|
Chapter 1 1.Sumner, J. B. The isolation and crystallization of the enzyme urease preliminary paper. J. Biol. Chem. 1926, 69, 435-441. 2.Milligan, G. Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol. Pharmacol. 2003, 64, 1271-1276. 3.Krishnan, J.; Selvarajoo, K.; Tsuchiya, M.; Lee, G.; Choi, S. Toll-like receptor signal transduction. Exp. Mol. Med. 2007, 39, 421-438. 4.Gosline, J.; Lillie, M.; Carrington, E.; Guerette, P.; Ortlepp, C.; Savage, K. Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. B-Biol. Sci. 2002, 357, 121-132. 5.Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561-563. 6.Martin, R. B. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers 1998, 45, 351-353. 7.Kahne, D.; Still, W. C. Hydrolysis of a peptide bond in neutral water. J. Am. Chem. Soc. 1988, 110, 7529-7534. 8.Smith, R. M.; Hansen, D. E. The pH-rate profile for the hydrolysis of a peptide bond. J. Am. Chem. Soc. 1998, 120, 8910-8913. 9.Pauling, L.; Corey, R. B. The Planarity of the amide group in polypeptides. J. Am. Chem. Soc. 1952, 74, 3964-3964. 10.Weiss, M. S.; Jabs, A.; Hilgenfeld, R. Peptide bonds revisited. Nat. Struct. Mol. Biol. 1998, 5, 676-676. 11.Jabs, A.; Weiss, M. S.; Hilgenfeld, R. Non-proline cis peptide bonds in proteins. J. Mol. Biol. 1999, 286, 291-304. 12.Sanger, F.; Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 1951, 49, 481-490. 13.Sanger, F.; Thompson, E. O. The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates. Biochem. J. 1953, 53, 366-374. 14.Pauling, L.; Corey, R. B.; Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 205-211. 15.Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-256. 16.Venkatachalam, C. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968, 6, 1425-1436. 17.Ramachandran, G.; Kartha, G. Structure of collagen. Nature 1954, 174, 269-270. 18.Ramachandran, G.; Kartha, G. Structure of collagen. Nature 1955, 176, 593-595. 19.Donohue, J. Hydrogen bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 1953, 39, 470-478. 20.Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95-99. 21.Edsall, J. T.; Flory, P. J.; Kendrew, J. C.; Liquori, A.; Nemethy, G.; Ramachandran, G.; Scheraga, H. A proposal of standard conventions and nomenclature for the description of polypeptide conformation. J. Biol. Chem. 1966, 241, 1004-1008. 22.Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R.; Wyckoff, H.; Phillips, D. C. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958, 181, 662-666. 23.Arnott, S.; Wonacott, A. J. Atomic co-ordinates for an α-helix: refinement of the crystal structure of α-poly-l-alanine. J. Mol. Biol. 1966, 21, 371-383. 24.Barlow, D.; Thornton, J. Helix geometry in proteins. J. Mol. Biol. 1988, 201, 601-619. 25.Hol, W. G.; Van Duijnen, P. T.; Berendsen, H. The α-helix dipole and the properties of proteins. Nature 1978, 273, 443-446. 26.Muñoz, V.; Serrano, L. Helix design, prediction and stability. Curr. Opin. Biotechnol. 1995, 6, 382-386. 27.Blake, C.; Koenig, D.; Mair, G.; North, A.; Phillips, D.; Sarma, V. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 1965, 206, 757-761. 28.Hovmöller, S.; Zhou, T.; Ohlson, T. Conformations of amino acids in proteins. Acta Crystallogr. Sect. D. Biol. Crystallogr. 2002, 58, 768-776. 29.Lim, Y.-b.; Lee, M. Nanostructures of β-sheet peptides: Steps towards bioactive functional materials. J. Mater. Chem. 2008, 18, 723-727. 30.Chothia, C. Conformation of twisted β-pleated sheets in proteins. J. Mol. Biol. 1973, 75, 295-302. 31.Ho, B. K.; Curmi, P. M. Twist and shear in β-sheets and β-ribbons. J. Mol. Biol. 2002, 317, 291-308. 32.Weatherford, D.; Salemme, F. R. Conformations of twisted parallel β-sheets and the origin of chirality in protein structures. