跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠宏
研究生(外文):Guan-Hung Lin
論文名稱:二階超極化率與雙自由基在多並苯中的關係之理論研究
論文名稱(外文):Theoretical study on the relationship between the staticsecond hyperpolarizability and the diradical character inpolyacene
指導教授:金必耀
指導教授(外文):Bih-Yaw Jin
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:53
中文關鍵詞:二階超極化率雙自由基多並苯
外文關鍵詞:second hyperpolarizabilitydiradical characterpolyacene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在 1970 年代就發現有機共軛分子有著 pi-pi 電子的作用力,導致有著較大的二階超極化率,且有機共軛分子的結構 (例如: 邊界形狀有分成扶手椅型 (armchair) 和鋸齒狀型 (zigzag)) 也扮演很重要的角色影響著二階超極化率,因此了解不同結構有機共軛分子的二階超極化率是件重要的課題。在十幾年前已經有文章指出鋸齒狀-石墨烯奈米帶(zigzag-graphene nanoribbon) 的結構有電子會定域在邊界,這些電子就像是自由基的形式,想了解因為鋸齒狀結構所產生的自由基如何影響著二階超極化率。多並苯 (Polyacene) 可以視為最窄的鋸齒狀-石墨烯奈米帶,一樣也有電子會定域在邊界的性質,同時擁有 pi-pi 電子的未定域的特性與自由基定域在邊界的特性會怎麼影響二階超極化率。有兩種方法定義“雙自由基性質 (y)”。第一種方法在 1971 年E.F.Hayes 要做configuration interaction (CI) 計算,但 CI 的計算需要大的計算量和時間,所以在 1975 年由 Kizashi Yamaguchi 用 unrestricted Hartree-Fock 定義出“雙自由基性質 (y)”,減少的計算量與時間。想藉由“雙自由基性質”了解多並苯分子中,自由基與二階超極化率之間的關係。(1) 一開始,先用 Hubbard modol 改變參數 U 和 t 在兩電子系統去理解“雙自由基性質”,可以透過改變“雙自由基性”去改變躍遷偶極矩,但同時也會影響組態的能量,躍遷偶極矩和激發的能量兩者對於二階超極化率分別為正比、反比,所以可以將二階超極化率寫“雙自由基性質”的函數,在某個臨界值以下,二階超極化率是由激發的能量所為主要貢獻; 在某個臨界值以上,二階超極化率是由躍遷偶極矩所為主要貢獻,藉由 y 可以知道在不同的程度的條件下,二階超極化率是由不同因素所控制的。(2)PPP model 可以很好可以描述純碳的共軛系統,用 PPP model 來描述多並苯,可以發現多並苯有著較明顯的“雙自由基性質”,“雙自由基性質”跟邊界形狀有關也和分子的大小有關,隨著多並苯的尺寸變大電子定域在邊界的特性越明顯。已知二階超極化率跟尺寸大小成高次方正比,所以每一單元下的二階超極化率才是我們所關注,對多並苯的大小與每一單元下的二階超極化率,可以發現 n=14 每一單元下的二階超極化率對達到一個最大值,再隨著尺寸變大每一單元下的二階超極化率會漸漸變小,我們的結果顯示 pi-pi 電子的未定域化被受到自由基會定域在邊界而侷限導致每一單元下的二階超極化率會漸漸變小。
In 1962, Terhune et al. first discovered electrical-field-induced second harmonic generation. Hermann and Ducuing put their research focus on second hyperpolarizability of long-chain conjugated hypercarbon in 1970s. After Hermann and Ducuing, more and more people have devoted on the second hyperpolarizability of conjugated organic molecules. They have shown that conjugated organic molecules usually present larger second hyperpolarizability because of pi-pi electrons delocalization. Zigzag-graphene nanoribbons (zGNRs) is common conjugated organic molecules. In addition, z-GNRs have been reported predicted localized electron on the edge. After these studies, several theoretical papers have reported these electrons are like radicals. The electronic properties of radicals species have already received considerable attention. There are two methods to define the diradical character. One is through configuration interaction (CI) calculation by Edward F. Hayes in 1971 and the other is through unrestricted Hatree-Fock (UHF) to construct unrestricted natural orbital (UNO) and do CI calculation for the singlet ground state open-shell molecules by Kizashi Yamaguchi in 1975.(1)First, in the simplest two-site Hubbard model, it has shown that the numerical solution of the second hyperpolarizability can be rewritten by the diradical character and we realize that the transition dipole moments or the excitation energies at different cases dominate the second hyperpolarizability.(2)Following by the two-site Hubbard model, we use PPP model to describe the polyacene. The polyacene can be view as the narrowest zigzag graphene nanoribbons (z-GNRs). As the size of polyacene is larger, the more radicals localize on the edge. Polyacene both have pi-pi electrons delocalization and also have edge effect. We want to realize the variation of the second hyperpolarizability with increasing size of polyacene. Because the second hyperpolarizability depend on the size of molecules, it is necessary to adjust the size of polyacene. There is a maximum of gamma/unit cell at n=14. After n=14, gamma/unit cell get decaying as the size of polyacene enhances. The pi-pi electron delocalization The edge effect making gamma/unit cell decaying results from repressing the pi-pi electrons delocalization.
