|
1.Roduner, E., Size matters: why nanomaterials are different. Chem Soc Rev 2006, 35 (7), 583-92. 2.Alivisatos, A. P., Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. The Journal of Physical Chemistry 1996, 100 (31), 13226-13239. 3.Chou, K. F.; Dennis, A. M., Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. Sensors (Basel) 2015, 15 (6), 13288-325. 4.Takagahara, T., Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Physical Review B 1993, 47 (8), 4569-4584. 5.Zillner, E.; Fengler, S.; Niyamakom, P.; Rauscher, F.; Köhler, K.; Dittrich, T., Role of Ligand Exchange at CdSe Quantum Dot Layers for Charge Separation. The Journal of Physical Chemistry C 2012, 116 (31), 16747-16754. 6.Li, P.-N.; Ghule, A. V.; Chang, J.-Y., Direct aqueous synthesis of quantum dots for high-performance AgInSe 2 quantum-dot-sensitized solar cell. Journal of Power Sources 2017, 354, 100-107. 7.Clark, S. W.; Harbold, J. M.; Wise, F. W., Resonant Energy Transfer in PbS Quantum Dots. The Journal of Physical Chemistry C 2007, 111 (20), 7302-7305. 8.Konstantatos, G.; Levina, L.; Fischer, A.; Sargent, E. H., Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett 2008, 8 (5), 1446-50. 9.Neo, D. C. J.; Cheng, C.; Stranks, S. D.; Fairclough, S. M.; Kim, J. S.; Kirkland, A. I.; Smith, J. M.; Snaith, H. J.; Assender, H. E.; Watt, A. A. R., Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chemistry of Materials 2014, 26 (13), 4004-4013. 10.Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H., Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots. ACS Nano 2008, 2 (5), 833-840. 11.Konstantatos, G.; Sargent, E. H., Nanostructured materials for photon detection. Nat Nano 2010, 5 (6), 391-400. 12.Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G., Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat Commun 2016, 7, 11954. 13.Talapin, D. V.; Murray, C. B., PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors. Science 2005, 310 (5745), 86. 14.Chuang, C. H.; Brown, P. R.; Bulovic, V.; Bawendi, M. G., Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 2014, 13 (8), 796-801. 15.Fischer, A.; Rollny, L.; Pan, J.; Carey, G. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Kim, J. Y.; Bakr, O. M.; Sargent, E. H., Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Adv Mater 2013, 25 (40), 5742-9. 16.Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 2014, 5, 5404. 17.Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 2012, 7 (6), 363-8. 18.Bai, T.; Li, C.; Li, F.; Zhao, L.; Wang, Z.; Huang, H.; Chen, C.; Han, Y.; Shi, Z.; Feng, S., A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSex)2 nanocrystals. Nanoscale 2014, 6 (12), 6782-9. 19.Saparov, B.; Mitzi, D. B., Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews 2016, 116 (7), 4558-4596. 20.Cheng, Z.; Lin, J., Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12 (10), 2646. 21.Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, Shaik M.; Li, X.; Hagfeldt, A.; Grätzel, M., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy 2016, 1 (10), 16142. 22.Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; Wei, Y.; Guo, Q.; Ke, Y.; Yu, M.; Jin, Y.; Liu, Y.; Ding, Q.; Di, D.; Yang, L.; Xing, G.; Tian, H.; Jin, C.; Gao, F.; Friend, R. H.; Wang, J.; Huang, W., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics 2016, 10 (11), 699-704. 23.Wang, Y.; Huang, P.; Ye, M.; Quhe, R.; Pan, Y.; Zhang, H.; Zhong, H.; Shi, J.; Lu, J., Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chemistry of Materials 2017, 29 (5), 2191-2201. 24.Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.-W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics 2015, 11 (7), 582-587. 25.Hong, X.; Ishihara, T.; Nurmikko, A. V., Dielectric confinement effect on excitons inPbI4-based layered semiconductors. Physical Review B 1992, 45 (12), 6961-6964. 26.Zheng, K.; Zhu, Q.; Abdellah, M.; Messing, M. E.; Zhang, W.; Generalov, A.; Niu, Y.; Ribaud, L.; Canton, S. E.; Pullerits, T., Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites. J Phys Chem Lett 2015, 6 (15), 2969-75. 27.Quan, L. N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A.; Kim, D. H.; Sargent, E. H., Ligand-Stabilized Reduced-Dimensionality Perovskites. J Am Chem Soc 2016, 138 (8), 2649-55. 28.Wetzelaer, G.-J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J., Trap-Assisted Non-Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials 2015, 27 (11), 1837-1841. 29.Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M., Electron–phonon coupling in hybrid lead halide perovskites. 2016, 7, 11755. 30.Kim, Y.-H.; Cho, H.; Lee, T.-W., Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences 2016, 113 (42), 11694-11702. 31.Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Böhm, M. L., Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2016, 138 (9), 2941-2944. 32.Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A., Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano 2016, 10 (8), 7830-7839. 33.Xu, X.; Chueh, C.-C.; Yang, Z.; Rajagopal, A.; Xu, J.; Jo, S. B.; Jen, A. K. Y., Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 2017, 34, 392-398. 34.Sun, S.; Yuan, D.; Xu, Y.; Wang, A.; Deng, Z., Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. ACS Nano 2016, 10 (3), 3648-3657. 35.Zhao, Y.; Xu, X.; You, X., Colloidal Organometal Halide Perovskite (MAPbBrxI3−x, 0≤x≤3) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence. Scientific Reports 2016, 6, 35931.
|