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 19-23. 33.Citron, M. Alzheimer''s disease: strategies for disease modification. Nat. Rev. Drug Discov. 2010, 9, 387-398. 34.Feany, M. B.; Bender, W. W. A Drosophila model of Parkinson''s disease. Nature 2000, 404, 394-398. 35.Palmer, M. S.; Dryden, A. J.; Hughes, J. T.; Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 1991, 352, 340-342. 36.Cowan, P. M.; McGavin, S. Structure of poly-L-proline. Nature 1955, 176, 501-503. 37.Hopfinger, A. Conformational properties of macromolecules. Elsevier: 2012. 38.Kumar, P.; Bansal, M. Structural and functional analyses of PolyProline-II helices in globular proteins. J. Struct. Biol. 2016, 196, 414-425. 39.Kelly, M. A.; Chellgren, B. W.; Rucker, A. L.; Troutman, J. M.; Fried, M. G.; Miller, A.-F.; Creamer, T. P. Host-guest study of left-handed polyproline II helix formation. Biochemistry 2001, 40, 14376-14383. 40.Adzhubei, A.; Eisenmenger, F.; Tumanyan, V.; Zinke, M.; Brodzinski, S.; Esipova, N. Approaching a complete classification of protein secondary structure. J. Biomol. Struct. Dyn. 1987, 5, 689-704. 41.Sreerama, N.; Woody, R. W. Molecular dynamics simulations of polypeptide conformations in water: A comparison of α, β, and poly (pro) II conformations. Proteins 1999, 36, 400-406. 42.Adzhubei, A. A.; Sternberg, M. J.; Makarov, A. A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol. 2013, 425, 2100-2132. 43.Adzhubei, A. A.; Sternberg, M. J. Left-handed polyproline II helices commonly occur in globular proteins. J. Mol. Biol. 1993, 229, 472-493. 44.Stapley, B. J.; Creamer, T. P. A survey of left-handed polyproline II helices. Protein Sci. 1999, 8, 587-595. 45.Sreerama, N.; Woody, R. W. Poly (Pro) II helixes in globular proteins: Identification and circular dichroic analysis. Biochemistry 1994, 33, 10022-10025. 46.Shoulders, M. D.; Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. 47.Cubellis, M.; Caillez, F.; Blundell, T.; Lovell, S. Properties of polyproline II, a secondary structure element implicated in protein–protein interactions. Proteins 2005, 58, 880-892. 48.Shi, Z.; Woody, R. W.; Kallenbach, N. R. Is polyproline II a major backbone conformation in unfolded proteins? Adv. Protein Chem. 2002, 62, 163-240. 49.Rath, A.; Davidson, A. R.; Deber, C. M. The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers 2005, 80, 179-185. 50.Shi, Z.; Chen, K.; Liu, Z.; Kallenbach, N. R. Conformation of the backbone in unfolded proteins. Chem. Rev. 2006, 106, 1877-1897. 51.Pace, C. N.; Shirley, B. A.; McNutt, M.; Gajiwala, K. Forces contributing to the conformational stability of proteins. FASEB J. 1996, 10, 75-83. 52.Betz, S. F. Disulfide bonds and the stability of globular proteins. Protein Sci. 1993, 2, 1551-1558. 53.Klotz, I. M.; Langerman, N. R.; Darnall, D. W. Quaternary structure of proteins. Annu. Rev. Biochem. 1970, 39, 25-62. 54.Mihailescu, M.-R.; Russu, I. M. A signature of the T→ R transition in human hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 3773-3777. 55.Dill, K. A. Dominant forces in protein folding. Biochemistry 1990, 29, 7133-7155. 56.Stevens, M. J. Simple simulations of DNA condensation. Biophys. J. 2001, 80, 130-139. 57.Simonson, T.; Brooks, C. L. Charge screening and the dielectric constant of proteins: insights from molecular dynamics. J. Am. Chem. Soc. 1996, 118, 8452-8458. 58.Gilson, M. K.; Honig, B. H. The dielectric constant of a folded protein. Biopolymers 1986, 25, 2097-2119. 59.Kumar, S.; Tsai, C.-J.; Ma, B.; Nussinov, R. Contribution of salt bridges toward protein thermostability. J. Biomol. Struct. Dyn. 2000, 17, 79-85. 60.Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the hydrogen bond energy. J. Phys. Chem. A 2010, 114, 9529-9536. 61.Baker, E.; Hubbard, R. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 1984, 44, 97-179. 62.Makhatadze, G. I.; Privalov, P. L. Energetics of protein structure. Adv. Protein Chem. 1995, 47, 307-425. 63.Klapper, M. H. On the nature of the protein interior. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 1971, 229, 557-566. 64.Head-Gordon, T. Is water structure around hydrophobic groups clathrate-like? Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 8308-8312. 65.Frank, H. S.; Evans, M. W. Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 1945, 13, 507-532. 66.Koide, T.; Nagata, K. Collagen biosynthesis. Top. Curr. Chem. 2005, 247, 85-114. 67.Engel, J. Versatile collagens in invertebrates. Science 1997, 277, 1785-1786. 68.Royce, P. M.; Steinmann, B. Connective tissue and its heritable disorders: molecular, genetic, and medical aspects. John Wiley & Sons: 2003. 69.Palmer, M. S.; Dryden, A. J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 1991, 352, 340-342. 70.Ramshaw, J. A.; Shah, N. K.; Brodsky, B. Gly-XY tripeptide frequencies in collagen: a context for host–guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86-91. 71.Salem, G.; Traub, W. Conformational implications of amino acid sequence regularities in collagen. FEBS Lett. 1975, 51, 94-99. 72.Holmgren, S. K.; Taylor, K. M.; Bretscher, L. E.; Raines, R. T. Code for collagen''s stability deciphered. Nature 1998, 392, 666-667.
Chapter 2 1.Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 1951, 37, 251-256. 2.Hobohm, U.; Scharf, M.; Schneider, R.; Sander, C. Selection of representative protein data sets. Protein Sci. 1992, 1, 409-417. 3.Hobohm, U.; Sander, C. Enlarged representative set of protein structures. Protein Sci. 1994, 3, 522-524. 4.Griep, S.; Hobohm, U. PDBselect 1992–2009 and PDBfilter-select. Nucleic Acids Res. 2009, 38, D318-D319. 5.Citron, M. Alzheimer''s disease: strategies for disease modification. Nat. Rev. Drug Discov. 2010, 9, 387-398. 6.Feany, M. B.; Bender, W. W. A Drosophila model of Parkinson''s disease. Nature 2000, 404, 394-398. 7.Palmer, M. S.; Dryden, A. J.; Hughes, J. T.; Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 1991, 352, 340-342. 8.Minor, D. L.; Kim, P. S. Context is a major determinant of β-sheet propensity. Nature 1994, 371, 264-267. 9.Chou, P. Y.; Fasman, G. D. Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 1974, 13, 211-222. 10.Chou, P. Y.; Fasman, G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol. 1978, 47, 45-148. 11.Kim, C. A.; Berg, J. M. Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 1993, 362, 267-270. 12.Minor Jr, D. L.; Kim, P. S. Measurement of the β-sheet-forming propensities of amino acids. Nature 1994, 367, 660-663. 13.Smith, C. K.; Withka, J. M.; Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 1994, 33, 5510-5517. 14.Avbelj, F.; Baldwin, R. L. Role of backbone solvation in determining thermodynamic β propensities of the amino acids. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1309-1313. 15.Otzen, D. E.; Fersht, A. R. Side-chain determinants of β-sheet stability. Biochemistry 1995, 34, 5718-5724. 16.Bai, Y.; Englander, S. W. Hydrogen bond strength and β‐sheet propensities: The role of a side chain blocking effect. Proteins: Struct., Funct., Bioinf. 1994, 18, 262-266. 17.Street, A. G.; Mayo, S. L. Intrinsic β-sheet propensities result from van der Waals interactions between side chains and the local backbone. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9074-9076. 18.Yang, A.