口試委員會審定書 iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
1.1 Nonlinear optics 1
1.2 Polyacene 2
1.3 Diradical character(y) 3
1.3.1 Scheme of diradical character 3
1.3.2 Defintion of diradical character 5
2 Two-site Hubbard model 11
2.1 Diradical character connected to second hyperpolarizability 11
2.1.1 Hubbard model 11
2.1.2 Orbital energy 13
2.1.3 Transition dipole moment 13
2.1.4 (Hyper)Polarizability 14
2.1.5 Diradical character 17
2.2 Symmetry breaking in RHF solution 21
2.2.1 Restricted Hatree-Fock (RHF) 22
2.2.2 Unrestricted Hatree-Fock (UHF) 23
2.3 Comparison of two methods of diradical character(y) 25
2.3.1 Diradical character(y) 25
2.4 Result and discussion 27
3 Conjugated system in PPP model 29
3.1 Pariser – Parr – Pople (PPP) model 29
3.2 The relation of conjugated system between second hyperpolarizablility and diradical character 30
3.2.1 Trans-polyacetylene 31
3.2.2 Polyacene 36
3.3 Result and discussion 39
A Hartree-Fock approximation 41
A.1 Hartree-Fock-Roothaan equation 41
B Single and Double excitation Configuration Interaction (SDCI) 46
B.1 SDCI wave function 47
B.2 The correlation energy 47
C Size-consistency with truncated CI and Davidson correction 49
Bibliography 50
[1] P. A. Franken and J. F. Ward. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys., 1:120, 1963.
[2] Y. Kaburagi Y. Kobayashi, T. Enoki, K. Kusakabe ,and K. I. Fukui. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B, 71:193406, 2005.
[3] D. J. Williams ,and P. N. Prasad. Introduction to nonlinear optical effects in molecules and polymers. Wiley., 1991.
[4] B. M. Pierce. A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene. J. Chem. Phys., 91:791, 1989.
[5] K. Kobayashi. Electronic structure of a stepped graphite surface. Phys. Rev. B, 3:1757, 1993.
[6] D. J. Klein. Graphitic polymer strips with edge states. Chem. Phys. Lett., 3:261, 1994.
[7] T. Matsui, H. Kambara, K. Tagami, H. Fukuyama, Y. Niimi ,and M. Tsukada. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B, 73:085421, 2006.
[8] M. L. Cohen, Y. W. Son ,and S. G. Louie. Half-metallic graphene nanoribbons. Nature, 444:347, 2016.
[9] E. F. Hayes and A. K. O. Siu. The electronic structure of biradicals in the unrestricted Hartree-Fock approximation. J. Am. Chem. Soc., 9:2090, 1971.
[10] K. Yamaguchi. The electronic structure of biradicals in the unrestricted Hartree-Fock approximation. Chem. Phys. Lett., 2:330, 1975.
[11] J. Hubbard Electron correlations in narrow energy bands. Proc. Roy. Soc. Lon., 276:238, 1963.
[12] L. M. Falicov and R. A. Harris. Two-eletron homopolar molecule: A test for spin-density waves and charge-density waves. J. Chem. Phys., 51:3153, 1969.
[13] W. P. Su. Lattice relaxation of even-parity singlet excited states in polyacetylene and four-soliton bound state. Phys. Rev. Lett., 74:1167, 1995.
[14] F. Aryasetiawan, V. I. Anisimov ,and A. I. Lichtenstein. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method. J. Phys.: Cond. Matt., 9:767, 1997.
[15] D. M. Bishop. Explicit nondivergent formulas for atomic and molecular dynamic hyperpolarizabilities. J. Chem. Phys., 100:6535, 1994.
