|
[1] T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y.-C. Cheng, M. Ballottari, R. Bassi, and G. R. Fleming. Quantum Coherence Enabled Determination of the Energy Landscape in Light-Harvesting Complex II. J. Phys. Chem. B, 113(51):16291–16295, dec 2009. [2] A. Damjanović, H. M. Vaswani, P. Fromme, and G. R. Fleming. Chlorophyll excitations in photosystem I of Synechococcus elongatus. J. Phys. Chem. B, 106(39):10251–10262, 2002. [3] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. J. Can. mathématiques, 8:399–404, 1956. [4] R. Görke, T. Hartmann, and D. Wagner. Dynamic Graph Clustering Using Minimum-Cut Trees. J. Graph Algorithms Appl., 16(2):411–446, 2012. [5] Y. H. Hwang-Fu, W. Chen, and Y. C. Cheng. A coherent modified Redfield theory for excitation energy transfer in molecular aggregates. Chem. Phys., 447:46–53, 2015. [6] C. Kreisbeck, T. Kramer, and A. Aspuru-Guzik. Scalable high-performance algorithm for the simulation of exciton dynamics. Application to the light-harvesting complex II in the presence of resonant vibrational modes. J. Chem. Theory Comput., 10(9):4045–4054, 2014. [7] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, and W. Chang. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature, 428(6980):287–292, 2004. [8] V. Novoderezhkin, A. Marin, and R. van Grondelle. Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield–Förster picture. Phys. Chem. Chem. Phys., 13(38):17093, 2011. [9] V. I. Novoderezhkin, M. A. Palacios, H. Van Amerongen, and R. Van Grondelle. Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 a crystal structure. J. Phys. Chem. B, 109(20):10493–10504, 2005. [10] T. Renger, M. E. Madjet, A. Knorr, and F. Müh. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II. J. Plant Physiol., 168(12):1497–1509, 2011. [11] G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. Van Grondelle, and G. R. Fleming. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J. Phys. Chem. B, 113(46):15352–15363, 2009. [12] M. Schmidt Am Busch, F. Müh, M. El-Amine Madjet, and T. Renger. The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J. Phys. Chem. Lett., 2(2):93–98, 2011. [13] D. E. Tronrud, J. Wen, L. Gay, and R. E. Blankenship. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth. Res., 100(2):79–87, may 2009. [14] L. Valkunas, G. Trinkunas, J. Chmeliov, and A. V. Ruban. Modeling of exciton quenching in photosystem II. Phys. Chem. Chem. Phys., 11(35):7576–7584, 2009. [15] R. van Grondelle and V. I. Novoderezhkin. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys, 8(7):793–807, 2006. [16] J. Wu, Z. Tang, Z. Gong, J. Cao, and S. Mukamel. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex. J. Phys. Chem. Lett., pages 1240–1245, 2015.
|