-S.; Honig, B. Free energy determinants of secondary structure formation: II. Antiparallel β-sheets. J. Mol. Biol. 1995, 252, 366-376. 19.Koehl, P.; Levitt, M. Structure-based conformational preferences of amino acids. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 12524-12529. 20.Syud, F. A.; Stanger, H. E.; Gellman, S. H. Interstrand side chain− side chain interactions in a designed β-Hairpin: significance of both lateral and diagonal pairings. J. Am. Chem. Soc. 2001, 123, 8667-8677. 21.Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983, 22, 2577-2637. 22.Venkatachalam, C. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968, 6, 1425-1436. 23.Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 1981, 34, 167-339. 24.Wilmot, C.; Thornton, J. Analysis and prediction of the different types of β-turn in proteins. J. Mol. Biol. 1988, 203, 221-232. 25.Lewis, P. N.; Momany, F. A.; Scheraga, H. A. Chain reversals in proteins. Biochim. Biophys. Acta, Protein Struct. 1973, 303, 211-229. 26.Hutchinson, E. G.; Thornton, J. M. A revised set of potentials for β‐turn formation in proteins. Protein Sci. 1994, 3, 2207-2216. 27.Haque, T. S.; Gellman, S. H. Insights on β-hairpin stability in aqueous solution from peptides with enforced type I'' and type II'' β-turns. J. Am. Chem. Soc. 1997, 119, 2303-2304. 28.Sibanda, B.; Thornton, J. β-Hairpin families in globular proteins. Nature 1985, 316, 170-174. 29.Haque, T. S.; Little, J. C.; Gellman, S. H. " Mirror image" reverse turns promote β-hairpin formation. J. Am. Chem. Soc. 1994, 116, 4105-4106. 30.Haque, T. S.; Little, J. C.; Gellman, S. H. Stereochemical requirements for β-hairpin formation: model studies with four-residue peptides and depsipeptides. J. Am. Chem. Soc. 1996, 118, 6975-6985. 31.Stanger, H. E.; Gellman, S. H. Rules for antiparallel β-sheet design: D-Pro-Gly is superior to L-Asn-Gly for β-hairpin nucleation1. J. Am. Chem. Soc. 1998, 120, 4236-4237. 32.Kent, S. B. Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 1988, 57, 957-989. 33.Milton, R. d. L.; Milton, S. C.; Adams, P. A. Prediction of difficult sequences in solid-phase peptide synthesis. J. Am. Chem. Soc. 1990, 112, 6039-6046. 34.Krchnak, V.; Flegelova, Z.; Vagner, J. Aggregation of resin‐bound peptides during solid‐phase peptide synthesis. Int. J. Pept. Protein Res. 1993, 42, 450-454. 35.Fields, G. B.; Fields, C. G. Solvation effects in solid-phase peptide synthesis. J. Am. Chem. Soc. 1991, 113, 4202-4207. 36.Kent, S.; Alewood, D.; Alewood, P.; Baca, M.; Jones, A.; Schnolzer, M.; Epton, R. Innovations and Perspectives in Solid Phase Synthesis. Intercept. Ltd., Andover, UK 1992. 37.Tam, J. P.; Lu, Y.-A. Coupling difficulty associated with interchain clustering and phase transition in solid phase peptide synthesis. J. Am. Chem. Soc. 1995, 117, 12058-12063. 38.Beyermann, M.; Bienert, M. Synthesis of difficult peptide sequences: a comparison of Fmoc-and Boc-technique. Tetrahedron Lett. 1992, 33, 3745-3748. 39.Johnson, T.; Quibell, M.; Sheppard, R. C. N, O‐bisfmoc derivatives of N‐(2‐hydroxy‐4‐methoxybenzyl)‐amino acids: Useful intermediates in peptide synthesis. J. Pept. Sci. 1995, 1, 11-25. 40.Varanda, L. M.; Miranda, M. T. M. Solid‐phase peptide synthesis at elevated temperatures: a search for an optimized synthesis condition of unsulfated cholecystokinin‐12. J. Pept. Res. 1997, 50, 102-108. 41.Johnson, T.; Quibell, M.; Owen, D.; Sheppard, R. A reversible protecting group for the amide bond in peptides. Use in the synthesis of ‘difficult sequences’. J. Chem. Soc., Chem. Commun. 1993, 369-372. 42.Bedford, J.; Hyde, C.; Johnson, T.; Jun, W.; Owen, D.; Quibell, M.; Sheppard, R. Amino acid structure and “difficult sequences” in solid phase peptide synthesis. Chem. Biol. Drug Des. 1992, 40, 300-307. 