Leblanc, R. M., Immunoassay based on the antibody-conjugated PAMAM-dendrimer gold quantum dot complex. Chem. Commun. 2006, 5068-5070. 40.Huang, C.-C.; Chen, C.-T.; Shiang, Y.-C.; Lin, Z.-H.; Chang, H.-T., Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin A and Escherichia coli. Anal. Chem. 2009, 81, 875-882. 41.Liu, J.-M.; Chen, J.-T.; Yan, X.-P., Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 2013, 85, 3238-3245. 42.Wang, Y.; Chen, J.-T.; Yan, X.-P., Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 2013, 85, 2529-2535. 43.Zhang, X.-D.; Luo, Z.; Chen, J.; Song, S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y.; Gao, K.; Zhang, L.; Fan, S.; Leong, D. T.; Guo, M.; Xie, J., Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015, 5, 8669. 44.Palmal, S.; Basiruddin, S. K.; Maity, A. R.; Ray, S. C.; Jana, N. R., Thiol-directed synthesis of highly fluorescent gold clusters and their conversion into stable imaging nanoprobes. Chem. Eur. J. 2013, 19, 943-949. 45.Lin, S.-Y.; Chen, N.-T.; Sum, S.-P.; Lo, L.-W.; Yang, C.-S., Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem. Commun. 2008, 4762-4764. 46.Wang, Y.; Chen, J.; Irudayaraj, J., Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano 2011, 5, 9718-9725. 47.Liu, C.-L.; Wu, H.-T.; Hsiao, Y.-H.;, Lai, C.-W.; Shih, C.-W.; Peng, Y.-K.; Tang, K.-C.; Chang, H.-W.; Chien, Y.-C.; Hsiao, J.-K.; Cheng, J.-T.; Chou, P.-T., Insulin-directed synthesis of fluorescent gold nanoclusters: Preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. 2011, 50, 7056-7060. 48.Kong, Y.; Chen, J.; Gao, F.; Brydson, R.; Johnson, B.; Heath, G.; Zhang, Y.; Wu, L.; Zhou, D., Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging. Nanoscale 2013, 5, 1009-1017. 49.Wang, J.; Zhang, G.; Li, Q.; Jiang, H.; Liu, C.; Amatore, C.; Wang, X., In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci. Rep. 2013, 3,1157. 50.Eto, K.; Asada, T.; Arima, K.; Makifuchi, T.; Kimura, H., Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2002, 293, 1485-1488. 51.Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R., H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine γ-lysase. Science 2008, 322, 587-590. 52.Lawrence, N. S.; Davis, J.; Jiang, L.; Jones, T. G. J.; Davies, S. N.; Compton, R. G., The electrochemical analog of the methylene blue reaction: A novel amperometric approach to the detection of hydrogen sulfide. Electroanalysis 2000, 12, 1453-1460. 53.Lawrence, N. S.; Davis, J.; Compton, R. G., Analytical strategies for the detection of sulfide: a review. Talanta 2000, 52, 771-784. 54.Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S.-K., Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chem. Commun. 2009, 47, 7390-7392. 55.Choi, M. M. F., Fluorimetric optode membrane for sulfide detection. Analyst 1998, 123, 1631-1634. 56.Bérubé, P. R.; Parkinson, P. D.; Hall, E. R., Measurement of reduced sulphur compounds contained in aqueous matrices by direct injection into a gas chromatograph with a flame photometric detector. J. Chromatogr. A 1999, 830, 485-489. 57.Chen, S.; Chen, Z.-j.; Ren, W.; Ai, H.-w., Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. J. Am. Chem. Soc. 2012, 134, 9589-9592. 58.Wang, X.; Sun, J.; Zhang, W.; Ma, X.; Lv, J.; Tang, B., A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells. Chem. Sci. 2013, 4, 2551-2556. 59.Qu, X.; Li, C.; Chen, H.; Mack, J.; Guo, Z.; Shen, Z., A red fluorescent turn-on probe for hydrogen sulfide and its application in living cells. Chem. Commun. 2013, 49, 7510-7512. 60.Chen, Y.; Zhu, C.; Y, Z.; Chen, J.; He, Y.; Jiao, Y.; He, W.; Qiu, L.; Cen, J.; Guo, Z., A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angew. Chem. 2013, 125, 1732-1735. 61.Liu, C.; Peng, B.; Li, S.; Park, C.-M.; Whorton, A. R.; Xian, M., Reaction based fluorescent probe for hydrogen sulfide. Org. Lett. 2012, 14, 2184-2187. 62.Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T., Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 2011, 83, 9450-9455. 63.Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S., Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing. Nanoscale 2013, 5, 4683-4686.
