|
[1] P. A. Franken and J. F. Ward. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys., 1:120, 1963. [2] Y. Kaburagi Y. Kobayashi, T. Enoki, K. Kusakabe ,and K. I. Fukui. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B, 71:193406, 2005. [3] D. J. Williams ,and P. N. Prasad. Introduction to nonlinear optical effects in molecules and polymers. Wiley., 1991. [4] B. M. Pierce. A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene. J. Chem. Phys., 91:791, 1989. [5] K. Kobayashi. Electronic structure of a stepped graphite surface. Phys. Rev. B, 3:1757, 1993. [6] D. J. Klein. Graphitic polymer strips with edge states. Chem. Phys. Lett., 3:261, 1994. [7] T. Matsui, H. Kambara, K. Tagami, H. Fukuyama, Y. Niimi ,and M. Tsukada. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B, 73:085421, 2006. [8] M. L. Cohen, Y. W. Son ,and S. G. Louie. Half-metallic graphene nanoribbons. Nature, 444:347, 2016. [9] E. F. Hayes and A. K. O. Siu. The electronic structure of biradicals in the unrestricted Hartree-Fock approximation. J. Am. Chem. Soc., 9:2090, 1971. [10] K. Yamaguchi. The electronic structure of biradicals in the unrestricted Hartree-Fock approximation. Chem. Phys. Lett., 2:330, 1975. [11] J. Hubbard Electron correlations in narrow energy bands. Proc. Roy. Soc. Lon., 276:238, 1963. [12] L. M. Falicov and R. A. Harris. Two-eletron homopolar molecule: A test for spin-density waves and charge-density waves. J. Chem. Phys., 51:3153, 1969. [13] W. P. Su. Lattice relaxation of even-parity singlet excited states in polyacetylene and four-soliton bound state. Phys. Rev. Lett., 74:1167, 1995. [14] F. Aryasetiawan, V. I. Anisimov ,and A. I. Lichtenstein. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method. J. Phys.: Cond. Matt., 9:767, 1997. [15] D. M. Bishop. Explicit nondivergent formulas for atomic and molecular dynamic hyperpolarizabilities. J. Chem. Phys., 100:6535, 1994. [16] B. J. Orr and J. F. Ward. Perturbation theory of the non-linear optical polarization of an isolated system. Mol. Phys., 20:513, 1971. [17] G. D. Mahan and A. G. Rojo. Nonlinear polarizability of correlated one-dimensional systems. Phys. Rev. B, 47:1794, 1993. [18] M. Nakano. Excitation energies and properties of open-shell singlet molecules. Springer, 2014. [19] T. Kubo, K. Kamada, K. Ohta, E. Botek, B. Champagne, M. Nakano, R. Kishi, S. Ohta ,and H. Takahashi. Relationship between third-order nonlinear optical properties and magnetic interactions in open-shell systems: A new paradigm for nonlinear optics. Phy. Rev. Lett., 99:033001, 2007. [20] P. O. Lowdin. Wave and reaction operators in the quantum theory of many-particle systems. Rev. Mod. Phys., 35:702, 1963. [21] J. P. Malrieu, J. Cabrero, C. J. Calzado ,and R. Caballol. Analysis of the magnetic coupling in binuclear complexes. i. physics of the coupling. J. Chem. Phys., 116:2728, 2002. [22] T. Minami, S. Ito ,and M. Nakano. Signature of singlet open-shell character on the optically allowed singlet excitation energy and singlet−triplet energy gap. Phys.Chem A, 117:2000, 2013. [23] M. Liess, P. A. Lane, M. Chandross, S. Mazumdar, M. Hamaguchi, Z. V. Vardeny ,and K. Yoshino. Optical absorption in the substituted phenylene-based conjugated polymers: Theory and experiment. Phys. Rev. B, 55:1486, 1997. [24] K. Ohno. Some remarks on the pariser-parr-pople method. Theor. Chem. Acc., 2:219, 1964. [25] K. Nakasuji, K. Kamada, K. Ohta, B. Champagne, E. Botek, K. Yamaguchi, M. Nakano, T. Nitta, T. Kubo ,and R. Kishi. Second hyperpolarizability (γ) of singlet diradical system: Dependence of γ on the diradical character. J. Phys. Chem. A, 109:885, 2005. [26] H. Takahashi, S. I. Furukawa, M. Nakano, N. Nakagawa, S. Ohta ,and R. Kishi. Second hyperpolarizabilities (γ) of bisimidazole and bistriazole benzenes: Diradical character, charged state, and spin state dependences. J. Phys. Chem. A, 110:4238, 2006. [27] R. Kishi, H. Takahashi, A. Shimizu, T. Kubo, K. Kamada, K. Ohta, B. Champagne, E. Botek, M. Nakano, H. Fukui, K. Yoneda ,and H. Nagai. Theoretical study of third-order nonlinear optical properties in square nanographenes with open-shell singlet ground states. Chem. Phys. Lett, 467:120, 2008. [28] T. Minami, S. Bonness, R. Kishi, H. Takahashi, T. Kubo, K. Kamada, K. Ohta, B. Champagne, E. Botek, H. Nagai, K. Yoneda, H. Fukui ,and M. Nakano. Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect. Chem. Phys. Lett., 477:355, 2009. [29] A. Shimizu, T. Kubo, K. Kamada, K. Ohta, B. Champagne, E. Botek, K. Yoneda, R. Kishi, H. Takahashi ,and M. Nakano. Third-order nonlinear optical properties of trigonal, rhombic and bow-tie graphene nanoflakes with strong structural dependence of diradical. Chem. Phys. Lett., 480:278, 2009. [30] B. Champagne, E. Botek, T. Kubo, Y. Hirao, A. Shimizu ,and M. Nakano. Theoretical consideration of singlet open-shell character of polyperiacenes using clar’s aromatic sextet valence bond model and quantum chemical calculations. AIP Conf. Proc., 1504:399, 2012. [31] C. Cojan, G. P. Agrawal ,and C. Flytzanis. Nonlinear optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B, 17:776, 1978. [32] J. C. W. Chien and F. E. Karasz. An estimate of bond length alternation in trans-polyacetylene. Macr. Rapid. Comm., 3:655 , 1982. [33] H. Takahashi, A. Shimizu, T. Kubo, K. Kamada, K. Ohta, E. Botek, B. Champagne, H. Nagai, K. Yoneda, R. Kishi ,and M. Nakano. Signature of multiradical character in second hyperpolarizabilities of rectangular graphene nanoflakes. Chem. Phys. Lett., 489:212, 2010.
|