43.Hyde, C.; Johnson, T.; Owen, D.; Quibell, M.; Sheppard, R. Some ‘difficult sequences’ made easy. Int. J. Pept. Protein Res. 1994, 43, 431-440. 44.Zhang, L.; Goldammer, C.; Henkel, B.; Zühl, F.; Panhaus, G.; Jung, G.; Bayer, E. In Magic mixture, a powerful solvent system for solid-phase synthesis of “difficult sequences”. In: Epton E (ed) Innovation and perspectives in solid phase synthesis: peptides, proteins and nucleic acids—biological and biomedical applications, 3rd International Symposium. Mayflower Worldwide Ltd., Birmingham, UK, 1994; 1994; pp 711-716. 45.Palasek, S. A.; Cox, Z. J.; Collins, J. M. Limiting racemization and aspartimide formation in microwave‐enhanced Fmoc solid phase peptide synthesis. J. Pept. Sci. 2007, 13, 143-148. 46.Chhabra, S. R.; Hothi, B.; Evans, D. J.; White, P. D.; Bycroft, B. W.; Chan, W. C. An appraisal of new variants of Dde amine protecting group for solid phase peptide synthesis. Tetrahedron Lett. 1998, 39, 1603-1606. 47.Pillai, R.; Marinelli, E. R.; Swenson, R. E. A flexible method for preparation of peptide homo‐and heterodimers functionalized with affinity probes, chelating ligands, and latent conjugating groups. Pept. Sci. 2006, 84, 576-585. 48.Izabela, R.; Jarosław, R.; Magdalena, A.; Piotr, R.; Ivan, K. Transportan 10 improves the anticancer activity of cisplatin. Naunyn-Schmiedeberg''s Arch. Pharmacol. 2016, 389, 485-497. 49.Barge, A.; Cappelletti, E.; Cravotto, G.; Ferrigato, A.; Lattuada, L.; Marinoni, F.; Tei, L. Synthesis of functionalised HP-DO3A chelating agents for conjugation to biomolecules. Org. Biomol. Chem. 2009, 7, 3810-3816. 50.Ligeti, M.; Gündüz, Ö.; Magyar, A.; Kató, E.; Rónai, A. Z.; Vita, C.; Varga, I.; Hudecz, F.; Tóth, G.; Borsodi, A. Synthesis and biological studies of nociceptin derivatives containing the DTPA chelating group for further labeling with therapeutic radionuclides. Peptides 2005, 26, 1159-1166. 51.Kumar, S.; Tsai, C.-J.; Ma, B.; Nussinov, R. Contribution of salt bridges toward protein thermostability. J. Biomol. Struct. Dyn. 2000, 17, 79-85. 52.Wu, C.-H.; Weng, M.-H.; Chang, H.-C.; Li, J.-H.; Cheng, R. P. Effect of each guanidinium group on the RNA recognition and cellular uptake of Tat-derived peptides. Biorg. Med. Chem. 2014, 22, 3016-3020. 53.Mitchell, D. J.; Steinman, L.; Kim, D.; Fathman, C.; Rothbard, J. Polyarginine enters cells more efficiently than other polycationic homopolymers. Chem. Biol. Drug Des. 2000, 56, 318-325. 54.Schmidt, N.; Mishra, A.; Lai, G. H.; Wong, G. C. Arginine‐rich cell‐penetrating peptides. FEBS Lett. 2010, 584, 1806-1813. 55.Luscombe, N. M.; Laskowski, R. A.; Thornton, J. M. Amino acid–base interactions: a three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Res. 2001, 29, 2860-2874. 56.Kuo, L.-H.; Li, J.-H.; Kuo, H.-T.; Hung, C.-Y.; Tsai, H.-Y.; Chiu, W.-C.; Wu, C.-H.; Wang, W.-R.; Yang, P.-A.; Yao, Y.-C. Effect of charged amino acid side chain length at non-hydrogen bonded strand positions on β-hairpin stability. Biochemistry 2013, 52, 7785-7797. 57.Syud, F. A.; Espinosa, J. F.; Gellman, S. H. NMR-based quantification of β-sheet populations in aqueous solution through use of reference peptides for the folded and unfolded states. J. Am. Chem. Soc. 1999, 121, 11577-11578. 58.Fields, G. B.; Noble, R. L. Solid phase peptide synthesis utilizing 9‐fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161-214. 59.Cheng, R. P.; Weng, Y.-J.; Wang, W.-R.; Koyack, M. J.; Suzuki, Y.; Wu, C.-H.; Yang, P.-A.; Hsu, H.-C.; Kuo, H.-T.; Girinath, P. Helix formation and capping energetics of arginine analogs with varying side chain length. Amino Acids 2012, 43, 195-206. 