第二章 1.Zhang, L.; Wang, E., Metal nanoclusters: New fluorescent probe for sensors and bioimaging. Nano Today 2014, 9, 132-157. 2.Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murry, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L., Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science 1998, 280, 2098-2101. 3.Sun, J.; Jin, Y., Fluorescent Au nanoclusters: recent progress and sensing applications. J. Mater. Chem. C 2014, 2, 8000-8011. 4.Zheng, J.; Zhou, C.; Yu, M.; Liu, J., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073-4083. 5.Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858-871. 6.Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431. 7.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828. 8.Hussain, A. M. P.; Sarangi, S. N.; Kesarwani, J. A.; Sahu, S. N., Au-nanocluster emission based glucose sensing. Biosens. Bioelectron. 2011, 29, 60-65. 9.Kim, J.-Y.; Lee, J.-S., Synthesis and thermally reversible assembly DNA-gold nanoparticle cluster conjugates. Nano Lett. 2009, 9, 4564-4569. 10.Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270. 11.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889. 12.Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M. J.; Laromaine, A.; McComb, D.W.; Stevens, M. M.; Wang, Y.; Petit, L.; Barentin, C.; Spiller, D. G.; Copper, A. I.; Lévy, R., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun. 2008, 34, 3986-3988. 13.Kanaoka, S.; Yagi, N.; Fukuyama, Y.; Aoshima, S.; Tsunoyama, H.; Tsukuda, T.; Sakurai, H., Thermosensitive gold nanoclusters stabilized by well-defined vinyl ether star polymers: Reusable and durable catalysts for aerobic alcohol oxidation. J. Am. Chem. Soc. 2007, 129, 12060-12061. 14.Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson III, T., Optically excited acoustic vibrations in quantum-sized monolayer-protected gold nanoclusters. ACS Nano 2010, 4, 3406-3412. 15.Wang, Y.-Q.; Zhang, Y.-Y.; Wu, X.-G.; He, X.-W.; Li, W.-Y., Rapid facile in situ synthesis of the Au/poly(N-isopropylacrylamide) thermosensitive gels as temperature sensors. Mater. Letters 2015, 143, 326-329. 16.Zeng, J.; Petty, J. T.; Dickson, R. M., High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 2003, 125, 7780-7781. 17.Duan, H.; Nie, S., Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129, 2412-2413. 18.Wu, B.-Y.; Wang, C.-W.; Chen, P.-C.; Chang, H.-T., Glutathione assisted preparation of gold nanoclusters using minimum amount of protein. Sens. Actuators B 2017, 238, 1258-1265. 19.Schafer, F. Q.; Buettner, G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 2001, 30, 1191-1212. 20.Goia, D. V.; Matijević, E., Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. A 1999, 146, 139-152. 21.Guével, X. L; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011, 115, 10955-10963. 22.Zheng, J.; Zhou, C.; Yu, M.; Liu, J., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073-4083. 23.Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217. 24.Li, L.; Ferng, L.; Wei, Y.; Yang, C.; Ji, H.-F., Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water. J. Colloid Interface Sci. 2012, 381, 11-16. 25.Abe, K.; Kimura, H., The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, 16, 1066-1071. 26.Reiffenstein, R. J.; Hulbert, W. C.; Roth, S. H., Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol. 1992, 109-134. 27.Morris, T.; Copeland, H.; Szulczewski, G., Synthesis and characterization of gold sulfide nanoparticles. Langmuir 2002, 18, 535-539. 28.Zhou, C.; Sun, C.; Yu, M.; Qin, Y.; Wang, J.; Kim, M.; Zheng, J., Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010, 114, 7727-7732. 29.Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S., Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing. Nanoscale 2013, 5, 4683-4686. 30.Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zheng, Z.-Y.; Zhang, L.-H.; Jiang, S.-L., A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2-. Sens. Actuators B 2013, 188, 53-58. 31.Fan, J.; Li, R.; Xu, P.; Di, J.; Tu, Y.; Yan, J., Sensitive sulfide sensor with a trypsin-stabilized gold nanocluster. Anal. Science 2014, 30, 457-462. 32.Zhang, Y.; Shen, H.-Y.; Hai, X.; Chen, X.-W.; Wang, J.-H., Polyhedral oligomeric silsesquioxane polymer-caged silver nanoparticle as a smart colorimetric probe for the detection of hydrogen sulfide. Anal. Chem. 2017, 89, 1346-1352. 33.Liu, J.; Chen, J.; Fang, Z.; Zeng, L., A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes. Analyst 2012, 137, 5502-5505. 34.Chen, P.-C.; Li, Y.-C.; Ma, J.-Y.; Huang, J.-Y.; Chen, C.-F.; Chang, H.-T., Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices. Sci. Rep. 2016, 6, 24882-1-9. 35.Li, Z.; Guo, S.; Lu, C., A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement. Analyst 2015, 140, 2719-2915.
|