[16] B. J. Orr and J. F. Ward. Perturbation theory of the non-linear optical polarization of an isolated system. Mol. Phys., 20:513, 1971.
[17] G. D. Mahan and A. G. Rojo. Nonlinear polarizability of correlated one-dimensional systems. Phys. Rev. B, 47:1794, 1993.
[18] M. Nakano. Excitation energies and properties of open-shell singlet molecules. Springer, 2014.
[19] T. Kubo, K. Kamada, K. Ohta, E. Botek, B. Champagne, M. Nakano, R. Kishi, S. Ohta ,and H. Takahashi. Relationship between third-order nonlinear optical properties and magnetic interactions in open-shell systems: A new paradigm for nonlinear optics. Phy. Rev. Lett., 99:033001, 2007.
[20] P. O. Lowdin. Wave and reaction operators in the quantum theory of many-particle systems. Rev. Mod. Phys., 35:702, 1963.
[21] J. P. Malrieu, J. Cabrero, C. J. Calzado ,and R. Caballol. Analysis of the magnetic coupling in binuclear complexes. i. physics of the coupling. J. Chem. Phys., 116:2728, 2002.
[22] T. Minami, S. Ito ,and M. Nakano. Signature of singlet open-shell character on the optically allowed singlet excitation energy and singlet−triplet energy gap. Phys.Chem A, 117:2000, 2013.
[23] M. Liess, P. A. Lane, M. Chandross, S. Mazumdar, M. Hamaguchi, Z. V. Vardeny ,and K. Yoshino. Optical absorption in the substituted phenylene-based conjugated
polymers: Theory and experiment. Phys. Rev. B, 55:1486, 1997.
[24] K. Ohno. Some remarks on the pariser-parr-pople method. Theor. Chem. Acc., 2:219, 1964.
[25] K. Nakasuji, K. Kamada, K. Ohta, B. Champagne, E. Botek, K. Yamaguchi, M. Nakano, T. Nitta, T. Kubo ,and R. Kishi. Second hyperpolarizability (γ) of singlet diradical system: Dependence of γ on the diradical character. J. Phys. Chem. A, 109:885, 2005.
[26] H. Takahashi, S. I. Furukawa, M. Nakano, N. Nakagawa, S. Ohta ,and R. Kishi. Second hyperpolarizabilities (γ) of bisimidazole and bistriazole benzenes: Diradical character, charged state, and spin state dependences. J. Phys. Chem. A, 110:4238, 2006.
[27] R. Kishi, H. Takahashi, A. Shimizu, T. Kubo, K. Kamada, K. Ohta, B. Champagne, E. Botek, M. Nakano, H. Fukui, K. Yoneda ,and H. Nagai. Theoretical study of third-order nonlinear optical properties in square nanographenes with open-shell singlet ground states. Chem. Phys. Lett, 467:120, 2008.
[28] T. Minami, S. Bonness, R. Kishi, H. Takahashi, T. Kubo, K. Kamada, K. Ohta, B. Champagne, E. Botek, H. Nagai, K. Yoneda, H. Fukui ,and M. Nakano. Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect. Chem. Phys. Lett., 477:355, 2009.
[29] A. Shimizu, T. Kubo, K. Kamada, K. Ohta, B. Champagne, E. Botek, K. Yoneda, R. Kishi, H. Takahashi ,and M. Nakano. Third-order nonlinear optical properties of trigonal, rhombic and bow-tie graphene nanoflakes with strong structural dependence of diradical. Chem. Phys. Lett., 480:278, 2009.
[30] B. Champagne, E. Botek, T. Kubo, Y. Hirao, A. Shimizu ,and M. Nakano. Theoretical consideration of singlet open-shell character of polyperiacenes using clar’s aromatic sextet valence bond model and quantum chemical calculations. AIP Conf. Proc., 1504:399, 2012.
[31] C. Cojan, G. P. Agrawal ,and C. Flytzanis. Nonlinear optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B, 17:776, 1978.
[32] J. C. W. Chien and F. E. Karasz. An estimate of bond length alternation in trans-polyacetylene. Macr. Rapid. Comm., 3:655 , 1982.
[33] H. Takahashi, A. Shimizu, T. Kubo, K. Kamada, K. Ohta, E. Botek, B. Champagne, H. Nagai, K. Yoneda, R. Kishi ,and M. Nakano. Signature of multiradical character in second hyperpolarizabilities of rectangular graphene nanoflakes. Chem. Phys. Lett., 489:212, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top