60.Volkmer‐Engert, R.; Landgraf, C.; Schneider‐Mergener, J. Charcoal surface‐assisted catalysis of intramolecular disulfide bond formation in peptides. J. Pept. Res. 1998, 51, 365-369. 61.Fields, G. B. Methods for removing the Fmoc group. Pept. Synth. Protoc. 1995, 17-27. 62.Atherton, E.; Fox, H.; Harkiss, D.; Logan, C.; Sheppard, R.; Williams, B. A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. J. Chem. Soc., Chem. Commun. 1978, 537-539. 63.Atherton, E.; Fox, H.; Harkiss, D.; Sheppard, R. Application of polyamide resins to polypeptide synthesis: an improved synthesis of β-endorphin using fluorenylmethoxycarbonylamino-acids. J. Chem. Soc., Chem. Commun. 1978, 539-540. 64.Albericio, F.; Kneib-Cordonier, N.; Biancalana, S.; Gera, L.; Masada, R. I.; Hudson, D.; Barany, G. Preparation and application of the 5-(4-(9-fluorenylmethyloxycarbonyl) aminomethyl-3, 5-dimethoxyphenoxy)-valeric acid (PAL) handle for the solid-phase synthesis of C-terminal peptide amides under mild conditions. J. Org. Chem. 1990, 55, 3730-3743. 65.Harrison, J.; Petrie, G.; Noble, R.; Beilan, H.; McCurdy, S.; Culwell, A. Fmoc chemtstry’synthesis, kinetics, cleavage, and deprotection of arginine-containing peptides. Tech. Protein Chem. 1989, 506-516. 66.Wade, J.; Bedford, J.; Sheppard, R.; Tregear, G. DBU as an N alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 1991, 4, 194-199. 67.Dettin, M.; Pegoraro, S.; Rovero, P.; Bicciato, S.; Bagno, A.; Bello, C. SPPS of difficult sequences. J. Pept. Res. 1997, 49, 103-111. 68.Fields, C. G.; Mickelson, D.; Drake, S.; McCarthy, J.; Fields, G. Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical" mini-collagen". J. Biol. Chem. 1993, 268, 14153-14160. 69.Kates, S. A.; Solé, N. A.; Beyermann, M.; Barany, G.; Albericio, F. Optimized preparation of deca (L-alanyl)-L-valinamide by 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis on polyethylene glycol-polystyrene (PEG-PS) graft supports, with 1, 8-diazobicyclo [5.4. 0]-undec-7-ene (DBU) deprotection. Pept. Res. 1995, 9, 106-113. 70.Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M. Triurethane-protected guanidines and triflyldiurethane-protected guanidines: new reagents for guanidinylation reactions. J. Org. Chem. 1998, 63, 8432-8439. 71.Haack, T.; Mutter, M. Serine derived oxazolidines as secondary structure disrupting, solubilizing building blocks in peptide synthesis. Tetrahedron Lett. 1992, 33, 1589-1592. 72.Mutter, M.; Nefzi, A.; Sato, T.; Sun, X.; Wahl, F.; Wöhr, T. Pseudo-prolines (psi Pro) for accessing" inaccessible" peptides. Pept. Res. 1994, 8, 145-153. 73.Wöhr, T.; Wahl, F.; Nefzi, A.; Rohwedder, B.; Sato, T.; Sun, X.; Mutter, M. Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J. Am. Chem. Soc. 1996, 118, 9218-9227. 74.Wöhr, T.; Mutter, M. Pseudo-prolines in peptide synthesis: direct insertion of serine and threonine derived oxazolidines in dipeptides. Tetrahedron Lett. 1995, 36, 3847-3848. 75.Bax, A.; Davis, D. G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. (1969-1992) 1985, 65, 355-360. 76.Aue, W.; Bartholdi, E.; Ernst, R. R. Two‐dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 1976, 64, 2229-2246. 77.Bothner-By, A. A.; Stephens, R.; Lee, J.; Warren, C. D.; Jeanloz, R. Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 1984, 106, 811-813. 78.Piotto, M.; Saudek, V.; Sklenář, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 1992, 2, 661-665.
