跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳旻億
研究生(外文):Min-Yi Chen
論文名稱:應用於光感測器之AgInSe2量子點的合成與鑑定& 室溫一步合成錫鈣鈦礦奈米板發光材料
論文名稱(外文):Synthesis and characterization of AgInSe2 quantum dot for photodetector& One step, room temperature synthesis of tin perovskite nanoplate of photoluminescence material
指導教授:周必泰
指導教授(外文):Pi-Tai Chou
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:50
中文關鍵詞:二硒化銀銦量子點錫鈣鈦礦二維奈米
外文關鍵詞:AgInSe2quantum dottin perovskitePEA2SnI4nano2D
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們嘗試以AgInSe2量子點這種三元半導體作為光感測器的吸收層,利用其塊材能隙,Eg = 1.19~1.24 eV,吸收可包含可見光至近紅外光的範圍,使應用面更多元。量子點不僅擁有高吸收係數、高量子效率以及放光穩定等特性,還有製作成本低的優勢,在量產及未來商業應用上有極大的潛能。除此之外,為求環境保護及永續發展,尋找低毒性材料也是一項重要課題,使用AgInSe2便可符合此一要求。
利用高溫油相合成AgInSe2量子點,並透過配體置換的手法將長碳鏈配體(oleic acid, oleylamine 和 1-dodecanethiol)換成短碳鏈(3-mercaptopropionic acid)之配體來使載子遷移率提高,以期優化元件之效能。

我們利用過飽和析出的方式得到高量子效率的二維錫鈣鈦礦奈米板,其化學組成為PEA2SnX4(PEA=C6H5(CH2)2NH3, X = Br, I)。藉由調控鹵素組成,來得到不同的放光波長位置,其範圍可從550 nm(PEA2SnBr4)到640 nm (PEA2SnI4),量子效率為0.10~6.26%,半高寬則為36~80 nm。我們發現在合成過程中,在反溶液當中加入羧酸做為添加劑,可以有效阻止錫二價氧化成錫四價,避免缺陷產生。因此,可以進一步提高奈米板的量子效率及穩定性。除此之外,加入添加劑這種作法還能應用在其他類似的系統,L2MX4,其中L = BA, OA (BA= CH3(CH2)3NH3+, OA=CH3(CH2)7NH3+)。結果可證明量子效率及波長可調性都有所提升。
We tried to use ternary semiconductor – AgInSe2 quantum dot as absorbing layer in photodetector. With a bulk bandgap energy of 1.19~1.24 eV, AgInSe2 can effectively absorb light from visible light to near infrared, which is expected to have variety applications in optoelectronic fields. Quantum material has the advantages of its high absorption coefficient, high quantum yield, photo irradiation stability and low-cost solution-based fabrication techniques for large-scale production. Besides, searching low-toxicity material is also a big issue for enviromental protection. To sum up, AgInSe2 is a suitable material to meet these requirements.
AgInSe2 quantum dots were synthesized by using hot injection method. After synthesis, we performed ligand exchange to substitude ligands from long-chain ligands(oleic acid, oleylamine and 1-dodecanethiol) to short-chain one (3-mercaptopropionic acid) on the surface of quantum dots. By doing this, the carrier mobility can be boost and hence should improve the efficiency of photodetector device.

Here, we use recrystallization method to synthesis highly luminescent 2D tin-perovskite nanoplates with chemical formula of PEA2SnX4 (PEA=C6H5(CH2)2NH3, X = Br, I). Upon mixing iodo- and bromo- precursors, the emission peak wavelength was successfully tuned from 550 nm (PEA2SnBr4) to 640 nm (PEA2SnI4) with emission quantum yield in between 0.10~6.26% and full width at half maximum (FWHM) of 36~80 nm. During the synthesis, antisolvent with additive such as aliphatic acid was found to play a vital role to reduce tin perovskite defect density and hence boost the emission intensity and stability of tin-perovskite nanoplates. Besides, the method of adding additive to antisolvent can be applied to analogous system L2MX4 where L = BA, OA (BA= CH3(CH2)3NH3+, OA=CH3(CH2)7NH3+). The results confirmed that emission quantum yield and tunability has a great advance by adding additive.
謝誌 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
Chapter 1 奈米材料科學 1
1.1 介紹 1
1.1.1 表面效應 1
1.1.2 小尺寸效應 1
1.1.3 量子限量化效應 1
1.1.4 介電限域效應 2
1.1.5 穩定性及分散性 3
Chapter 2 光感測器 4
2.1 介紹 4
2.1.1 光二極體機制 4
2.1.2 光導偵測器機制 5
2.1.3 響應率(Responsivity) 7
2.1.4 響應時間(Response time) 7
2.1.5 偵測率(Normalized detectivity, D*) 7
2.1.6 增益(Gain, G) 8
2.2 量子點材料 9
2.2.1 配體置換 9
2.3 實驗動機 11
2.3.1 藥品 11
2.3.2 步驟 12
2.4 結果與討論 14
2.5 總結 22
Chapter 3 鈣鈦礦 23
3.1 介紹 23
3.1.1 晶體結構 23
3.1.2 基本特性及其應用 24
3.1.3 激子束縛能 25
3.1.4 形成能量(Formation energy) 26
3.1.5 放光特性 26
3.2 實驗動機 28
3.2.1 藥品 29
3.2.2 步驟 30
3.3 結果與討論 31
3.4 總結 45
參考文獻 46
1.Roduner, E., Size matters: why nanomaterials are different. Chem Soc Rev 2006, 35 (7), 583-92.