Chapter 3 1.Shoulders, M. D.; Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. 2.Gelse, K.; Pöschl, E.; Aigner, T. Collagens—structure, function, and biosynthesis. Adv. Drug Del. Rev. 2003, 55, 1531-1546. 3.Koide, T.; Nagata, K. Collagen biosynthesis. Top. Curr. Chem. 2005, 247, 85-114. 4.Prockop, D. J.; Kivirikko, K. I.; Tuderman, L.; Guzman, N. A. The biosynthesis of collagen and its disorders. New Engl. J. Med. 1979, 301, 77-85. 5.Schofield, J. D.; Uitto, J.; Prockop, D. J. Formation of interchain disulfide bonds and helical structure during biosynthesis of procollagen by embryonic tendon cells. Biochemistry 1974, 13, 1801-1806. 6.Olsen, B. R.; Hoffmann, H.-P.; Prockop, D. J. Interchain disulfide bonds at the COOH-terminal end of procollagen synthesized by matrix-free cells from chick embryonic tendon and cartilage. Arch. Biochem. Biophys. 1976, 175, 341-350. 7.Bulleid, N. J.; Dalley, J. A.; Lees, J. F. The C‐propeptide domain of procollagen can be replaced with a transmembrane domain without affecting trimer formation or collagen triple helix folding during biosynthesis. EMBO J. 1997, 16, 6694-6701. 8.Bulleid, N. J.; Wilson, R. Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem. J. 1996, 317, 195-202. 9.Kirk, T.; Evans, J.; Veis, A. Biosynthesis of type I procollagen. Characterization of the distribution of chain sizes and extent of hydroxylation of polysome-associated pro-alpha-chains. J. Biol. Chem. 1987, 262, 5540-5545. 10.Greenspan, D. S. Biosynthetic processing of collagen molecules. Top. Curr. Chem. 2005, 247, 149-183. 11.Royce, P. M.; Steinmann, B. Connective tissue and its heritable disorders: molecular, genetic, and medical aspects. John Wiley & Sons: 2003. 12.Beck, K.; Brodsky, B. Supercoiled protein motifs: the collagen triple-helix and the α-helical coiled coil. J. Struct. Biol. 1998, 122, 17-29. 13.Kramer, R. Z.; Bella, J.; Mayville, P.; Brodsky, B.; Berman, H. M. Sequence dependent conformational variations of collagen triple-helical structure. Nat. Struct. Mol. Biol. 1999, 6, 454-457. 14.Engel, J.; Bächinger, H. P. Structure, stability and folding of the collagen triple helix. Top. Curr. Chem. 2005, 247, 7-33. 15.Rich, A.; Crick, F. The molecular structure of collagen. J. Mol. Biol. 1961, 3, 483-506. 16.Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M. Crystal and molecular structure of a collagen-like peptide at 1.9 angstrom resolution. Science 1994, 266, 75-82. 17.Nagarajan, V.; Kamitori, S.; Okuyama, K. Structure analysis of a collagen-model peptide with a (Pro-Hyp-Gly) sequence repeat. J. Biochem. 1999, 125, 310-318. 18.Ramachandran, G. Molecular structure of collagen. Int. Rev. Connect. Tissue Res. 1963, 1, 127-182. 19.Engel, J.; Chen, H. T.; Prockop, D. J.; Klump, H. The triple helix⇌coil conversion of collagen‐like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L‐Pro‐L‐Pro‐Gly) n and (L‐Pro‐L‐Hyp‐Gly) n. Biopolymers 1977, 16, 601-622. 20.Ramshaw, J. A.; Shah, N. K.; Brodsky, B. Gly-XY tripeptide frequencies in collagen: a context for host–guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86-91. 21.Fietzek, P. P.; Kühn, K. Information contained in the amino acid sequence of theα1 (I)-chain of collagen and its consequences upon the formation of the triple helix, of fibrils and crosslinks. Mol. Cell. Biochem. 1975, 8, 141-157. 22.Salem, G.; Traub, W. Conformational implications of amino acid sequence regularities in collagen. FEBS Lett. 1975, 51, 94-99. 23.Hollingsworth, S. A.; Karplus, P. A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol. Concepts 2010, 1, 271-283. 24.Cram, D. J. The design of molecular hosts, guests, and their complexes. J. Incl. Phenom. Macrocycl. Chem. 1988, 6, 397-413. 25.Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T. Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 2001, 123, 777-778. 