2.Alivisatos, A. P., Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. The Journal of Physical Chemistry 1996, 100 (31), 13226-13239.
3.Chou, K. F.; Dennis, A. M., Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. Sensors (Basel) 2015, 15 (6), 13288-325.
4.Takagahara, T., Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Physical Review B 1993, 47 (8), 4569-4584.
5.Zillner, E.; Fengler, S.; Niyamakom, P.; Rauscher, F.; Köhler, K.; Dittrich, T., Role of Ligand Exchange at CdSe Quantum Dot Layers for Charge Separation. The Journal of Physical Chemistry C 2012, 116 (31), 16747-16754.
6.Li, P.-N.; Ghule, A. V.; Chang, J.-Y., Direct aqueous synthesis of quantum dots for high-performance AgInSe 2 quantum-dot-sensitized solar cell. Journal of Power Sources 2017, 354, 100-107.
7.Clark, S. W.; Harbold, J. M.; Wise, F. W., Resonant Energy Transfer in PbS Quantum Dots. The Journal of Physical Chemistry C 2007, 111 (20), 7302-7305.
8.Konstantatos, G.; Levina, L.; Fischer, A.; Sargent, E. H., Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett 2008, 8 (5), 1446-50.
9.Neo, D. C. J.; Cheng, C.; Stranks, S. D.; Fairclough, S. M.; Kim, J. S.; Kirkland, A. I.; Smith, J. M.; Snaith, H. J.; Assender, H. E.; Watt, A. A. R., Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chemistry of Materials 2014, 26 (13), 4004-4013.
10.Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H., Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots. ACS Nano 2008, 2 (5), 833-840.
11.Konstantatos, G.; Sargent, E. H., Nanostructured materials for photon detection. Nat Nano 2010, 5 (6), 391-400.
12.Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G., Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat Commun 2016, 7, 11954.
13.Talapin, D. V.; Murray, C. B., PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors. Science 2005, 310 (5745), 86.
14.Chuang, C. H.; Brown, P. R.; Bulovic, V.; Bawendi, M. G., Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 2014, 13 (8), 796-801.
15.Fischer, A.; Rollny, L.; Pan, J.; Carey, G. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Kim, J. Y.; Bakr, O. M.; Sargent, E. H., Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Adv Mater 2013, 25 (40), 5742-9.
16.Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 2014, 5, 5404.
17.Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 2012, 7 (6), 363-8.
18.Bai, T.; Li, C.; Li, F.; Zhao, L.; Wang, Z.; Huang, H.; Chen, C.; Han, Y.; Shi, Z.; Feng, S., A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSex)2 nanocrystals. Nanoscale 2014, 6 (12), 6782-9.
19.Saparov, B.; Mitzi, D. B., Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews 2016, 116 (7), 4558-4596.
20.Cheng, Z.; Lin, J., Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12 (10), 2646.
21.Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, Shaik M.; Li, X.; Hagfeldt, A.; Grätzel, M., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy 2016, 1 (10), 16142.
22.Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; Wei, Y.; Guo, Q.; Ke, Y.; Yu, M.; Jin, Y.; Liu, Y.; Ding, Q.; Di, D.; Yang, L.; Xing, G.; Tian, H.; Jin, C.; Gao, F.; Friend, R. H.; Wang, J.; Huang, W., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics 2016, 10 (11), 699-704.
23.Wang, Y.; Huang, P.; Ye, M.; Quhe, R.; Pan, Y.; Zhang, H.; Zhong, H.; Shi, J.; Lu, J., Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chemistry of Materials 2017, 29 (5), 2191-2201.
24.Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.-W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics 2015, 11 (7), 582-587.
25.Hong, X.; Ishihara, T.; Nurmikko, A. V., Dielectric confinement effect on excitons inPbI4-based layered semiconductors. Physical Review B 1992, 45 (12), 6961-6964.
26.Zheng, K.; Zhu, Q.; Abdellah, M.; Messing, M. E.; Zhang, W.; Generalov, A.; Niu, Y.; Ribaud, L.; Canton, S. E.; Pullerits, T., Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites. J Phys Chem Lett 2015, 6 (15), 2969-75.
27.Quan, L. N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A.; Kim, D. H.; Sargent, E. H., Ligand-Stabilized Reduced-Dimensionality Perovskites. J Am Chem Soc 2016, 138 (8), 2649-55.
28.Wetzelaer, G.-J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J., Trap-Assisted Non-Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials 2015, 27 (11), 1837-1841.
29.Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M., Electron–phonon coupling in hybrid lead halide perovskites. 2016, 7, 11755.
30.Kim, Y.-H.; Cho, H.; Lee, T.-W., Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences 2016, 113 (42), 11694-11702.
31.Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Böhm, M. L., Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2016, 138 (9), 2941-2944.
32.Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A., Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano 2016, 10 (8), 7830-7839.
33.Xu, X.; Chueh, C.-C.; Yang, Z.; Rajagopal, A.; Xu, J.; Jo, S. B.; Jen, A. K. Y., Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 2017, 34, 392-398.
34.Sun, S.; Yuan, D.; Xu, Y.; Wang, A.; Deng, Z., Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. ACS Nano 2016, 10 (3), 3648-3657.
35.Zhao, Y.; Xu, X.; You, X., Colloidal Organometal Halide Perovskite (MAPbBrxI3−x, 0≤x≤3) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence. Scientific Reports 2016, 6, 35931.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top