26.Jenkins, C. L.; Vasbinder, M. M.; Miller, S. J.; Raines, R. T. Peptide bond isosteres: Ester or (E)-alkene in the backbone of the collagen triple helix. Org. Lett. 2005, 7, 2619-2622. 27.Persikov, A. V.; Ramshaw, J. A.; Brodsky, B. Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 2005, 280, 19343-19349. 28.Gauba, V.; Hartgerink, J. D. Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. J. Am. Chem. Soc. 2007, 129, 15034-15041. 29.Gauba, V.; Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 2007, 129, 2683-2690. 30.Gauba, V.; Hartgerink, J. D. Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I. J. Am. Chem. Soc. 2008, 130, 7509-7515. 31.Xu, F.; Zhang, L.; Koder, R. L.; Nanda, V. De novo self-assembling collagen heterotrimers using explicit positive and negative design. Biochemistry 2010, 49, 2307-2316. 32.Xu, F.; Zahid, S.; Silva, T.; Nanda, V. Computational design of a collagen A: B: C-type heterotrimer. J. Am. Chem. Soc. 2011, 133, 15260-15263. 33.Persikov, A. V.; Xu, Y.; Brodsky, B. Equilibrium thermal transitions of collagen model peptides. Protein Sci. 2004, 13, 893-902. 34.Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 1967, 6, 1948-1954. 35.Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995, 4, 2411-2423. 36.Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R. L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 1993, 32, 5560-5565. 37.Acevedo-Jake, A. M.; Clements, K. A.; Hartgerink, J. D. Synthetic, register-specific, AAB heterotrimers to investigate single point glycine mutations in Osteogenesis imperfecta. Biomacromolecules 2016, 17, 914-921. 38.Giddu, S.; Xu, F.; Nanda, V. Sequence recombination improves target specificity in a redesigned collagen peptide abc‐type heterotrimer. Proteins: Struct., Funct., Bioinf. 2013, 81, 386-393. 39.Parmar, A. S.; James, J. K.; Grisham, D. R.; Pike, D. H.; Nanda, V. Dissecting electrostatic contributions to folding and self-assembly using designed multicomponent peptide systems. J. Am. Chem. Soc. 2016, 138, 4362-4367. 40.Parmar, A. S.; Joshi, M.; Nosker, P. L.; Hasan, N. F.; Nanda, V. Control of collagen stability and heterotrimer specificity through repulsive electrostatic interactions. Biomolecules 2013, 3, 986-996. 41.Sarkar, B.; O’Leary, L. E.; Hartgerink, J. D. Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J. Am. Chem. Soc. 2014, 136, 14417-14424. 42.Sarkar, S. K.; Young, P.; Sullivan, C.; Torchia, D. Detection of cis and trans X-Pro peptide bonds in proteins by 13C NMR: application to collagen. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 4800-4803. 43.Fischer, G. Chemical aspects of peptide bond isomerisation. Chem. Soc. Rev. 2000, 29, 119-127. 44.Grathwohl, C.; Wüthrich, K. The X‐Pro peptide bond as an nmr probe for conformational studies of flexible linear peptides. Biopolymers 1976, 15, 2025-2041. 45.Fallas, J. A.; Gauba, V.; Hartgerink, J. D. Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J. Biol. Chem. 2009, 284, 26851-26859. 46.Shah, N. K.; Ramshaw, J. A.; Kirkpatrick, A.; Shah, C.; Brodsky, B. A host− guest set of triple-helical peptides: stability of Gly-XY triplets containing common nonpolar residues. Biochemistry 1996, 35, 10262-10268. 47.Persikov, A. V.; Ramshaw, J. A.; Kirkpatrick, A.; Brodsky, B. Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967. 48.Fields, G. B.; Noble, R. L. Solid phase peptide synthesis utilizing 9‐fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161-214. 49.Cardona, V.; Eberle, I.; Barthelemy, S.; Beythien, J.; Doerner, B.; Schneeberger, P.; Keyte, J.; White, P. Application of Dmb-dipeptides in the Fmoc SPPS of difficult and aspartimide-prone sequences. Int. J. Pept. Res. Ther. 2008, 14, 285-292.
|